1
|
Sharaky M, El Kiki SM, Effat H, Mansour HH. Effect of palliative radiotherapy and cyclin-dependent kinase 4/6 inhibitor on breast cancer cell lines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03878-6. [PMID: 40035822 DOI: 10.1007/s00210-025-03878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
The most prevalent disease in the world and the main reason for women mortality from cancer is breast cancer. The recommended treatment for hormone receptor-positive metastatic breast cancer (MBC) is cyclin-dependent kinase 4/6 inhibitor (CDK4/6i), Abemaciclib. Radiotherapy (RT) is one of the main options to control breast cancer. This work intended to examine the impact of CDK 4/6i and palliative radiation on human breast cancer cell lines. Breast cancer cell lines (MCF7, MDA-MD-468, and MDA-MD-231) were treated with varying doses of Abemaciclib and left to incubate for 48 h. Different radiation doses were applied to the lines that had the best IC50. The intrinsic treatment objectives for MBC are presented in this study, along with the PI3K/AKT/mTOR pathway; CDK4, CDK6, and the NF-κβ/TGF-β pathway; BAX/BcL2, P53; caspase-3, caspase-6, caspase-7, caspase-8, and caspase-9; cytokeratin 18 (CK18); cycloxygenase-2 (COX2); IL-6; IL1β; matrix metalloproteinases (MMP2 and MMP9); and oxidative stress markers. The biochemical assays revealed that abemaciclib hindered the progression of breast cancer cells MDA-MB-231 and MCF-7 and enhanced RT (10 Gy) by provoking cell cycle arrest throughout the restraint of CDK4 and CDK6 expression and increasing apoptosis, in addition to decreasing the PI3K/AKT/mTOR and NF-κβ/TGF-β pathway expression; inhibiting CK18 and COX2 activity; boosting the protein concentration of BAX and P53; and decreasing Bcl-2, IL-6, IL-1β, MMP2, and MMP9, modulating oxidative stress markers. These results implied potential effects of radiation and CDK4/6i abemaciclib on breast cancer cell lines.
Collapse
Affiliation(s)
- Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Shereen M El Kiki
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt
| | - Heba Effat
- Medical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Heba H Mansour
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt.
| |
Collapse
|
2
|
Ibraheem Q. The Role of Matrix Metalloproteinase-2 (MMP2) in Colorectal Cancer Progression: Correlation With Clinicopathological Features and Impact on Cellular Processes. Cureus 2024; 16:e61941. [PMID: 38978899 PMCID: PMC11229389 DOI: 10.7759/cureus.61941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent and deadly disease characterized by significant molecular complexity. Matrix metalloproteinase-2 (MMP2) has been implicated in cancer progression due to its role in extracellular matrix degradation, yet comprehensive studies linking MMP2 expression to CRC progression and its molecular mechanisms remain needed. Methodology This study involved 90 CRC patients, with tumor and adjacent normal tissues analyzed via immunohistochemistry (IHC) to assess MMP2 expression. The human CRC cell line SW480 was treated with an MMP2 inhibitor, ARP100, and evaluated for changes in cell migration, invasion, proliferation, and apoptosis using various assays, including MTT, wound-healing, transwell, caspase activity, and western blot analysis. Results High MMP2 expression was significantly associated with advanced tumor stages, lymph node involvement, and metastasis in CRC patients. Compared to normal tissues, MMP2 expression was markedly higher in cancerous tissues. Inhibition of MMP2 in SW480 cells resulted in reduced migration, invasion, and proliferation, and induced apoptosis, evidenced by increased caspase 3 and 9 activities and higher levels of cleaved caspase proteins. Conclusion Elevated MMP2 expression is correlated with advanced CRC and aggressive tumor characteristics. MMP2 inhibition can suppress CRC cell invasiveness, migration, and proliferation while promoting apoptosis, suggesting its potential as a therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Qais Ibraheem
- Department of Anatomy, Biology and Histology, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
3
|
Ma X, Li X, Sun Q, Luan F, Feng J. Molecular Biological Research on the Pathogenic Mechanism of Retinoblastoma. Curr Issues Mol Biol 2024; 46:5307-5321. [PMID: 38920989 PMCID: PMC11202574 DOI: 10.3390/cimb46060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Retinoblastoma (RB) is the most common intraocular malignant tumor in children, primarily attributed to the bi-allelic loss of the RB1 gene in the developing retina. Despite significant progress in understanding the basic pathogenesis of RB, comprehensively unravelling the intricate network of genetics and epigenetics underlying RB tumorigenesis remains a major challenge. Conventional clinical treatment options are limited, and despite the continuous identification of genetic loci associated with cancer pathogenesis, the development of targeted therapies lags behind. This review focuses on the reported genomic and epigenomic alterations in retinoblastoma, summarizing potential therapeutic targets for RB and providing insights for research into targeted therapies.
Collapse
Affiliation(s)
| | | | | | - Fuxiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.M.); (X.L.); (Q.S.)
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (X.M.); (X.L.); (Q.S.)
| |
Collapse
|
4
|
Feng T, Wang P, Zhang X. Skp2: A critical molecule for ubiquitination and its role in cancer. Life Sci 2024; 338:122409. [PMID: 38184273 DOI: 10.1016/j.lfs.2023.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
The ubiquitin-proteasome system (UPS) is a multi-step process that serves as the primary pathway for protein degradation within cells. UPS activity also plays a crucial role in regulating various life processes, including the cell cycle, signal transduction, DNA repair, and others. The F-box protein Skp2, a crucial member of the UPS, plays a central role in the development of various diseases. Skp2 controls cancer cell growth and drug resistance by ubiquitinating modifications to a variety of proteins. This review emphasizes the multifaceted role of Skp2 in a wide range of cancers and the mechanisms involved, highlighting the potential of Skp2 as a therapeutic target in cancer. Additionally, we describe the impactful influence exerted by Skp2 in various other diseases beyond cancer.
Collapse
Affiliation(s)
- Tianyang Feng
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China
| | - Ping Wang
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China
| | - Xiling Zhang
- The Fourth Affiliated Hospital of China Medical University, Department of Urology, Shenyang 110032, China; Liaoning Provincial Key Laboratory of Basic Research for Bladder Diseases, Shenyang 110000, China.
| |
Collapse
|
5
|
Belachew EB, Desta AF, Deneke DB, Gebremariam TY, Tefera DA, Atire FA, Alemayehu DH, Seyoum T, Bauer M, Girma S, Sewasew DT, Kantelhardt EJ, Tessema TS, Howe R. The expression of matrix metalloproteinase 2, 9 and 11 in Ethiopian breast cancer patients. BMC Res Notes 2023; 16:253. [PMID: 37798646 PMCID: PMC10557335 DOI: 10.1186/s13104-023-06518-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) play a pathophysiological role in cancer initiation and progression. Numerous studies have examined an association between MMP-2, MMP-9, and MMP-11 expression and clinicopathological characteristics of breast cancer (BC); however, no research has been done on the MMP expression levels in BC cases from Ethiopia. MATERIALS AND METHODS A total of 58 formalin-fixed paraffin-embedded breast tissue samples encompassing 16 benign breast tumors and 42 BC were collected. The RNA was extracted and quantitative reverse-transcription PCR was performed. GraphPad Prism version 8.0.0 was used for statistical analysis. RESULTS The MMP-11 expression levels were significantly higher in breast cancer cases than in benign breast tumors (P = 0.012). Additionally, BC cases with positive lymph nodes and ER-positive receptors had higher MMP-11, MMP-9, and MMP-2 expression than cases with negative lymph nodes and ER-negative, respectively. The MMP-11 and MMP-9 expressions were higher in grade III and luminal A-like tumors than in grade I-II and other subtypes, respectively. CONCLUSION The MMP-11 expression was higher in BC than in benign breast tumors. Additionally, MMP-11, MMP-9, and MMP-2 were higher in BC with positive lymph nodes and estrogen receptors. Our findings suggest an important impact of MMPs in BC pathophysiology, particularly MMP-11.
Collapse
Affiliation(s)
- Esmael Besufikad Belachew
- Biology Department, College of Natural and Computational Sciences, Mizan Tepi University, Mizan, Ethiopia.
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| | - Adey Feleke Desta
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dinikisira Bekele Deneke
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Pathology, School of Medicine, College of Health Science, Tikur Anbessa Specialized Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tewodros Yalew Gebremariam
- Department of Pathology, School of Medicine, College of Health Science, Tikur Anbessa Specialized Hospital, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | | | - Marcus Bauer
- Global Health Working Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Selfu Girma
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Eva J Kantelhardt
- Department of Gynecology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
6
|
Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol 2023; 949:175586. [PMID: 36906141 DOI: 10.1016/j.ejphar.2023.175586] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Angiogenesis is a double-edged sword; it is a mechanism that defines the boundary between health and disease. In spite of its central role in physiological homeostasis, it provides the oxygen and nutrition needed by tumor cells to proceed from dormancy if pro-angiogenic factors tip the balance in favor of tumor angiogenesis. Among pro-angiogenic factors, vascular endothelial growth factor (VEGF) is a prominent target in therapeutic methods due to its strategic involvement in the formation of anomalous tumor vasculature. In addition, VEGF exhibits immune-regulatory properties which suppress immune cell antitumor activity. VEGF signaling through its receptors is an integral part of tumoral angiogenic approaches. A wide variety of medicines have been designed to target the ligands and receptors of this pro-angiogenic superfamily. Herein, we summarize the direct and indirect molecular mechanisms of VEGF to demonstrate its versatile role in the context of cancer angiogenesis and current transformative VEGF-targeted strategies interfering with tumor growth.
Collapse
Affiliation(s)
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | | | | |
Collapse
|
7
|
Peng K, Zhang Y, Liu D, Chen J. MMP2 is a immunotherapy related biomarker and correlated with cancer-associated fibroblasts infiltrate in melanoma. Cancer Cell Int 2023; 23:26. [PMID: 36788565 PMCID: PMC9930295 DOI: 10.1186/s12935-023-02862-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/28/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Mounting evidence supports that matrix metalloproteinase (MMPs) are highly associated with tumor progression and that targeting MMPs may overcome the barrier of immune suppression. Among these, whether MMP2 functions as an immunosuppressive role in melanoma, remains unclear. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) databases were used to assess the prognosis of MMP2 in melanoma, after which Tumor immune estimation resource (TIMER) was used to explore the relationship between MMP2 expression and cancer associated fibroblasts (CAFs) infiltration. Finally, we evaluated the efficacy of MMP2 inhibitor on CAFs infiltration and immunotherapy using a mouse melanoma model. RESULTS In general, the expression of MMP2, MMP13, MMP16, MMP17 and MMP25 were significantly associated with skin cutaneous melanoma (SKCM) patients prognosis, among which MMP2 low expression benefited patients the most. Especially, the overall survival (OS) of BRAF mutation patients with high MMP2 expression was significantly lower than the MMP2 low expression group, but there was no significant difference in BRAF wild-type patients. KEGG and GO enrichment analysis indicated that MMP2 related genes were mostly associated with extracellular structure organization, collagen-containing extracellular matrix and extracellular matrix structural constituent. Furthermore, in almost all cancers, MMP2 expression was positively correlated with CAFs infiltration. MMP2 inhibitor works synergistically with PD-1 antibody and induces tumor regression in a mouse melanoma model, which is dependent on decreased CAFs infiltration. CONCLUSIONS This suggests that MMP2 plays a vital role in the regulation of CAFs infiltration, potentially participating in immunotherapy response, and thus representing a valuable target of immunotherapy in melanoma.
Collapse
Affiliation(s)
- Kunwei Peng
- grid.412534.5Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Guangzhou, 510260 Guangdong People’s Republic of China
| | - Yanyan Zhang
- grid.79703.3a0000 0004 1764 3838Department of Infectious Diseases, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong People’s Republic of China
| | - Deyi Liu
- grid.412534.5Department of General Practice, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong People’s Republic of China
| | - Jingqi Chen
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Guangzhou, 510260, Guangdong, People's Republic of China. .,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, No. 250 Changgang East Road, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|
8
|
Jiang Y, Zheng G, Sun X. PRMT5 promotes retinoblastoma development. Hum Cell 2023; 36:329-341. [PMID: 36331723 DOI: 10.1007/s13577-022-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Epigenetic mechanism, including DNA methylation and histone modifications, contributes to alterations in the expression patterns of genes regulating malignant phenotype of cancer cells. However, the epigenetic modulation of vascular endothelial growth factor-A (VEGFA) in retinoblastoma (RB) has not been clearly established. We aimed to examine the epigenetic regulation of VEGFA by protein arginine methyltransferase 5 (PRMT5) in RB. Using the GEO database, we identified VEGFA as a pathogenic gene in RB. Silencing of VEGFA in SO-RB50 and Y79 cells inhibited cell proliferation, angiogenesis, and migration, promoted apoptosis, and suppressed tumor growth in mice. Mechanistically, PRMT5 promoted H3K4me3 modification of the VEGFA promoter, thereby activating VEGFA expression. VEGFA could regulate the expression of MMP1, MMP2, and MMP9. Further silencing of VEGFA in RB cells overexpressing PRMT5 constrained the expression of MMP1, MMP2 and MMP9, and suppressed the growth of tumors in mice. In conclusion, this study clarifies that the depletion of PRMT5 reduces H3K4me3-mediated VEGFA transcription and retards the carcinogenesis of RB by suppressing the expression of MMPs.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Zhengzhou, 450000, Henan, People's Republic of China
- Department of Ophthalmology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Zhengzhou, 450000, Henan, People's Republic of China.
| | - Xiantao Sun
- Department of Ophthalmology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| |
Collapse
|
9
|
Muacevic A, Adler JR, Mohiyuddin AS. Role of Matrix Metalloproteinase 9 in Predicting Lymph Node Metastases in Oral Squamous Cell Carcinoma. Cureus 2023; 15:e33495. [PMID: 36756017 PMCID: PMC9902810 DOI: 10.7759/cureus.33495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
Background Oral cancer is a common malignancy worldwide, with approximately 3,50,000 new cases diagnosed yearly. Out of many factors which affect the survival in patients with oral cancer, lymph node metastases are a major factor that reduces survival by 50%. Even though many biomarkers have been studied to predict lymph node metastasis, none have yet been accepted for routine use. Matrix metalloproteinases (MMPs) play a vital role in extracellular matrix (ECM) degradation, thus facilitating the invasive potential and the metastatic cascade of tumors. Of the different subtypes, multiple studies have demonstrated that matrix metalloproteinase 9 (MMP9) overexpression is often associated with the aggressive nature of the tumor. Therefore, this investigation is done to know the role of MMP9 in predicting lymph node metastasis in oral squamous cell carcinoma (OSCC). Aim To determine the immunohistochemical expression of MMP9 in OSCC and to find its association with lymph node metastasis. Settings and design It is a laboratory-based observational study. Materials and methods One hundred five histologically proven cases of OSCC were studied. Histopathological parameters like depth of invasion, presence of lymph node metastasis, grading, and TNM staging were done according to the 8th AJCC staging criteria. Both intensity and proportion of MMP9 expression were recorded. Statistical analysis For qualitative data, the Chi-square test was used as a test of significance. The p-value (probability that the result is true) of <0.05 was considered statistically significant after assuming all the rules of statistical tests. Results A higher expression of MMP9 was observed in 56.2% of cases and the higher expression correlated with the presence of lymph node metastases (p<0.001), an advanced stage of cancer (P <0.001), and grade of the tumor (p=0.003). Conclusion A positive association between MMP9 and lymph node metastasis and pathological TNM staging demonstrates MMP9 as a potential biomarker to predict the behavior of the tumor.
Collapse
|
10
|
Dadmehr M, Mortezaei M, Korouzhdehi B. Dual mode fluorometric and colorimetric detection of matrix metalloproteinase MMP-9 as a cancer biomarker based on AuNPs@gelatin/AuNCs nanocomposite. Biosens Bioelectron 2022; 220:114889. [DOI: 10.1016/j.bios.2022.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022]
|
11
|
Caban M, Owczarek K, Lewandowska U. The Role of Metalloproteinases and Their Tissue Inhibitors on Ocular Diseases: Focusing on Potential Mechanisms. Int J Mol Sci 2022; 23:ijms23084256. [PMID: 35457074 PMCID: PMC9026850 DOI: 10.3390/ijms23084256] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Eye diseases are associated with visual impairment, reduced quality of life, and may even lead to vision loss. The efficacy of available treatment of eye diseases is not satisfactory. The unique environment of the eye related to anatomical and physiological barriers and constraints limits the bioavailability of existing agents. In turn, complex ethiopathogenesis of ocular disorders that used drugs generally are non-disease specific and do not act causally. Therefore, there is a need for the development of a new therapeutic and preventive approach. It seems that matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have a significant role in the development and progression of eye diseases and could be used in the therapy of these disorders as pharmacological targets. MMPs and TIMPs play an important role in the angiogenesis, epithelial-mesenchymal transition, cell invasion, and migration, which occur in ocular diseases. In this review, we aim to describe the participation of MMPs and TIMPs in the eye diseases, such as age-related macular degeneration, cataract, diabetic retinopathy, dry eye syndrome, glaucoma, and ocular cancers, posterior capsule opacification focusing on potential mechanisms.
Collapse
|
12
|
Jiang H, Li H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta-analysis. BMC Cancer 2021; 21:149. [PMID: 33568081 PMCID: PMC7877076 DOI: 10.1186/s12885-021-07860-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer (BC) is a leading cause of cancer-related death in females worldwide. Previous studies have demonstrated that matrix metalloproteinases (MMPs) play key roles in metastasis and are associated with survival in various cancers. The prognostic values of MMP2 and MMP9 expression in BC have been investigated, but the results remain controversial. Thus, we performed the present meta-analysis to investigate the associations between MMP2/9 expressions in tumor cells with clinicopathologic features and survival outcome in BC patients. Methods Eligible studies were searched in PubMed, Web of Science, EMBASE, CNKI and Wanfang databases. The associations of MMP2/9 overexpression in tumor cells with overall survival (OS), disease-free survival (DFS) and recurrence-free survival (RFS) were assessed by hazard ratio (HR) and 95% confidence interval (CI). The associations of MMP2/9 overexpression with clinicopathological features were investigated by calculating odds ratio (OR) and 95% CI. Subgroup analysis, sensitivity analysis, meta-regression, and analysis for publication bias were performed. Results A total of 41 studies comprising 6517 patients with primary BC were finally included. MMP2 overexpression was associated with an unfavorable OS (HR = 1.60, 95% CI 1.33 –1.94, P < 0.001) while MMP9 overexpression predicted a shorter OS (HR = 1.52, 95% CI 1.30 –1.77, P < 0.001). MMP2 overexpression conferred a higher risk to distant metastasis (OR = 2.69, 95% CI 1.35–5.39, P = 0.005) and MMP9 overexpression correlated with lymph node metastasis (OR = 2.90, 95% CI 1.86 – 4.53, P < 0.001). Moreover, MMP2 and MMP9 overexpression were both associated with higher clinical stage and histological grade in BC patients. MMP9 overexpression was more frequent in patients with larger tumor sizes. Conclusions Tumoral MMP2 and MMP9 are promising markers for predicting the prognosis in patients with BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07860-2.
Collapse
Affiliation(s)
- Hanfang Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, No. 52nd Fucheng Road, Haidian District, Beijing, 100142, China
| | - Huiping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, No. 52nd Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
13
|
Chen L, Lin G, Chen K, Liang R, Wan F, Zhang C, Tian G, Zhu X. VEGF promotes migration and invasion by regulating EMT and MMPs in nasopharyngeal carcinoma. J Cancer 2020; 11:7291-7301. [PMID: 33193893 PMCID: PMC7646165 DOI: 10.7150/jca.46429] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Vascular endothelial growth factor (VEGF) is an important pro-angiogenic factor. Accumulating data have indicated that VEGF is involved in tumour metastasis. However, the mechanism through which VEGF regulates nasopharyngeal carcinoma (NPC) metastasis is largely unknown. This study aimed to examine the biological function of VEGF in NPC metastasis and its underlying mechanism. Methods: We used western blotting and qPCR to examine the difference in VEGF expression between NPC cells and the immortalized nasopharyngeal epithelial cell line NP69. Wound healing assays, transwell assays and animal experiments were used to further verify the role of VEGF in the invasion and migration of NPC cells. The protein levels of the epithelial-mesenchymal transition (EMT) and matrix metalloproteinase (MMP) family were analysed by immunofluorescence (IF) and western blotting. Enzyme-linked immunosorbent assay (ELISA) and transwell assays were used to determine whether VEGF enhanced the invasion and migration of NPC cells in an autocrine manner. Western blotting was used to examine how autocrine VEGF-VEGFR2 signalling regulated EMT and MMPs. Results: We observed higher levels of VEGF in NPC cells than that in NP69 cells and identified an association between high VEGF levels and tumour invasion and migration. Mechanistically, the VEGF-mediated increase in EMT markers, MMP2 and MMP9 promoted NPC cell invasion and migration. Additionally, NPC cells secreted VEGF to promote cell invasion, migration and angiogenesis. Autocrine VEGF-VEGFR2 signalling increased ERK1/2 phosphorylation, promoted EMT process and MMPs at the indicated times. Conclusion: This study revealed that VEGF plays a role in controlling NPC cell metastasis by regulating EMT markers and MMPs in an autocrine manner.
Collapse
Affiliation(s)
- Li Chen
- Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530010, People's Republic of China.,Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Guoxiang Lin
- Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530010, People's Republic of China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Renba Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Fangzhu Wan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Chuxiao Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Ge Tian
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaodong Zhu
- Department of Oncology, Affiliated Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530010, People's Republic of China.,Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, People's Republic of China.,Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
14
|
García-Onrubia L, Valentín-Bravo FJ, Coco-Martin RM, González-Sarmiento R, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Matrix Metalloproteinases in Age-Related Macular Degeneration (AMD). Int J Mol Sci 2020; 21:ijms21165934. [PMID: 32824762 PMCID: PMC7460693 DOI: 10.3390/ijms21165934] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex, multifactorial and progressive retinal disease affecting millions of people worldwide. In developed countries, it is the leading cause of vision loss and legal blindness among the elderly. Although the pathogenesis of AMD is still barely understood, recent studies have reported that disorders in the regulation of the extracellular matrix (ECM) play an important role in its etiopathogenesis. The dynamic metabolism of the ECM is closely regulated by matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). The present review focuses on the crucial processes that occur at the level of the Bruch’s membrane, with special emphasis on MMPs, TIMPs, and the polymorphisms associated with increased susceptibility to AMD development. A systematic literature search was performed, covering the years 1990–2020, using the following keywords: AMD, extracellular matrix, Bruch’s membrane, MMPs, TIMPs, and MMPs polymorphisms in AMD. In both early and advanced AMD, the pathological dynamic changes of ECM structural components are caused by the dysfunction of specific regulators and by the influence of other regulatory systems connected with both genetic and environmental factors. Better insight into the pathological role of MMP/TIMP complexes may lead to the development of new strategies for AMD treatment and prevention.
Collapse
Affiliation(s)
- Luis García-Onrubia
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
| | - Fco. Javier Valentín-Bravo
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
| | - Rosa M. Coco-Martin
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca—CSIC, 37007 Salamanca, Spain
| | - J. Carlos Pastor
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Correspondence: (R.U.-M.); (S.P.-I.)
| | - Salvador Pastor-Idoate
- Clinical University Hospital of Valladolid, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain; (L.G.-O.); (F.J.V.-B.); (J.C.P.)
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain;
- Cooperative Health Network for Research in Ophthalmology (Oftared), National Institute of Health Carlos III, ISCIII, 28040 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.)
| |
Collapse
|