1
|
Miao X, Huang Y, Ge KX, Xu Y. Application of scRNA-seq in Dental Research: Seeking Regenerative Clues From the Structure of Tooth and Periodontium in Physical or Pathological States. FRONT BIOSCI-LANDMRK 2025; 30:26200. [PMID: 40018926 DOI: 10.31083/fbl26200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 03/01/2025]
Abstract
This review presents a comprehensive overview of single-cell RNA sequencing (scRNA-seq) analyses used to study tooth and periodontal tissues. The intricate cellular composition of both teeth and periodontium are revealed, leading to the identification of new cell types and tracing lineage profiles for each cell type. Herein, we summarize the progression of dental and periodontal tissue formation, tooth homeostasis, and regenerative mechanisms. scRNA-seq analyses have demonstrated that the cellular constituent ratio of dental and periodontal tissues transforms homeostasis or injury repair. Importantly, single-cell data in the diseased tissue demonstrated a change in both cell types and intercellular communication patterns compared to the normal state. These findings provide valuable insights into the underlying disease mechanisms at the cellular level in the context of single-cell vision, thereby facilitating the investigation of potential therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Miao
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, 310052 Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, 310052 Hangzhou, Zhejiang, China
| | - Yufen Huang
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, 310052 Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, 310052 Hangzhou, Zhejiang, China
| | - Kelsey Xingyun Ge
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R., China
| | - Yunlong Xu
- Endodontic Department, Changzhou Stomatological Hospital, 213000 Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Chen W, Zhou L, Jiang J, Chen J, Geng D, Chen Y, Han X, Xie Q, Guo G, Chen X, Tang S, Zhong X. Induction of the p21/CDK6 pathway and alteration of the immune microenvironment by the stem cell marker CBX3 in melanoma. Stem Cell Res Ther 2025; 16:63. [PMID: 39934923 PMCID: PMC11816572 DOI: 10.1186/s13287-025-04179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND As one of the stem cell markers, chromobox protein homolog 3 (CBX3) participates in multiple signaling pathways that affect the progression of various tumors. However, the role of CBX3 in melanoma remains unclear, and the mechanisms by which CBX3 may regulate immunotherapy outcome remain largely unknown. METHODS We used the Cancer Genome Atlas, Genotype-Tissue Expression portal, and Gene Expression Omnibus database to estimate CBX3 expression and its prognostic effect in melanoma. The role of CBX3 in proliferation and migration of melanoma cells were examined using the CCK8, cloning, wound healing, and transwell assays. The effect of CBX3 on melanoma tumorigenesis was assessed using an in vivo animal model. The role of CBX3 in cell cycle was examined using flow cytometry, and expression levels of cell cycle-related genes and proteins in cells with altered CBX3 levels were analyzed using qPCR and western blotting. The function of CBX3 in the immune microenvironment of melanoma was studied using single-cell RNA sequencing and public databases. RESULTS We found that CBX3 was highly expressed in melanoma with poor prognosis. CBX3 promoted the proliferation and migration of melanoma cells in vivo and in vitro. Functional analysis revealed that CBX3 regulates cell cycle, as it accelerated the G1 to S transition, decreased p21 expression, and increased CDK6 expression. Finally, single-cell sequencing and immune-related assays showed that CBX3 is immunogenic and can change the immune microenvironment of melanoma. CONCLUSIONS We conclude that the stem cell marker, CBX3 activates the p21/CDK6 pathway and alters the immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Linsa Zhou
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Jingjing Jiang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Yaokun Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China.
| |
Collapse
|
3
|
Dong Q, Niu W, Mu M, Ye C, Wu P, Hu S, Niu C. Lycorine hydrochloride interferes with energy metabolism to inhibit chemoresistant glioblastoma multiforme cell growth through suppressing PDK3. Mol Cell Biochem 2025; 480:355-369. [PMID: 38466468 DOI: 10.1007/s11010-024-04945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/18/2024] [Indexed: 03/13/2024]
Abstract
Glioblastoma multiforme (GBM) is the highest grade of glioma. Tumours, including GBM, possess reprogrammed metabolism, such as altered aerobic glycolysis and aberrant energy production. Lycorine hydrochloride (LH) was extracted from the bulb of Lycoris radiata. The previous study indicated that LH exerts antiviral, anti-inflammatory and antitumour effects. However, the effect of LH on GBM and the underlying molecular mechanism remain unclear. Our study revealed that LH restrained chemoresistant GBM cells growth by inhibiting PDK3 expression in vitro and in vivo. Functionally, LH inhibited the proliferation and invasive capacity of chemoresistant GBM cells in dose-dependent manner. Metabolomics and cellular energy analyses showed that LH decreased extracellular acidification rates while increased oxidative respiration and ROS levels. Mechanistically, LH inhibits the growth of GBM chemoresistant cells by regulating the expression of apoptosis-related proteins, while overexpression of of PDK3 can reverse the antitumor effect of LH. In conclusion, our study revealed that LH could reprogramme cell energy metabolism, including aerobic glycolysis suppression and oxidative phosphorylation hyperactivation by inhibiting PDK3. PDK3 may be a candidate therapeutic target for chemoresistant GBM treatment with LH.
Collapse
Affiliation(s)
- Qingsheng Dong
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Wanxiang Niu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Maolin Mu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Chengkun Ye
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China
| | - Pengfei Wu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
| | - Shanshan Hu
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| | - Chaoshi Niu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China.
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui Province, 230027, People's Republic of China.
- Anhui Key Laboratory of Brain Function and Diseases, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Stereotactic Neurosurgical Institute, Hefei, Anhui, 230001, People's Republic of China.
- Anhui Provincial Clinical Research Center for Neurosurgical Disease, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
4
|
Özay B, Tükel EY, Ayna Duran G, Kiraz Y. Identification of potential inhibitors for drug resistance in acute lymphoblastic leukemia through differentially expressed gene analysis and in silico screening. Anal Biochem 2024; 694:115619. [PMID: 39025197 DOI: 10.1016/j.ab.2024.115619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Acute lymphoblastic leukemia (ALL) is a disease of lymphocyte origin predominantly diagnosed in children. While its 5-year survival rate is high, resistance to chemotherapy drugs is still an obstacle. Our aim is to determine differentially expressed genes (DEGs) related to Asparaginase, Daunorubicin, Prednisolone, and Vincristine resistance and identify potential inhibitors via docking. Three datasets were accessed from the Gene Expression Omnibus database; GSE635, GSE19143, and GSE22529. The microarray data was analyzed using R4.2.0 and Bioconductor packages, and pathway and protein-protein interaction analysis were performed. We identified 1294 upregulated DEGs, with 12 genes consistently upregulated in all four resistant groups. KEGG analysis revealed an association with the PI3K-Akt pathway. Among DEGs, 33 hub genes including MDM2 and USP7 were pinpointed. Within common genes, CLDN9 and HS3ST3A1 were subjected to molecular docking against 3556 molecules. Following ADMET analysis, three drugs emerged as potential inhibitors: Flunarizine, Talniflumate, and Eltrombopag. Molecular dynamics analysis for HS3ST3A1 indicated all candidates had the potential to overcome drug resistance, Eltrombopag displaying particularly promising results. This study promotes a further understanding of drug resistance in ALL, introducing novel genes for consideration in diagnostic screening. It also presents potential inhibitor candidates to tackle drug resistance through repurposing.
Collapse
Affiliation(s)
- Başak Özay
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey
| | - Ezgi Yağmur Tükel
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey
| | - Gizem Ayna Duran
- İzmir University of Economics, Faculty of Engineering, Department of Biomedical Engineering, 35330, Balçova, Izmir, Turkey
| | - Yağmur Kiraz
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, Izmir, Turkey.
| |
Collapse
|
5
|
Joyce LJ, Lindsay AJ. A systematic computational analysis of the endosomal recycling pathway in glioblastoma. Biochem Biophys Rep 2024; 38:101700. [PMID: 38638676 PMCID: PMC11024495 DOI: 10.1016/j.bbrep.2024.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive brain cancer in adults. The standard treatment is brutal and has changed little in 20 years, and more than 85% of patients will die within two years of their diagnosis. There is thus an urgent need to identify new drug targets and develop novel therapeutic strategies to increase survival and improve quality of life. Using publicly available genomics, transcriptomics and proteomics datasets, we compared the expression of endosomal recycling pathway regulators in non-tumour brain tissue with their expression in GBM. We found that key regulators of this pathway are dysregulated in GBM and their expression levels can be linked to survival outcomes. Further analysis of the differentially expressed endosomal recycling regulators allowed us to generate an 8-gene prognostic signature that can distinguish low-risk from high-risk GBM and potentially identify tumours that may benefit from treatment with endosomal recycling inhibitors. This study presents the first systematic analysis of the endosomal recycling pathway in glioblastoma and suggests it could be a promising target for the development of novel therapies and therapeutic strategies to improve outcomes for patients.
Collapse
Affiliation(s)
- Luke J. Joyce
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J. Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
6
|
Pan A, Xue Y, Ruan X, Dong W, Wang D, Liu Y, Liu L, Lin Y, E T, Lin H, Xu H, Liu X, Wang P. m5C modification of LINC00324 promotes angiogenesis in glioma through CBX3/VEGFR2 pathway. Int J Biol Macromol 2024; 257:128409. [PMID: 38016610 DOI: 10.1016/j.ijbiomac.2023.128409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Angiogenesis plays a major role in tumor initiation, progression, and metastasis. This is why finding antiangiogenic targets is essential in the treatment of gliomas. In this study, NSUN2 and LINC00324 were significantly upregulated in conditionally cultured glioblastoma endothelial cells (GECs). Knockdown of NSUN2 or LINC00324 inhibits GECs angiogenesis. NSUN2 increased the stability of LINC00324 by m5C modification and upregulated LINC00324 expression. LINC00324 competes with the 3'UTR of CBX3 mRNA to bind to AUH protein, reducing the degradation of CBX3 mRNA. In addition, CBX3 directly binds to the promoter region of VEGFR2, enhances VEGFR2 transcription, and promotes GECs angiogenesis. These findings demonstrated NSUN2/LINC00324/CBX3 axis plays a crucial role in regulating glioma angiogenesis, which provides new strategies for glioma therapy.
Collapse
Affiliation(s)
- Aini Pan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Di Wang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunhui Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China
| | - Tiange E
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hailing Xu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China.; Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang 110122, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, China..
| |
Collapse
|
7
|
Chen J, Lin Y, Zheng S, Chen Q, Tang S, Zhong X. CBX3 promotes clear cell renal carcinoma through PI3K/AKT activation and aberrant immunity. J Transl Med 2023; 21:600. [PMID: 37674204 PMCID: PMC10483741 DOI: 10.1186/s12967-023-04478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A chromobox homologue 3 (CBX3) is elevated in various cancers and significantly contributes to the promotion of malignant behavior; despite this, its exact involvement in clear cell renal cell carcinoma (ccRCC) is yet unknown. METHODS The Cancer Genome Atlas database served to evaluate CBX3 production and its connection to survival in patients with ccRCC. Our team evaluated the effects of knockdown of CBX3 levels in ccRCC cell populations using in vitro together with in vivo models. CBX3, proteins related to death, and epithelial-to-mesenchymal transition (EMT)-related proteins were measured in ccRCC cells using western blotting and immunohistochemical assays. Through the analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and GeneOntology (GO) and Gene Set Enrichment Analysis (GSEA), the biological processes and signal pathways related to CBX3 expression were identified. Immune-related activity reduced by CBX3 was assessed using various online tools. RESULTS Both genomic and protein expression showed that CBX3 was upregulated in ccRCC. Further functional analyses revealed that CBX3 played a crucial role in enhancing cell growth, migration, and EMT in vitro along with in vivo. Moreover, the study results provided distinct mechanistic evidence that CBX3 exerts its pathological functions in ccRCC by activating the PI3K/AKT pathway. Finally, immunoassays revealed that CBX3, a possible biomarker of ccRCC, was significantly associated with immunity. CONCLUSIONS Our results suggest that the overexpression of CBX3 promotes ccRCC advancement through PI3K/AKT activation and even immunological dysregulation, making it a potentially viable and beneficial therapeutic target.
Collapse
Affiliation(s)
- Jiasheng Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yuxin Lin
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Qingshan Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Bosso G, Cipressa F, Tullo L, Cenci G. Co-amplification of CBX3 with EGFR or RAC1 in human cancers corroborated by a conserved genetic interaction among the genes. Cell Death Discov 2023; 9:317. [PMID: 37633946 PMCID: PMC10460438 DOI: 10.1038/s41420-023-01598-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023] Open
Abstract
Chromobox Protein 3 (CBX3) overexpression is a common event occurring in cancer, promotes cancer cell proliferation and represents a poor prognosis marker in a plethora of human cancers. Here we describe that a wide spectrum of human cancers harbors a co-amplification of CBX3 gene with either EGFR or RAC1, which yields a statistically significant increase of both mRNA and protein levels of CBX3, EGFR and RAC1. We also reveal that the simultaneous overexpression of CBX3, RAC1 and EGFR gene products correlates with a worse prognosis compared to the condition when CBX3, RAC1 and EGFR are singularly upregulated. Furthermore, we also show that a co-occurrence of low-grade amplification, in addition to high-grade amplification, between CBX3 and EGFR or RAC1 is associated with a reduced patient lifespan. Finally, we find that CBX3 and RAC1/EGFR genetically interact in the model organism Drosophila melanogaster, suggesting that the simultaneous overexpression as well as well the co-occurrence of high- or low-grade copy number alterations in these genes is not accidental and could reflect evolutionarily conserved functional relationships.
Collapse
Affiliation(s)
- Giuseppe Bosso
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy.
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| | - Francesca Cipressa
- Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| | - Liliana Tullo
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology "C. Darwin", Sapienza Università di Roma, Rome, Italy.
- Fondazione Cenci Bolognetti, Istituto Pasteur Italia, Rome, Italy.
| |
Collapse
|
9
|
Wang H, Wang X, Xu L, Zhang J. RARRES2 is Downregulated in Isocitrate Dehydrogenase 1 Mutant Glioma Patients and Served as an Unfavorable Prognostic Factor of Glioma. World Neurosurg 2023; 176:e610-e622. [PMID: 37271257 DOI: 10.1016/j.wneu.2023.05.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Mutations in isocitrate dehydrogenase 1 (IDH1) induce extensive transcriptional alterations to promote glioma development. However, IDH1 mutation contributes the better clinical outcomes of glioma. Further understanding the transcriptional and DNA methylation changes mediated by IDH1 mutation will provide new therapeutic targets for glioma. METHODS Public glioma cohorts were collected and processed using R software. The transcriptional changes mediated by IDH1 mutation were determined and presented using heatmap. The differentially expressed genes in IDH1 mutant glioma were overlapped using TBtools. The prognostic effects of IDH1 regulated genes were determined by Kaplan-Meier survival analysis. RESULTS Retinoic acid receptor responder 2 (RARRES2) was upregulated in IDH1 wild type lower-grade glioma (LGG) patients, and higher expression levels of RARRES2 were associated with worse clinical outcomes of LGG. Moreover, IDH1 wild type LGG patients with higher expression levels of RARRES2 had even worse overall survival. Compared with LGG, RARRES2 was upregulated in grade IV glioma (glioblastoma multiforme, GBM). Also, RARRES2 represented an unfavorable prognostic factor of glioma. In GBM, RARRES2 was also associated with IDH1 mutation. In both LGG and GBM, IDH1 mutation induced extensive DNA hypermethylation, and more than half genes that were downregulated in IDH1 mutant glioma were contributed by DNA hypermethylation. RARRES2 was also hypermethylated in IDH1 mutant LGG or GBM patients. Furthermore, RARRES2 hypomethylation was an unfavorable prognostic factor in patients with LGG. CONCLUSIONS RARRES2 was downregulated by IDH1 mutation and served as an unfavorable prognostic factor in glioma.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Guan S, He Y, Su Y, Zhou L. A Risk Signature Consisting of Eight m 6A Methylation Regulators Predicts the Prognosis of Glioma. Cell Mol Neurobiol 2022; 42:2733-2743. [PMID: 34432221 PMCID: PMC11421626 DOI: 10.1007/s10571-021-01135-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/27/2021] [Indexed: 01/05/2023]
Abstract
Glioma progression seriously correlates to the epigenetic context. This study aims to identify glioma subtypes by clustering analysis of patients using the multi-omics data of N6-methyladenosine (m6A) methylation regulators and to construct a risk signature for investigating the role of m6A methylation regulators in the prognosis of glioma. Multi-omics data of glioma and normal control tissues were obtained through The Cancer Genome Atlas (TCGA) database. The clustering analysis of multi-omics data of patients was conducted using the R package iClusterPlus software. The risk model was constructed by univariate and multivariate Cox analysis, and the glioma expression data and related clinical data were obtained by Chinese Glioma Genome Atlas (CGGA) datasets to verify the risk model. By analyzing the glioma data in TCGA, we found that the risk signature could be constructed according to the eight genes with m6A methylation modification function, including ALKBH5, HNRNPA2B1, IGF2BP2, IGF2BP3, RBM15, WTAP, YTHDF1, and YTHDF2. Meanwhile, we found that IGF2BP2 and IGF2BP3 were highly expressed in glioma subtypes with high-risk scores and closely related to the prognosis of glioma patients. m6A methylation regulators, especially IGF2BP2 and IGF2BP3, play important roles in the malignant progression of glioma. The risk signature constructed by eight m6A methylation regulators can predict the prognosis of glioma. IGF2BP2 and IGF2BP3 may be the key regulatory factors of m6A methylation regulators involved in the occurrence and development of glioma, and can serve as molecular markers for the prognosis of glioma.
Collapse
Affiliation(s)
- Sizhong Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Ye He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yanna Su
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Liping Zhou
- Post Graduation Training Department, The First Hospital of China Medical University, No. 155, Northern Nanjing Road, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
11
|
CCT6A and CHCHD2 Are Coamplified with EGFR and Associated with the Unfavorable Clinical Outcomes of Lung Adenocarcinoma. DISEASE MARKERS 2022; 2022:1560199. [PMID: 35937942 PMCID: PMC9352476 DOI: 10.1155/2022/1560199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Chaperonin containing TCP1 subunit 6A (CCT6A) and coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are located at the chromosome 7p11 region proximal to epidermal growth factor receptor (EGFR). However, the amplifications, expressions, and the prognostic effects of CCT6A and CHCDH2 in lung adenocarcinoma (LUAD) are unclear. Here, using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, we found that CCT6A was coamplified and coexpressed with EGFR in LUAD patients. CCT6A amplification was correlated with the unfavorable outcomes of LUAD. Moreover, CCT6A was upregulated in LUAD tissues, and CCT6A overexpression was correlated with the unfavorable relapse free survival or overall survival of LUAD. On the contrary, CCT6A was hypomethylated in LUAD, and CCT6A hypermethylation was correlated with the favorable overall survival of LUAD. Similar expression and methylation profiling of CCT6A were obtained in 479 lung normal tissues and 544 LUAD tissues collected from 11 independent datasets. In 1,462 LUAD patients from eight independent cohorts, CCT6A was also correlated with LUAD relapse-free survival or overall survival. Furthermore, CCT6A overexpression promoted the cell growth and invasion of LUAD. Identification of genes differentially expressed in CCT6A highly expressed LUAD patients revealed that CHCHD2 was the most correlated with CCT6A expression. CHCHD2 was coamplified with CCT6A. CHCHD2 was upregulated in LUAD tissues, and overexpression of CHCHD2 was correlated with the shorted relapse-free survival or overall survival of LUAD. Overall, our results revealed that CCT6A and CHCHD2 were coamplifying and coexpressing with EGFR and were correlated with the unfavorable clinical outcomes of LUAD.
Collapse
|
12
|
Huang Z, Wang H, Sun D, Liu J. Identification of Paxillin as a Prognostic Factor for Glioblastoma via Integrated Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7171126. [PMID: 35782068 PMCID: PMC9246607 DOI: 10.1155/2022/7171126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive type of brain tumor in the central nervous system. Clinical outcomes for patients with GBM are unsatisfactory. Here, we aimed to identify novel, reliable prognostic factors for GBM. Cox and interactive analyses were used to identify hub genes from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas datasets. After validation using various cohorts, survival analysis, meta-analysis, and prognostic analysis were performed. Coexpression and enrichment analyses were performed to elucidate the biological pathways of hub genes involved in GBM. ESTIMATE and CIBERSORT methods were applied to analyze the association of hub genes with the tumor microenvironment (TME). Paxillin (PXN) was identified as a hub gene with a high expression in GBM. PXN expression was negatively correlated with overall survival, progression-free survival, and disease-free survival in patients with GBM. Meta-analysis and Cox analysis revealed that PXN could act as an independent prognostic factor in GBM. In addition, PXN was significantly coexpressed with signal transducer and activator of transcription 3 and transforming growth factor β1 and participated in focal adhesion, extracellular matrix/receptor interactions, and the phosphatidylinositol 3-kinase/AKT signaling pathway. The results of ESTIMATE and CIBERSORT analyses revealed that PXN was implicated in TME alterations, particularly the infiltration of regulatory T cells, activated memory T cells, and activated natural killer cells. PXN may be a reliable prognostic factor for GBM. Further studies are needed to validate these findings.
Collapse
Affiliation(s)
- Zhehao Huang
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hailiang Wang
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
| | - Dongjie Sun
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jun Liu
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Xu H, Jiang C, Chen D, Wu Y, Lu J, Zhong L, Yao F. Analysis of Pan-Cancer Revealed the Immunological and Prognostic Potential of CBX3 in Human Tumors. Front Med (Lausanne) 2022; 9:869994. [PMID: 35573019 PMCID: PMC9096250 DOI: 10.3389/fmed.2022.869994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Chromobox protein homolog 3 (CBX3) has been recognized as a member of the heterochromatin protein 1 family and participate in transcriptional activation or inhibition, cell differentiation and growth. Despite more and more evidence shows that CBX3 has a critical function in the development of some tumors, no systematic extensive analysis of CBX3 has been reported. Thus, we intended to examine the prognostic significance of CBX3 in 33 tumors and investigate its potential immune function. We employed several bioinformatics methods to explore the potential carcinogenic impact of CBX3 premised on the data sets collected from tumor genome maps, human protein maps, cBioPortal, and genotype tissue expression. The approaches include assessing the link between CBX3 and prognosis of different tumors, immune cell infiltration, micro-satellite instability (MSI), DNA methylation, and tumor mutational burden (TMB). The outcomes illustrated that CBX3 was increasingly expressed in 29 tumors. Moreover, CBX3 exhibited a negative correlation with the prognosis of many tumors. The expression of CBX3 was linked to MSI in 12 tumors and TMB in 16 tumors. In 24 tumors, the expression of CBX3 was linked to DNA methylation. Moreover, the CBX3 expression exhibited a negative relationship with the infiltration level of the majority of immune cells, but showed a positive link to T gamma delta cells, central memory T cells, and T helper cells, especially when invading breast carcinoma, thymic carcinoma, colon carcinoma, cutaneous melanoma, endometrial carcinoma, and lung squamous carcinoma. Our research indicates that CBX3 might be used as a prognostic indicator for different malignant tumors due to its function in tumor genesis as well as tumor immunity.
Collapse
Affiliation(s)
- Haitao Xu
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Caihong Jiang
- Department of Pediatric Surgery, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Dangui Chen
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Youzhi Wu
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Jia Lu
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Long Zhong
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| | - Fusheng Yao
- Department of Hematology, Anqing Municipal Hospital, Anqing Hospital Affiliated to Anhui Medical University, Anqing, China
| |
Collapse
|
14
|
Li M, Jiang H, Chen S, Ma Y. GATA binding protein 1 recruits histone deacetylase 2 to the promoter region of nuclear receptor binding protein 2 to affect the tumor microenvironment and malignancy of thyroid carcinoma. Bioengineered 2022; 13:11320-11341. [PMID: 35491849 PMCID: PMC9278442 DOI: 10.1080/21655979.2022.2068921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) and activated angiogenesis in thyroid carcinoma (TC) are critical for tumor growth and metastasis. Nuclear receptor binding protein 2 (NRBP2) has been suggested as a tumor suppressor. This study examines the function of NRBP2 in the progression of TC and the regulatory mechanism. By analyzing bioinformatic tools including GSE165724 dataset and the Cancer Genome Atlas system, we predicted NRBP2 as a poorly expressed gene in TC. Decreased NRBP2 expression was detected in TC tumor tissues and cells. Poor expression of NRBP2 was linked to unfavorable prognosis of patients. GATA binding protein 1 (GATA1) was found as a negative regulator of NRBP2. It recruited histone deacetylase2 (HDAC2) to the NRBP2 promoter to trigger histone deacetylation. NRBP2 overexpression suppressed growth of TC cells, and it reduced expression of TME markers, M2 polarization of macrophages, and angiogenesis in TC. Similar results were reproduced in vivo in nude mice. However, the anti-oncogenic roles of NRBP2 were blocked after further overexpression of GATA1 or HDAC2. In summary, this study demonstrates that GATA1 recruits HDAC2 to the NRBP2 promoter and enhances the TME and angiogenesis in TC cells.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Ultrasound, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Hongwei Jiang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Shengjiang Chen
- Department of Ultrasound, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| | - Yujin Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, P.R. China
| |
Collapse
|
15
|
Kabir F, Apu MNH. Multi-omics analysis predicts fibronectin 1 as a prognostic biomarker in glioblastoma multiforme. Genomics 2022; 114:110378. [PMID: 35513291 DOI: 10.1016/j.ygeno.2022.110378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Glioblastoma (GBM) is one of the most malignant and intractable central nervous system tumors with high recurrence, low survival rate, and poor prognosis. Despite the advances of aggressive, multimodal treatment, a successful treatment strategy is still elusive, often leading to therapeutic resistance and fatality. Thus, it is imperative to search for and identify novel markers critically associated with GBM pathogenesis to improve the existing trend of diagnosis, prognosis, and treatment. Seven publicly available GEO microarray datasets containing 409 GBM samples were integrated and further data mining was conducted using several bioinformatics tools. A total of 209 differentially expressed genes (DEGs) were identified in the GBM tissue samples compared to the normal brains. Gene Ontology (GO) enrichment analysis of the DEGs revealed association of the upregulates genes with extracellular matrix (ECM), conceivably contributing to the invasive nature of GBM while downregulated DEGs were found to be predominantly related to neuronal processes and structures. Alongside, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway analyses described the involvement of the DEGs with various crucial contributing pathways (PI3K-Akt signaling pathway, p53 signaling pathway, insulin secretion, etc.) in GBM progression and pathogenesis. Protein-protein interaction (PPI) network containing 879 nodes and 1237 edges revealed 3 significant modules and consecutive KEGG pathway analysis of these modules showed a significant connection to gliomagenesis. Later, 10 hub genes were screened out based on degree and their expressions were externally validated. Surprisingly, only fibronectin 1 (FN1) high expression appeared to be related to poor prognosis. Subsequently, 109 transcription factors and 211 miRNAs were detected to be involved with the hub genes where FN1 demonstrated the highest number of interactions. Considering its high connectivity and potential prognostic value FN1 could be a novel biomarker providing new insights into the prognosis and treatment for GBM, although experimental validation is required.
Collapse
Affiliation(s)
- Farzana Kabir
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohd Nazmul Hasan Apu
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
16
|
CBX3 accelerates the malignant progression of glioblastoma multiforme by stabilizing EGFR expression. Oncogene 2022; 41:3051-3063. [PMID: 35459780 DOI: 10.1038/s41388-022-02296-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022]
Abstract
CBX3, also known as HP1γ, is a major isoform of heterochromatin protein 1, whose deregulation has been reported to promote the development of human cancers. However, the molecular mechanism of CBX3 in glioblastoma multiforme (GBM) are unclear. Our study reported the identification of CBX3 as a potential therapeutic target for GBM. Briefly, we found that, CBX3 is significantly upregulated in GBM and reduces patient survival. In addition, functional assays demonstrated that CBX3 significantly promote the proliferation, invasion and tumorigenesis of GBM cells in vitro and in vivo. Mechanistically, Erlotinib, a small molecule targeting epidermal growth factor receptor (EGFR) tyrosine kinase, was used to demonstrate that CBX3 direct the malignant progression of GBM are EGFR dependent. Previous studies have shown that PARK2(Parkin) and STUB1(Carboxy Terminus of Hsp70-Interacting Protein) are EGFR-specific E3 ligases. Notably, we verified that CBX3 directly suppressed PARK2 and STUB1 at the transcriptional level through its CD domain to reduce the ubiquitination of EGFR. Moreover, the CSD domain of CBX3 interacted with PARK2 and regulated its ubiquitination to further reduce its protein level. Collectively, these results revealed an unknown mechanism underlying the pathogenesis of GBM and confirmed that CBX3 is a promising therapeutic target.
Collapse
|
17
|
Niu H, Chen P, Fan L, Sun B. Comprehensive pan-cancer analysis on CBX3 as a prognostic and immunological biomarker. BMC Med Genomics 2022; 15:29. [PMID: 35172803 PMCID: PMC8851738 DOI: 10.1186/s12920-022-01179-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/31/2022] [Indexed: 01/09/2023] Open
Abstract
Background Increased evidence supports the relationship between chromobox protein homolog 3 (CBX3) and tumorigenesis of some cancers. However, the role of CBX3 in pan-cancers remains poorly defined. In the research, we aimed to investigate the prognostic value and the immunological functions of CBX3. Results We explored the potential oncogenic roles of CBX3 in mRNA and protein levels based on the diverse databases, including the expression, the correlation with prognosis, tumor microenvironment (TME), DNA methylation, protein phosphorylation and enrichment analysis across all TCGA tumors. The results show that CBX3 is overexpressed in multiple cancers, and significant correlations exist between high expression and adverse prognosis in most tumor patients. We observed an enhanced phosphorylation level in uterine corpus endometrial carcinoma, colon cancer and lung adenocarcinoma. A distinct relationship was also found between CBX3 expression and TME, including immune infiltration of tumor-infiltrating lymphocytes and cancer-associated fibroblasts, immune score or matrix score, immune checkpoints. The correlative transcription factors and miRNAs of CBX3-binding hub genes were analyzed to investigate the molecular mechanism. Moreover, alcoholism and alteration of DNA cellular biology may be involved in the functional mechanisms of CBX3. Conclusion The first pan-cancer study offers a relatively comprehensive cognition on the oncogenic roles of CBX3 as a prognostic and immunological marker in various malignant tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01179-y.
Collapse
Affiliation(s)
- Hongjuan Niu
- School of Pharmacy in Minzu University of China, Beijing, 100081, China
| | - Peiqiong Chen
- Department of Pharmacy in Zhengzhou Ninth People's Hospital, Zhengzhou, 450000, China
| | - Lu Fan
- School of Pharmacy in Minzu University of China, Beijing, 100081, China
| | - Boyu Sun
- The Third People's Hospital of Qingdao, Qingdao, 266000, China.
| |
Collapse
|
18
|
Wang H, Wang X, Xu L, Cao H, Zhang J. Nonnegative matrix factorization-based bioinformatics analysis reveals that TPX2 and SELENBP1 are two predictors of the inner sub-consensuses of lung adenocarcinoma. Cancer Med 2021; 10:9058-9077. [PMID: 34734491 PMCID: PMC8683537 DOI: 10.1002/cam4.4386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/21/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a heterogeneous disease. However the inner sub‐groups of LUAD have not been fully studied. Markers predicted the sub‐groups and prognosis of LUAD are badly needed. Aims To identify biomarkers associated with the sub‐groups and prognosis of LUAD. Materials and Methods Using nonnegative matrix factorization (NMF) clustering, LUAD patients from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets and LUAD cell lines from Genomics of Drug Sensitivity in Cancer (GDSC) dataset were divided into different sub‐consensuses based on the gene expression profiling. The overall survival of LUAD patients in each sub‐consensus was determined by Kaplan‐Meier survival analysis. The common genes which were differentially expressed in each sub‐consensus of LUAD patients and LUAD cell lines were identified using TBtools. The predictive accuracy of TPX2 and SELENBP1 for theinner sub‐consensuses of LUAD was determined by Receiver operator characteristic (ROC) analysis. The Kaplan‐Meier survival analysis was also used to test the prognostic significance of TPX2 and SELENBP1 in LUAD patients. Results Using nonnegative matrix factorization clustering, LUAD patients in The Cancer Genome Atlas (TCGA), GSE30219, GSE42127, GSE50081, GSE68465, and GSE72094 datasets were divided into three sub‐consensuses. Sub‐consensus3 LUAD patients were with low overall survival and were with high TP53 mutations. Similarly, LUAD cell lines were also divided into three sub‐consensuses by NMF method, and sub‐consensus2 cell lines were resistant to EGFR inhibitors. Identification of the common genes which were differentially expressed in different sub‐consensuses of LUAD patients and LUAD cell lines revealed that TPX2 was highly expressed in sub‐consensus3 LUAD patients and sub‐consensus2 LUAD cell lines. On the contrary, SELENBP1 was highly expressed in sub‐consensus1 LUAD patients and sub‐consensus1 LUAD cell lines. The expression levels of TPX2 and SELENBP1 could distinguish sub‐consensus3 LUAD patients or sub‐consensus2 LUAD cell lines from other sub‐consensuses of LUAD patients or cell lines. Moreover, compared with normal lung tissues, TPX2 was highly expressed, while, SELENBP1 was lowly expressed in LUAD tissues. Furthermore, the higher expression levels of TPX2 were associated with the lower relapse‐free survival and the lower overall survival of LUAD patients. While, the higher expression levels of SELENBP1 were associated with the higher relapse‐free survival and higher overall survival. At last, we showed that TP53 mutant LUAD patients were with higher TPX2 and lower SELENBP1 expressions. Discussion Both iCluster and NMF method are proved to be robust LUAD classification systems. However, the LUAD patients in different iclusters had no significant clinical overall survival, while, sub‐consensus3 LUAD patients from NMF classification were with lower overall survival than other sub‐consensuses. Conclusions By integrated analysis of 1765 LUAD patients and 64 LUAD cell lines, we showed that NMF was a robust inner sub‐consensuses classification method of LUAD. TPX2 and SELENBP1 were differentially expressed in different LUAD sub‐ consensuses, and predicted the inner sub‐consensuses of LUAD with high accuracy. TPX2 was an unfavorable prognostic biomarker of LUAD which was up‐regulated in LUAD tissues and associated with the low overall survival of LUAD. SELENBP1 was a favorable prognostic biomarker of LUAD which was down‐regulated in LUAD tissues and associated with the prolonged overall survival of LUAD.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Xinrui Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Hua Cao
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR, Wu Z. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone 2021; 143:115659. [PMID: 32979540 DOI: 10.1016/j.bone.2020.115659] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks. Three chromobox proteins (i.e., CBX1, CBX3 or CBX5) associated with the heterochromatin protein 1 (HP1) complex are methyl readers that interpret H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2). Other chromobox proteins (i.e., CBX2, CBX4, CBX6, CBX7 and CBX8) recognize H3K27me3, which is deposited by Polycomb Repressive Complex 2 (PRC2; a complex containing SUZ12, EED, RBAP46/48 and the methyl transferases EZH1 or EZH2). This second set of CBX proteins resides in PRC1, which has many subunits including other polycomb group factors (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6), human polyhomeotic homologs (HPH1, HPH2, HPH3) and E3-ubiquitin ligases (RING1 or RING2). The latter enzymes catalyze the subsequent mono-ubiquitination of lysine 119 in H2A (H2AK119ub). We discuss biological, cellular and molecular functions of CBX proteins and their physiological and pathological activities in non-skeletal cells and tissues in anticipation of new discoveries on novel roles for CBX proteins in bone formation and skeletal development.
Collapse
Affiliation(s)
- Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Christopher R Paradise
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Zhong Wu
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
20
|
Hou X, Chen J, Zhang Q, Fan Y, Xiang C, Zhou G, Cao F, Yao S. Interaction network of immune-associated genes affecting the prognosis of patients with glioblastoma. Exp Ther Med 2020; 21:61. [PMID: 33365061 PMCID: PMC7716634 DOI: 10.3892/etm.2020.9493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a common malignant tumor type of the nervous system. The purpose of the present study was to establish a regulatory network of immune-associated genes affecting the prognosis of patients with GBM. The GSE4290, GSE50161 and GSE2223 datasets from the Gene Expression Omnibus database were screened to identify common differentially expressed genes (co-DEGs). A functional enrichment analysis indicated that the co-DEGs were mainly enriched in cell communication, regulation of enzyme activity, immune response, nervous system, cytokine signaling in immune system and the AKT signaling pathway. The co-DEGs accumulated in immune response were then further investigated. For this, the intersection of those co-DEGs and currently known immune-regulatory genes was obtained and a differential expression analysis of these overlapping immune-associated genes was performed. A risk model was established using immune-regulatory genes that affect the prognosis of patients with GBM. The risk score was significantly associated with the prognosis of patients with GBM and had a significant independent predictive value. The risk model had high accuracy in predicting the prognosis of patients with GBM [area under the receiver operating characteristic curve (AUC)=0.764], which was higher than that of a previously reported model of prognosis-associated biomarkers (AUC=0.667). Furthermore, an interaction network was constructed by using immune-regulatory genes and transcription factors affecting the prognosis of patients with GBM and the University of California Santa Cruz database was used to perform a preliminary analysis of the transcription factors and immune genes of interest. The interaction network of immune-regulatory genes constructed in the present study enhances the current understanding of mechanisms associated with poor prognosis of patients with GBM. The risk score model established in the present study may be used to evaluate the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Xiaohong Hou
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jialin Chen
- Department of Neonatology, The First People's Hospital of Zunyi Affiliated to Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Qiang Zhang
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yinchun Fan
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Chengming Xiang
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guiyin Zhou
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Fang Cao
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shengtao Yao
- Department of Cerebrovascular Disease, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
21
|
Lin H, Zhao X, Xia L, Lian J, You J. Clinicopathological and Prognostic Significance of CBX3 Expression in Human Cancer: a Systematic Review and Meta-analysis. DISEASE MARKERS 2020; 2020:2412741. [PMID: 33273987 PMCID: PMC7676940 DOI: 10.1155/2020/2412741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chromebox protein homolog 3 (CBX3) as a member of the heterochromatin-associated protein 1 (HP1) family has been reported to be overexpressed in human cancer tissues. Numerous studies have shown the relationship between the CBX3 expression and clinicopathological factor or prognosis in malignant tumors, but their results are inconsistent. To address these results, a meta-analysis was described to investigate the prognostic value and clinicopathological significance of CBX3 expression in human malignant neoplasms. METHODS PubMed, Web of Science, Embase, and Chinese National Knowledge Infrastructure (CNKI) were used to search eligible literatures, including publications prior to September 2019. The role of CBX3 in cancer prognosis and clinicopathological characteristics was assessed by pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS Eleven studies with 1682 cancer patients were enrolled in this meta-analysis. This analysis demonstrated that the patients' increased CBX3 expression was significantly associated with poor overall survival (OS) (univariate analysis: HR = 1.81, 95% CI 1.46-2.25; multivariate analysis: HR = 1.95, 95% CI 1.63-2.34). Subgroups analysis by tumor type also indicated that high expression of CBX3 was correlated with poor OS in tongue squamous cell carcinoma (HR = 3.31, 95% CI 2.03-5.39), lung cancer (HR = 1.66, 95% CI 1.21-2.29), genitourinary cancer (HR = 2.03, 95% CI 1.15-3.58), and digestive cancer (HR = 1.48, 95% CI 1.23-1.79). For clinicopathological features, high expression of CBX3 was associated with lymph node metastasis (OR = 2.96, 95% CI 1.42-6.20) and lager tumor size (OR = 1.60, 95% CI 1.12-2.28). CONCLUSION The results of this meta-analysis indicated that CBX3 expression may be a novel biomarker for predicting patient prognosis and clinicopathological parameters in multiple human cancer.
Collapse
Affiliation(s)
- Hexin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Laboratory of Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xin Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Lu Xia
- Laboratory of Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Jiabian Lian
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of laboratory medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jun You
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Laboratory of Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Lin H, Lian J, Xia L, Guan G, You J. CBX3 Promotes Gastric Cancer Progression and Affects Factors Related to Immunotherapeutic Responses. Cancer Manag Res 2020; 12:10113-10125. [PMID: 33116867 PMCID: PMC7569062 DOI: 10.2147/cmar.s271807] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Chromobox 3 (CBX3) is a member of the chromobox family proteins, which plays a critical role in tumor progression, but the exact function of CBX3 in gastric cancer remains unknown. The current research mainly investigates the underlying mechanisms and clinical value of CBX3 in gastric cancer. Methods Gene expression cohorts from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were analyzed to assess the effect of CBX3 in gastric cancer. CBX3 expression was further determined by immunohistochemistry (IHC). The function of CBX3 on proliferation, migration and the cell cycle was explored via colony-forming, cell cycle and transwell assays, respectively. Moreover, RNA sequencing (RNA-seq) in AGS cells and two cohorts was utilized to explore the specific mechanism of CBX3. Results CBX3 expression was upregulated in human gastric cancer tissues and the expression level was closely associated with adverse signs. Knockdown of CBX3 in gastric cancer cells significantly inhibited the malignant phenotype. In addition, RNA-seq analysis revealed that CBX3 regulates genes related to the cell cycle, mismatch repair and immune-related pathways. Furthermore, the expression of CBX3 was significantly and inversely related to the abundance of tumor-infiltrating lymphocytes (TILs), PDCD1 and PDCD1LG2 expression and immunotherapy responses. Moreover, CBX3 influences the effectiveness of chemotherapy, thereby impacting the prognosis of gastric cancer patients. Conclusion CBX3 contributes to gastric cancer progression and is associated with chemotherapy and immunotherapy response. CBX3 may serve as a new diagnostic biomarker and potential target for immunotherapy and chemotherapy in gastric cancer.
Collapse
Affiliation(s)
- Hexin Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China.,Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jiabian Lian
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Lu Xia
- School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China.,Laboratory of Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Guoxian Guan
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jun You
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China.,School of Clinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
23
|
Prasad B, Tian Y, Li X. Large-Scale Analysis Reveals Gene Signature for Survival Prediction in Primary Glioblastoma. Mol Neurobiol 2020; 57:5235-5246. [PMID: 32875483 PMCID: PMC7541357 DOI: 10.1007/s12035-020-02088-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common primary central nervous system tumour. Despite extensive therapy, GBM patients usually have poor prognosis with a median survival of 12–15 months. Novel molecular biomarkers that can improve survival prediction and help with treatment strategies are still urgently required. Here we aimed to robustly identify a gene signature panel for improved survival prediction in primary GBM patients. We identified 2166 differentially expressed genes (DEGs) using meta-analysis of microarray datasets comprising of 955 samples (biggest primary GBM cohort for such studies as per our knowledge) and 3368 DEGs from RNA-seq dataset with 165 samples. Based on the 1443 common DEGs, using univariate Cox and least absolute shrinkage and selection operator (LASSO) with multivariate Cox regression, we identified a survival associated 4-gene signature panel including IGFBP2, PTPRN, STEAP2 and SLC39A10 and thereafter established a risk score model that performed well in survival prediction. High-risk group patients had significantly poorer survival as compared with those in the low-risk group (AUC = 0.766 for 1-year prediction). Multivariate analysis demonstrated that predictive value of the 4-gene signature panel was independent of other clinical and pathological features and hence is a potential prognostic biomarker. More importantly, we validated this signature in three independent GBM cohorts to test its generality. In conclusion, our integrated analysis using meta-analysis approach maximizes the use of the available gene expression data and robustly identified a 4-gene panel for predicting survival in primary GBM.
Collapse
Affiliation(s)
- Birbal Prasad
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Darlington, DL1 1HG UK
| | - Yongji Tian
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 People’s Republic of China
| | - Xinzhong Li
- National Horizons Centre, School of Health and Life Sciences, Teesside University, Darlington, DL1 1HG UK
| |
Collapse
|
24
|
Wang H, Wang X, Xu L, Zhang J, Cao H. High expression levels of pyrimidine metabolic rate-limiting enzymes are adverse prognostic factors in lung adenocarcinoma: a study based on The Cancer Genome Atlas and Gene Expression Omnibus datasets. Purinergic Signal 2020; 16:347-366. [PMID: 32638267 PMCID: PMC7524999 DOI: 10.1007/s11302-020-09711-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Reprogramming of metabolism is described in many types of cancer and is associated with the clinical outcomes. However, the prognostic significance of pyrimidine metabolism signaling pathway in lung adenocarcinoma (LUAD) is unclear. Using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, we found that the pyrimidine metabolism signaling pathway was significantly enriched in LUAD. Compared with normal lung tissues, the pyrimidine metabolic rate–limiting enzymes were highly expressed in lung tumor tissues. The high expression levels of pyrimidine metabolic–rate limiting enzymes were associated with unfavorable prognosis. However, purinergic receptors P2RX1, P2RX7, P2RY12, P2RY13, and P2RY14 were relatively downregulated in lung cancer tissues and were associated with favorable prognosis. Moreover, we found that hypo-DNA methylation, DNA amplification, and TP53 mutation were contributing to the high expression levels of pyrimidine metabolic rate–limiting enzymes in lung cancer cells. Furthermore, combined pyrimidine metabolic rate–limiting enzymes had significant prognostic effects in LUAD. Comprehensively, the pyrimidine metabolic rate–limiting enzymes were highly expressed in bladder cancer, breast cancer, colon cancer, liver cancer, and stomach cancer. And the high expression levels of pyrimidine metabolic rate–limiting enzymes were associated with unfavorable prognosis in liver cancer. Overall, our results suggested the mRNA levels of pyrimidine metabolic rate–limiting enzymes CAD, DTYMK, RRM1, RRM2, TK1, TYMS, UCK2, NR5C2, and TK2 were predictive of lung cancer as well as other cancers.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital,, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,, National Health and Family Planning Commission, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital,, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital,, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hua Cao
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital,, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,, National Health and Family Planning Commission, Fuzhou, Fujian, China.
| |
Collapse
|
25
|
González-Tablas M, Arandia D, Jara-Acevedo M, Otero Á, Vital AL, Prieto C, González-Garcia N, Nieto-Librero AB, Tao H, Pascual D, Ruiz L, Sousa P, Galindo-Villardón P, Orfao A, Tabernero MD. Heterogeneous EGFR, CDK4, MDM4, and PDGFRA Gene Expression Profiles in Primary GBM: No Association with Patient Survival. Cancers (Basel) 2020; 12:cancers12010231. [PMID: 31963499 PMCID: PMC7016708 DOI: 10.3390/cancers12010231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The prognostic impact of the expression profile of genes recurrently amplified in glioblastoma multiforme (GBM) remains controversial. METHODS We investigated the RNA gene expression profile of epidermal growth factor receptor (EGFR), cyclin-dependent kinase 4 (CDK4), murine doble minute 4 (MDM4), and platelet derived growth factor receptor alpha (PDGFRA) in 83 primary GBM tumors vs. 42 normal brain tissue samples. Interphase FISH (iFISH) analysis for the four genes, together with analysis of intragenic deletions in EGFR and PDGFRA, were evaluated in parallel at the DNA level. As validation cohort, publicly available RNA gene expression data on 293 samples from 10 different GBM patient series were also studied. RESULTS At the RNA level, CDK4 was the most frequently overexpressed gene (90%) followed by EGFR (58%) and PDGFRA (58%). Chromosome 7 copy number alterations, i.e., trisomy (49%) and polysomy (44%), showed no clear association with EGFR gene expression levels. In turn, intragenic EGFR deletions were found in 39 patients (47%), including EGFRvIII (46%) in association with EGFRvIVa (4%), EGFRvII (2%) or other EGFR deletions (3%) and PDGFRA deletion of exons 8-9 was found in only two tumors (2%). CONCLUSIONS Overall, none of the gene expression profiles and/or intragenic EGFR deletions showed a significant impact on overall survival of GBM supporting the notion that other still unraveled features of the disease might play a more relevant prognostic role in GBM.
Collapse
Affiliation(s)
- María González-Tablas
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Daniel Arandia
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - María Jara-Acevedo
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Sequencing DNA Service (NUCLEUS), University of Salamanca, 37007 Salamanca, Spain
| | - Álvaro Otero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Ana-Luisa Vital
- Centre for Neuroscience and Cell Biology and Faculty of Pharmacy, University of Coimbra, 3004-561 Coimbra, Portugal;
| | - Carlos Prieto
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Bioinformatics Service (NUCLEUS), University of Salamanca, 37007 Salamanca, Spain
| | - Nerea González-Garcia
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Department of Statistics, University of Salamanca, 37007 Salamanca, Spain;
| | - Ana Belén Nieto-Librero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Department of Statistics, University of Salamanca, 37007 Salamanca, Spain;
| | - Herminio Tao
- Neurosurgery Service, University Hospital of Coimbra, 3004-561 Coimbra, Portugal;
| | - Daniel Pascual
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Laura Ruiz
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Pablo Sousa
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (A.O.); (M.D.T.); Tel.: +34923-29-11-00 (M.D.T.)
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de Salamanca, IBSAL—University Hospital of Salamanca, 37007 Salamanca, Spain; (M.G.-T.); (D.A.); (M.J.-A.); (Á.O.); (C.P.); (N.G.-G.); (A.B.N.-L.); (D.P.); (L.R.); (P.S.)
- Centre for Cancer Research (CIC-IBMCC, CSIC/USAL, IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBER-CIBERONC, Institute of Health Carlos III, 28029 Madrid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL-IBSAL), 37007 Salamanca, Spain
- Correspondence: (A.O.); (M.D.T.); Tel.: +34923-29-11-00 (M.D.T.)
| |
Collapse
|
26
|
Di Z, Di M, Fu W, Tang Q, Liu Y, Lei P, Gu X, Liu T, Sun M. Integrated Analysis Identifies a Nine-microRNA Signature Biomarker for Diagnosis and Prognosis in Colorectal Cancer. Front Genet 2020; 11:192. [PMID: 32265979 PMCID: PMC7100107 DOI: 10.3389/fgene.2020.00192] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most lethal and malignant type of cancer in the world. Abnormal expression of human microRNA-200a (hsa-miRNA-200a or miR-200a) has previously been characterized as a clinically noticeable biomarker in several cancers, but its role in CRC is still unclear. METHODS Three CRC miRNA expression datasets were integratively analyzed by Least Absolute Shrinkage and Selector Operation (LASSO) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) algorithms. Nine candidate miRNAs were identified and validated for diagnostic and prognostic capability with the prediction model. The potential roles of the tumor suppressor miR-200a-3p in invasion, migration, and epithelial-mesenchymal transition of CRC cells were elaborated by in vitro studies. RESULTS Nine miRNAs (miR-492, miR-200a, miR-338, miR-29c, miR-101, miR-148a, miR-92a, miR-424, and miR-210) were identified as potentially useful diagnostic biomarkers in the clinic. The overall accuracy rate of the nine miRNAs in the diagnostic model was 0.94, 0.89, and 0.978 in the testing, validation, and independent validation dataset, respectively. CRC patients in the GSE29622 cohort were separated by the prognostic model into the low-risk score group and the high-risk score group. The area under the receiver operating characteristic curve (AUC) was 0.872 and 0.783 for predicting the 1- to 10-year survival of CRC patients. The performance of the prognostic model was validated by an independent TCGA-Colon Adenocarcinoma (COAD) dataset with AUC values between 0.911 and 0.796 in predicting 1- to 10-year survival. Nomograms comprising risk scores, tumor stage, and TNM staging were generated for predicting 1-, 3-, and 5-year overall survival (OS) in the GSE29622 and TCGA-COAD datasets. Colony formation, invasion, and migration in DLD1 and SW480 cells were suppressed by overexpression of miR-200a-3p. Inhibition of miR-200a-3p function contributed to abnormal colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT). miR-200a-3p binding sites were located within the 3'-untranslated region (3'-UTR) of the Forkhead box protein A1 (FOXA1) mRNA. CONCLUSION We developed and validated a diagnostic and prognostic prediction model for CRC. miR-200a-3p was determined to be a potential diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Ziyang Di
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Maojun Di
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Qiang Tang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yanwei Liu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Peijie Lei
- The First Clinical School, Hubei University of Medicine, Shiyan, China
| | - Xinsheng Gu
- College of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- *Correspondence: Tong Liu,
| | - Min Sun
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- Min Sun,
| |
Collapse
|
27
|
Zhao SP, Wang F, Yang M, Wang XY, Jin CL, Ji QK, Li S, Zhao XL. CBX3 promotes glioma U87 cell proliferation and predicts an unfavorable prognosis. J Neurooncol 2019; 145:35-48. [DOI: 10.1007/s11060-019-03286-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/05/2019] [Indexed: 01/13/2023]
|