1
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
2
|
Effects of Lactobacillus fermentation on Eucheuma spinosum polysaccharides: Characterization and mast cell membrane stabilizing activity. Carbohydr Polym 2023; 310:120742. [PMID: 36925257 DOI: 10.1016/j.carbpol.2023.120742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Eucheuma polysaccharides have varieties of biological activities. However, it is accompanied by problems like large molecular weight, high viscosity, and low utilization. Here, we first prepared fermented Eucheuma spinosum polysaccharides (F-ESP) by Lactobacillus fermentation, compared with low-temperature freeze-thaw ESP (L-ESP) prepared by the freeze-thaw method, explored the composition and structural characteristics of F-ESP and L-ESP, and evaluation of the ability of different samples to inhibit mast cell degranulation using classical mast cell model. Then, the activity of L-ESP and F-ESP in vivo was preliminarily evaluated using a passive cutaneous anaphylaxis model. Two kinds of F-ESP named F1-ESP-3 and F2-ESP-3 were obtained by fermentation of Eucheuma spinosum with the selected strains of Lactobacillus.sakei subsp.sakei and Lactobacillus.rhamnosus. Compared with the purified component L-ESP-3, the monosaccharide composition of F1-ESP-3 contains more glucuronic acid, the molecular weight reduced from >600 kDa (L-ESP-3) to 28.30 kDa (F1-ESP-3) and 33.58 kDa (F2-ESP-3), F1-ESP-3 has higher solubility and lower apparent viscosity. Fermentation did not destroy the functional groups and structure of ESP. Moreover, F1-ESP-3 significantly inhibited RBL-2H3 cell degranulation by reducing depolymerization of F-actin and Ca2+ influx. F1-ESP-3 reduced the symptoms of mast cell-mediated passive cutaneous anaphylaxis, indicating that F1-ESP-3 may have better anti-allergic activity in vivo.
Collapse
|
3
|
Liu S, Sun Q, Ren X. Novel strategies for cancer immunotherapy: counter-immunoediting therapy. J Hematol Oncol 2023; 16:38. [PMID: 37055849 PMCID: PMC10099030 DOI: 10.1186/s13045-023-01430-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
The advent of immunotherapy has made an indelible mark on the field of cancer therapy, especially the application of immune checkpoint inhibitors in clinical practice. Although immunotherapy has proven its efficacy and safety in some tumors, many patients still have innate or acquired resistance to immunotherapy. The emergence of this phenomenon is closely related to the highly heterogeneous immune microenvironment formed by tumor cells after undergoing cancer immunoediting. The process of cancer immunoediting refers to the cooperative interaction between tumor cells and the immune system that involves three phases: elimination, equilibrium, and escape. During these phases, conflicting interactions between the immune system and tumor cells result in the formation of a complex immune microenvironment, which contributes to the acquisition of different levels of immunotherapy resistance in tumor cells. In this review, we summarize the characteristics of different phases of cancer immunoediting and the corresponding therapeutic tools, and we propose normalized therapeutic strategies based on immunophenotyping. The process of cancer immunoediting is retrograded through targeted interventions in different phases of cancer immunoediting, making immunotherapy in the context of precision therapy the most promising therapy to cure cancer.
Collapse
Affiliation(s)
- Shaochuan Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| |
Collapse
|
4
|
Applications and mechanisms of the cyclin-dependent kinase 4/6 inhibitor, PD-0332991, in solid tumors. Cell Oncol (Dordr) 2022; 45:1053-1071. [PMID: 36087253 DOI: 10.1007/s13402-022-00714-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 01/10/2023] Open
Abstract
Abnormal CDK4/6-Rb-E2F signal transduction is a common finding in tumors and is a driving factor for the excessive proliferation of various tumor cells. PD-0332991, a highly specific, small molecule inhibitor for CDK4 and 6, has been shown to inhibit tumor growth by abrogating the phosphorylating capacity of CDK4/6 and suppressing Rb phosphorylation. It has been promoted for the treatment of breast cancer and potentially for other tumor types such as liver cancers, lung cancers and sarcomas. Due to the risk of monotherapy resistance, PD-0332991 is commonly used in combination with other drugs. Such combination treatments have proved able to inhibit tumor proliferation more effectively, induce stronger senescence and apoptosis, and enhance the efficiency of immunotherapy. Therefore, tumor cells with senescence induced by PD-0332991 are now used as ideal screening tools of cytolytic drugs with more efficient and thorough anti-tumor properties. With more extensive understandings about the branching points between senescence and apoptosis, it is possible to refine the dosage of PD-0332991. Better characterization of resistant cells, of inhibitors and of adverse effects such as leukopenia are needed to overcome obstacles in the use of PD-0332991. In this review of PD-0332991 research, we hope to provide guidance of transitions from laboratory findings to clinical applications of PD-0332991 and to facilitate PD-0332991-based multi-inhibitor combination therapies for various tumors.
Collapse
|
5
|
Davies DM, van den Handel K, Bharadwaj S, Lengefeld J. Cellular enlargement - A new hallmark of aging? Front Cell Dev Biol 2022; 10:1036602. [PMID: 36438561 PMCID: PMC9688412 DOI: 10.3389/fcell.2022.1036602] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2023] Open
Abstract
Years of important research has revealed that cells heavily invest in regulating their size. Nevertheless, it has remained unclear why accurate size control is so important. Our recent study using hematopoietic stem cells (HSCs) in vivo indicates that cellular enlargement is causally associated with aging. Here, we present an overview of these findings and their implications. Furthermore, we performed a broad literature analysis to evaluate the potential of cellular enlargement as a new aging hallmark and to examine its connection to previously described aging hallmarks. Finally, we highlight interesting work presenting a correlation between cell size and age-related diseases. Taken together, we found mounting evidence linking cellular enlargement to aging and age-related diseases. Therefore, we encourage researchers from seemingly unrelated areas to take a fresh look at their data from the perspective of cell size.
Collapse
Affiliation(s)
- Daniel M. Davies
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kim van den Handel
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Soham Bharadwaj
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jette Lengefeld
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Rujitharanawong C, Yoodee S, Sueksakit K, Peerapen P, Tuchinda P, Kulthanan K, Thongboonkerd V. Systematic comparisons of various markers for mast cell activation in RBL-2H3 cells. Cell Tissue Res 2022; 390:413-428. [PMID: 36125550 DOI: 10.1007/s00441-022-03687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Mast cell activation plays a key role in various allergic diseases and anaphylaxis. Several methods/techniques can be used for detection of mast cell activation. However, there was no previous systematic evaluation to compare the efficacy of each method/technique. The present study thus systematically compared various markers for mast cell activation induced by IgE cross-linking. The widely used RBL-2H3 mast cells were sensitized with anti-DNP (dinitrophenyl) IgE overnight and activated with DNP-BSA (bovine serum albumin) for up to 4 h. The untreated cells and those with anti-DNP IgE sensitization but without DNP-BSA activation served as the controls. Intracellular calcium level gradually increased to ~2-fold at 1 h, reached its peak (~5-fold) at 2 h, and returned to the basal level at 3-h post-activation. The increases in cellular tryptase level (by Western blotting) (~0.3- to 0.4-fold) and average cell size (~2.5-fold) and decrease of nucleus/cytoplasm ratio (~0.4- to 0.5-fold) were marginal at all time-points. By contrast, β-hexosaminidase release and CD63 expression (by both flow cytometry and immunofluorescence detection/localization), secreted tryptase level (by Western blotting), and tryptase expression (by immunofluorescence detection/localization) stably and obviously increased (~10-fold as compared with the untreated control and sensitized-only cells or detectable only after activation). Based on these data, the stably obvious increases (by ≥ 10-fold) in β-hexosaminidase release, CD63 expression (by both flow cytometry and immunofluorescence staining), secreted tryptase level (by Western blotting), and tryptase expression (by immunofluorescence staining) are recommended as the markers of choice for the in vitro study of mast cell activation using RBL-2H3 cells.
Collapse
Affiliation(s)
- Chuda Rujitharanawong
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Papapit Tuchinda
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokvalai Kulthanan
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
7
|
Yang YS, Cao MD, Wang A, Liu QM, Zhu DX, Zou Y, Ma LL, Luo M, Shao Y, Xu DD, Wei JF, Sun JL. Nano-silica particles synergistically IgE-mediated mast cell activation exacerbating allergic inflammation in mice. Front Immunol 2022; 13:911300. [PMID: 35936002 PMCID: PMC9355306 DOI: 10.3389/fimmu.2022.911300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 12/05/2022] Open
Abstract
Background Allergic respiratory diseases have increased dramatically due to air pollution over the past few decades. However, studies are limited on the effects of inorganic components and particulate matter with different particle sizes in smog on allergic diseases, and the possible molecular mechanism of inducing allergies has not been thoroughly studied. Methods Four common mineral elements with different particle sizes in smog particles were selected, including Al2O3, TiO2, Fe2O3, and SiO2. We studied the relationship and molecular mechanism of smog particle composition, particle size, and allergic reactions using mast cells, immunoglobulin E (IgE)-mediated passive cutaneous anaphylaxis (PCA) model, and an ovalbumin (OVA)-induced asthmatic mouse model in vitro and in vivo, combined with transmission electron microscopy, scanning transmission X-ray microscopy analysis, and transcriptome sequencing. Results Only 20 nm SiO2 particles significantly increased β-hexosaminidase release, based on dinitrophenol (DNP)-human serum albumin (HSA) stimulation, from IgE-sensitized mast cells, while other particles did not. Meanwhile, the PCA model showed that Evan’s blue extravasation in mice was increased after treatment with nano-SiO2 particles. Nano-SiO2 particles exposure in the asthmatic mouse model caused an enhancement of allergic airway inflammation as manifested by OVA-specific serum IgE, airway hyperresponsiveness, lung inflammation injury, mucous cell metaplasia, cytokine expression, mast cell activation, and histamine secretion, which were significantly increased. Nano-SiO2 particles exposure did not affect the expression of FcϵRI or the ability of mast cells to bind IgE but synergistically activated mast cells by enhancing the mitogen-activated protein kinase (MAPK) signaling pathway, especially the phosphorylation levels of the extracellular signal-regulated kinase (ERK)1/2. The ERK inhibitors showed a significant inhibitory effect in reducing β-hexosaminidase release. Conclusion Our results indicated that nano-SiO2 particles stimulation might synergistically activate IgE-sensitized mast cells by enhancing the MAPK signaling pathway and that nano-SiO2 particles exposure could exacerbate allergic inflammation. Our experimental results provide useful information for preventing and treating allergic diseases.
Collapse
Affiliation(s)
- Yong-Shi Yang
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng-Da Cao
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - An Wang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Qing-Mei Liu
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dan-Xuan Zhu
- Women and Children Central Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Zou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Ma
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Min Luo
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yang Shao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Dian-Dou Xu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jin-Lyu Sun, ; Ji-Fu Wei, ; Dian-Dou Xu,
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jin-Lyu Sun, ; Ji-Fu Wei, ; Dian-Dou Xu,
| | - Jin-Lyu Sun
- Department of Allergy, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Jin-Lyu Sun, ; Ji-Fu Wei, ; Dian-Dou Xu,
| |
Collapse
|
8
|
Xie CC, Zhang BP, Wang HN, Li WY, Cai ZL, He Y, Ji K, Chen JJ. Flavoring agent dihydrocoumarin alleviates IgE-mediated mast cell activation and allergic inflammation. Food Funct 2022; 13:3621-3631. [PMID: 35262138 DOI: 10.1039/d2fo00190j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mast cells (MCs) are the main effector cells in the onset of high-affinity receptor for IgE (FcεRI)-mediated allergic diseases. The aim of this study was to test whether dihydrocoumarin (DHC), a food flavoring agent derived from Melilotus officinalis, can block IgE-induced MC activation effects and to examine the potential molecular mechanisms by which DHC affects MC activation. Rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) were sensitized with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated with DNP-human serum albumin antigen, and treated with DHC. Western blot analyses were performed to detect the expression of signaling proteins. Murine IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) models were used to examine DHC effects on allergic reactions in vivo. DHC inhibited MC degranulation, as evidenced by reduced β-hexosaminidase activity and histamine levels, and reduced morphological changes associated with MC activation, namely cellular elongation and F-actin reorganization. DHC inhibited the activation of MAPK, NF-κB, and AP-1 pathways in IgE-activated MCs. Additionally, DHC could attenuate IgE/Ag-induced allergic reactions (dye extravasation and ear thickening) in PCA as well as OVA challenge-induced reactions in ASA mice (body temperature, serum histamine and IL-4 secretion changes). In conclusion, DHC suppressed MC activation. DHC may represent a new MC-suppressing treatment strategy for the treatment of IgE-mediated allergic diseases.
Collapse
Affiliation(s)
- Chu-Chu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Bo-Ping Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Wei-Yong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Ze-Lang Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Yong He
- Shenzhen University General Hospital, Shenzhen 518060, China.
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
9
|
Wang Y, Ding Y, Li C, Gao J, Wang X, An H. Alpha-linolenic acid inhibits IgE-mediated anaphylaxis by inhibiting Lyn kinase and suppressing mast cell activation. Int Immunopharmacol 2021; 103:108449. [PMID: 34929479 DOI: 10.1016/j.intimp.2021.108449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/28/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022]
Abstract
Excessive reactions to allergens can induce systemic, life-threatening physiological dysfunction (anaphylaxis) in humans. The surface of mast cells expresses high-affinity IgE receptors that play a vital role during anaphylaxis. Alpha-linolenic acid (ALA) is an essential non-toxic fatty acid in humans. Since it has been reported having potential to regulate pro-inflammatory reactions, we postulated that ALA could inhibit anaphylaxis by down-regulating Lyn kinase phosphorylation. We found that local and systematic inflammation induced by albumin from chicken egg white (OVA) were attenuated by ALA in vivo. Furthermore, ALA inhibited IgE-mediated Ca2+ mobilization, degranulation, and cytokine release in Laboratory of Allergic Disease 2 (LAD2) cells. The western blot results showed that ALA down-regulate the FcεRI/Lyn/Syk signaling pathway by suppressing Lyn kinase activity. Therefore, ALA could serve as a therapeutic drug candidate for preventing IgE-mediated anaphylaxis.
Collapse
Affiliation(s)
- Yuejin Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yuanyuan Ding
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chaomei Li
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiapan Gao
- College of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaodong Wang
- Shaanxi Institute of Medical Device Quality Inspection, Xi'an, Shaanxi 712046, China
| | - Hongli An
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
10
|
Wang HN, Ji K, Zhang LN, Xie CC, Li WY, Zhao ZF, Chen JJ. Inhibition of c-Fos expression attenuates IgE-mediated mast cell activation and allergic inflammation by counteracting an inhibitory AP1/Egr1/IL-4 axis. J Transl Med 2021; 19:261. [PMID: 34130714 PMCID: PMC8207675 DOI: 10.1186/s12967-021-02932-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Activator protein-1 (AP1), a c-Fos–JUN transcription factor complex, mediates many cytobiological processes. c-Fos has been implicated in immunoglobulin (Ig)E activation of mast cells (MCs) via high-affinity IgE Fc receptor (FcεRI) binding. This study examined c-Fos involvement in MC activation and tested the effects of the c-Fos/AP1 inhibitor T-5224 on MCs activation and allergic responses. Methods In vitro studies were conducted with two MC model systems: rat basophilic leukemia cells (RBLs) and mouse bone marrow derived mast cells (BMMCs). MC degranulation and effector functions were examined with β-hexosaminidase release and cytokine secretion assays. c-Fos/AP1 was inhibited with T-5224. c-Fos activity was suppressed with short hairpin RNA targeting c-Fos (shFos). In vivo immune responses were evaluated in passive cutaneous anaphylaxis (PCA) and ovalbumin-induced active systemic anaphylaxis (ASA) models, as well as in an oxazolone (OXA)-induced model of atopic dermatitis, a common allergic disease. Results c-Fos expression was elevated transcriptionally and translationally in IgE-stimulated MCs. c-Fos binding of the Egr1 (early growth response 1) promoter upregulated Egr1 transcription, leading to production of interleukin (IL)4. T-5224 reduced FcεRI-mediated MC degranulation (evidenced by β-hexosaminidase activity and histamine levels) and diminished EGR1 and IL4 expression. T-5224 attenuated IgE-mediated allergic responses in PCA and ASA models, and it suppressed MC-mediated atopic dermatitis in mice. Conclusion IgE binding can activate MCs via a c-Fos/Egr1/IL-4 axis. T-5224 suppresses MC activation in vitro and in vivo and thus represents a promising potential strategy for targeting MC activation to treat allergic diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02932-0.
Collapse
Affiliation(s)
- Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Chu-Chu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Wei-Yong Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Laboratory Department of South China Hospital, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
11
|
Shou Q, Tan T, Xu F. Salvinorin A inhibits ovalbumin-stimulated allergic rhinitis and RBL-2H3 cells degranulation. FEBS Open Bio 2021. [PMID: 34092045 PMCID: PMC8329952 DOI: 10.1002/2211-5463.13219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/25/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Allergic rhinitis (AR) is a long-term noncommunicable inflammatory disease of the nasal mucosa mediated by immunoglobulin E and is mainly caused by exposure of genetically susceptible individuals to environmental allergens. Mast cells contribute to the pathogenesis of allergic and nonallergic inflammatory diseases. Salvinorin A has been previously shown to inhibit leukotriene production and mast cell degranulation to suppress airway hyperresponsiveness caused by sensitization; thus, we hypothesized that salvinorin A has an anti-AR effect. We tested this hypothesis using monoclonal anti-2,4,6-dinitrophenyl immunoglobulin E/human serum albumin-induced rat basophilic leukemia cells (RBL-2H3 cells) and ovalbumin (OVA)-induced AR in mice as in vivo and in vitro AR models, respectively. The expression levels of histamine, β-hexosaminidase, interleukin-4 and tumor necrosis factor-α were decreased by salvinorin A in vitro. Granule release and F-actin organization were also suppressed by salvinorin A. Furthermore, salvinorin A inhibited OVA-induced features of AR in mice, including nasal rubbing and sneezing, as well as increased OVA-specific immunoglobulin E, histamine, tumor necrosis factor-α and interleukin-4 levels. In addition, salvinorin A decreased the phosphorylation of phosphoinositide 3-kinase/Akt in vitro and in vivo. Our work suggests that salvinorin A suppresses AR caused by sensitization by inhibiting the inflammatory responses of mast cells; thus, salvinorin A may have potential for treatment of AR.
Collapse
Affiliation(s)
- Qiyang Shou
- The Second Affiliated Hospital, Zhejiang University of Chinese Medicine, Hangzhou, China
| | - Tao Tan
- Internal Medicine Department, Zhejiang Provincial General Team Hospital of the Chinese People's Armed Police Force, Hangzhou, China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, China
| |
Collapse
|
12
|
Hou YB, Zhang LN, Wang HN, Zhao ZF, Sun YT, Ji K, Chen JJ. The antipsychotic drug pimozide inhibits IgE-mediated mast cell degranulation and migration. Int Immunopharmacol 2020; 84:106500. [PMID: 32311669 DOI: 10.1016/j.intimp.2020.106500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Mast cells (MCs) mediate a key role in allergic diseases. Detailed studies of how the neuroleptic drug pimozide affects MC activity are lacking. The aim of this study was to investigate pimozide inhibition of immunoglobulin E (IgE)-mediated MC activation and MC-mediated allergic responses. METHOD MCs were stimulated with anti-dinitrophenyl (DNP) IgE antibodies and DNP-horse serum albumin (HSA) antigen (Ag), and anti-allergic pimozide effects were detected by measuring β-hexosaminidase levels. Morphological changes were observed histologically. In vivo pimozide effects were assessed in passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-sensitized active systemic anaphylaxis mouse (ASA) model experiments. Levels of phosphorylated (p-) SYK (spleen tyrosine kinase) and MAPKs (mitogen-activated protein kinases) were detected in western blots. RESULTS We found that pimozide inhibited MC degranulation, reduced MC release of β-hexosaminidase dose-dependently in activated RBL-2H3 (IC50: 13.52 μM) and bone marrow derived MC (BMMC) (IC50: 42.42 μM), and reduced MC morphological changes. The IgE/Ag-induced migration effect was suppressed by pimozide treatment dose-dependently. Pimozide down-regulated IgE/Ag-induced phosphorylation of SYK and MAPKs in activated MCs. Moreover, pimozide attenuated allergic reactions in PCA and ASA model mice, and decreased MC populations among splenic cells. CONCLUSIONS The antipsychotic drug pimozide can suppress IgE-mediated MC activation in vitro and in vivo and should be considered for repurposing to suppress MC-mediated diseases.
Collapse
Affiliation(s)
- Yi-Bo Hou
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Li-Na Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Hui-Na Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Zhen-Fu Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Yue-Tong Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Kunmei Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Jia-Jie Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|