1
|
Liu T, Wang S, Zhang Y, Li Y, Liu Y, Huang S. TIWMFLP: Two-Tier Interactive Weighted Matrix Factorization and Label Propagation Based on Similarity Matrix Fusion for Drug-Disease Association Prediction. J Chem Inf Model 2024; 64:8641-8654. [PMID: 39486090 DOI: 10.1021/acs.jcim.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Accurately identifying new therapeutic uses for drugs is crucial for advancing pharmaceutical research and development. Matrix factorization is often used in association prediction due to its simplicity and high interpretability. However, existing matrix factorization models do not enable real-time interaction between molecular feature matrices and similarity matrices, nor do they consider the geometric structure of the matrices. Additionally, efficiently integrating multisource data remains a significant challenge. To address these issues, we propose a two-tier interactive weighted matrix factorization and label propagation model based on similarity matrix fusion (TIWMFLP) to assist in personalized treatment. First, we calculate the Gaussian and Laplace kernel similarities for drugs and diseases using known drug-disease associations. We then introduce a new multisource similarity fusion method, called similarity matrix fusion (SMF), to integrate these drug/disease similarities. SMF not only considers the different contributions represented by each neighbor but also incorporates drug-disease association information to enhance the contextual topological relationships and potential features of each drug/disease node in the network. Second, we innovatively developed a two-tier interactive weighted matrix factorization (TIWMF) method to process three biological networks. This method realizes for the first time the real-time interaction between the drug/disease feature matrix and its similarity matrix, allowing for a better capture of the complex relationships between drugs and diseases. Additionally, the weighted matrix of the drug/disease similarity matrix is introduced to preserve the underlying structure of the similarity matrix. Finally, the label propagation algorithm makes predictions based on the three updated biological networks. Experimental outcomes reveal that TIWMFLP consistently surpasses state-of-the-art models on four drug-disease data sets, two small molecule-miRNA data sets, and one miRNA-disease data set.
Collapse
Affiliation(s)
- Tiyao Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Yunyin Li
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yingye Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Shiyuan Huang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
2
|
Luo L, Tan Z, Wang S. RSANMDA: Resampling based subview attention network for miRNA-disease association prediction. Methods 2024; 230:99-107. [PMID: 39097178 DOI: 10.1016/j.ymeth.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Many studies have demonstrated the importance of accurately identifying miRNA-disease associations (MDAs) for understanding disease mechanisms. However, the number of known MDAs is significantly fewer than the unknown pairs. Here, we propose RSANMDA, a subview attention network for predicting MDAs. We first extract miRNA and disease features from multiple similarity matrices. Next, using resampling techniques, we generate different subviews from known MDAs. Each subview undergoes multi-head graph attention to capture its features, followed by semantic attention to integrate features across subviews. Finally, combining raw and training features, we use a multilayer scoring perceptron for prediction. In the experimental section, we conducted comparative experiments with other advanced models on both HMDD v2.0 and HMDD v3.2 datasets. We also performed a series of ablation studies and parameter tuning exercises. Comprehensive experiments conclusively demonstrate the superiority of our model. Case studies on lung, breast, and esophageal cancers further validate our method's predictive capability for identifying disease-related miRNAs.
Collapse
Affiliation(s)
- Longfei Luo
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Zhuokun Tan
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China.
| |
Collapse
|
3
|
Biyu H, Mengshan L, Yuxin H, Ming Z, Nan W, Lixin G. A miRNA-disease association prediction model based on tree-path global feature extraction and fully connected artificial neural network with multi-head self-attention mechanism. BMC Cancer 2024; 24:683. [PMID: 38840078 PMCID: PMC11151537 DOI: 10.1186/s12885-024-12420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) emerge in various organisms, ranging from viruses to humans, and play crucial regulatory roles within cells, participating in a variety of biological processes. In numerous prediction methods for miRNA-disease associations, the issue of over-dependence on both similarity measurement data and the association matrix still hasn't been improved. In this paper, a miRNA-Disease association prediction model (called TP-MDA) based on tree path global feature extraction and fully connected artificial neural network (FANN) with multi-head self-attention mechanism is proposed. The TP-MDA model utilizes an association tree structure to represent the data relationships, multi-head self-attention mechanism for extracting feature vectors, and fully connected artificial neural network with 5-fold cross-validation for model training. RESULTS The experimental results indicate that the TP-MDA model outperforms the other comparative models, AUC is 0.9714. In the case studies of miRNAs associated with colorectal cancer and lung cancer, among the top 15 miRNAs predicted by the model, 12 in colorectal cancer and 15 in lung cancer were validated respectively, the accuracy is as high as 0.9227. CONCLUSIONS The model proposed in this paper can accurately predict the miRNA-disease association, and can serve as a valuable reference for data mining and association prediction in the fields of life sciences, biology, and disease genetics, among others.
Collapse
Affiliation(s)
- Hou Biyu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Li Mengshan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
| | - Hou Yuxin
- College of Computer Science and Engineering, Shanxi Datong University, Datong, Shanxi, 037000, China
| | - Zeng Ming
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Wang Nan
- College of Life Sciences, Jiaying University, Meizhou, Guangdong, 514000, China
| | - Guan Lixin
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
4
|
Qin C, Zhang J, Ma L. EMCMDA: predicting miRNA-disease associations via efficient matrix completion. Sci Rep 2024; 14:12761. [PMID: 38834687 DOI: 10.1038/s41598-024-63582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Abundant researches have consistently illustrated the crucial role of microRNAs (miRNAs) in a wide array of essential biological processes. Furthermore, miRNAs have been validated as promising therapeutic targets for addressing complex diseases. Given the costly and time-consuming nature of traditional biological experimental validation methods, it is imperative to develop computational methods. In the work, we developed a novel approach named efficient matrix completion (EMCMDA) for predicting miRNA-disease associations. First, we calculated the similarities across multiple sources for miRNA/disease pairs and combined this information to create a holistic miRNA/disease similarity measure. Second, we utilized this biological information to create a heterogeneous network and established a target matrix derived from this network. Lastly, we framed the miRNA-disease association prediction issue as a low-rank matrix-complete issue that was addressed via minimizing matrix truncated schatten p-norm. Notably, we improved the conventional singular value contraction algorithm through using a weighted singular value contraction technique. This technique dynamically adjusts the degree of contraction based on the significance of each singular value, ensuring that the physical meaning of these singular values is fully considered. We evaluated the performance of EMCMDA by applying two distinct cross-validation experiments on two diverse databases, and the outcomes were statistically significant. In addition, we executed comprehensive case studies on two prevalent human diseases, namely lung cancer and breast cancer. Following prediction and multiple validations, it was evident that EMCMDA proficiently forecasts previously undisclosed disease-related miRNAs. These results underscore the robustness and efficacy of EMCMDA in miRNA-disease association prediction.
Collapse
Affiliation(s)
- Chao Qin
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Jiancheng Zhang
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China
| | - Lingyu Ma
- School of Control Science and Engineering, Harbin Institute of Technology, Weihai, 250200, China
| |
Collapse
|
5
|
Xie G, Xie W, Gu G, Lin Z, Chen R, Liu S, Yu J. A vector projection similarity-based method for miRNA-disease association prediction. Anal Biochem 2024; 687:115431. [PMID: 38123111 DOI: 10.1016/j.ab.2023.115431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
[S U M M A R Y] Many miRNA-disease association prediction models incorporate Gaussian interaction profile kernel similarity (GIPS). However, the GIPS fails to consider the specificity of the miRNA-disease association matrix, where matrix elements with a value of 0 represent miRNA and disease relationships that have not been discovered yet. To address this issue and better account for the impact of known and unknown miRNA-disease associations on similarity, we propose a method called vector projection similarity-based method for miRNA-disease association prediction (VPSMDA). In VPSMDA, we introduce three projection rules and combined with logistic functions for the miRNA-disease association matrix and propose a vector projection similarity measure for miRNAs and diseases. By integrating the vector projection similarity matrix with the original one, we obtain the improved miRNA and disease similarity matrix. Additionally, we construct a weight matrix using different numbers of neighbors to reduce the noise in the similarity matrix. In performance evaluation, both LOOCV and 5-fold CV experiments demonstrate that VPSMDA outperforms seven other state-of-the-art methods in AUC. Furthermore, in a case study, VPSMDA successfully predicted 10, 9, and 10 out of the top 10 associations for three important human diseases, respectively, and these predictions were confirmed by recent biomedical resources.
Collapse
Affiliation(s)
- Guobo Xie
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Weijie Xie
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Guosheng Gu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Zhiyi Lin
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China.
| | - Ruibin Chen
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Shigang Liu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| | - Junrui Yu
- School of Computer, Guangdong University of Technology, Guangzhou, 510000, China
| |
Collapse
|
6
|
Zhang H, Fang J, Sun Y, Xie G, Lin Z, Gu G. Predicting miRNA-Disease Associations via Node-Level Attention Graph Auto-Encoder. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1308-1318. [PMID: 35503834 DOI: 10.1109/tcbb.2022.3170843] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Previous studies have confirmed microRNA (miRNA), small single-stranded non-coding RNA, participates in various biological processes and plays vital roles in many complex human diseases. Therefore, developing an efficient method to infer potential miRNA disease associations could greatly help understand operational mechanisms for diseases at the molecular level. However, during these early stages for miRNA disease prediction, traditional biological experiments are laborious and expensive. Therefore, this study proposes a novel method called AGAEMD (node-level Attention Graph Auto-Encoder to predict potential MiRNA Disease associations). We first create a heterogeneous matrix incorporating miRNA similarity, disease similarity, and known miRNA-disease associations. Then these matrixes are input into a node-level attention encoder-decoder network which utilizes low dimensional dense embeddings to represent nodes and calculate association scores. To verify the effectiveness of the proposed method, we conduct a series of experiments on two benchmark datasets (the Human MicroRNA Disease Database v2.0 and v3.2) and report the averages over 10 runs in comparison with several state-of-the-art methods. Experimental results have demonstrated the excellent performance of AGAEMD in comparison with other methods. Three important diseases (Colon Neoplasms, Lung Neoplasms, Lupus Vulgaris) were applied in case studies. The results comfirm the reliable predictive performance of AGAEMD.
Collapse
|
7
|
Rao Y, Xie M, Wang H. Predict potential miRNA-disease associations based on bounded nuclear norm regularization. Front Genet 2022; 13:978975. [PMID: 36072658 PMCID: PMC9441603 DOI: 10.3389/fgene.2022.978975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidences show that the abnormal microRNA (miRNA) expression is related to a variety of complex human diseases. However, the current biological experiments to determine miRNA-disease associations are time consuming and expensive. Therefore, computational models to predict potential miRNA-disease associations are in urgent need. Though many miRNA-disease association prediction methods have been proposed, there is still a room to improve the prediction accuracy. In this paper, we propose a matrix completion model with bounded nuclear norm regularization to predict potential miRNA-disease associations, which is called BNNRMDA. BNNRMDA at first constructs a heterogeneous miRNA-disease network integrating the information of miRNA self-similarity, disease self-similarity, and the known miRNA-disease associations, which is represented by an adjacent matrix. Then, it models the miRNA-disease prediction as a relaxed matrix completion with error tolerance, value boundary and nuclear norm minimization. Finally it implements the alternating direction method to solve the matrix completion problem. BNNRMDA makes full use of available information of miRNAs and diseases, and can deals with the data containing noise. Compared with four state-of-the-art methods, the experimental results show BNNRMDA achieved the best performance in five-fold cross-validation and leave-one-out cross-validation. The case studies on two complex human diseases showed that 47 of the top 50 prediction results of BNNRMDA have been verified in the latest HMDD database.
Collapse
|
8
|
Identification of MiRNA–Disease Associations Based on Information of Multi-Module and Meta-Path. Molecules 2022; 27:molecules27144443. [PMID: 35889314 PMCID: PMC9321348 DOI: 10.3390/molecules27144443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Cumulative research reveals that microRNAs (miRNAs) are involved in many critical biological processes including cell proliferation, differentiation and apoptosis. It is of great significance to figure out the associations between miRNAs and human diseases that are the basis for finding biomarkers for diagnosis and targets for treatment. To overcome the time-consuming and labor-intensive problems faced by traditional experiments, a computational method was developed to identify potential associations between miRNAs and diseases based on the graph attention network (GAT) with different meta-path mode and support vector (SVM). Firstly, we constructed a multi-module heterogeneous network based on the meta-path and learned the latent features of different modules by GAT. Secondly, we found the average of the latent features with weight to obtain a final node representation. Finally, we characterized miRNA–disease-association pairs with the node representation and trained an SVM to recognize potential associations. Based on the five-fold cross-validation and benchmark datasets, the proposed method achieved an area under the precision–recall curve (AUPR) of 0.9379 and an area under the receiver–operating characteristic curve (AUC) of 0.9472. The results demonstrate that our method has an outstanding practical application performance and can provide a reference for the discovery of new biomarkers and therapeutic targets.
Collapse
|
9
|
Yu L, Zheng Y, Ju B, Ao C, Gao L. Research progress of miRNA-disease association prediction and comparison of related algorithms. Brief Bioinform 2022; 23:6542222. [PMID: 35246678 DOI: 10.1093/bib/bbac066] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
With an in-depth understanding of noncoding ribonucleic acid (RNA), many studies have shown that microRNA (miRNA) plays an important role in human diseases. Because traditional biological experiments are time-consuming and laborious, new calculation methods have recently been developed to predict associations between miRNA and diseases. In this review, we collected various miRNA-disease association prediction models proposed in recent years and used two common data sets to evaluate the performance of the prediction models. First, we systematically summarized the commonly used databases and similarity data for predicting miRNA-disease associations, and then divided the various calculation models into four categories for summary and detailed introduction. In this study, two independent datasets (D5430 and D6088) were compiled to systematically evaluate 11 publicly available prediction tools for miRNA-disease associations. The experimental results indicate that the methods based on information dissemination and the method based on scoring function require shorter running time. The method based on matrix transformation often requires a longer running time, but the overall prediction result is better than the previous two methods. We hope that the summary of work related to miRNA and disease will provide comprehensive knowledge for predicting the relationship between miRNA and disease and contribute to advanced computation tools in the future.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yujia Zheng
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Bingyi Ju
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Chunyan Ao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
10
|
Yu L, Zheng Y, Gao L. MiRNA-disease association prediction based on meta-paths. Brief Bioinform 2022; 23:6501422. [PMID: 35018405 DOI: 10.1093/bib/bbab571] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/09/2023] Open
Abstract
Since miRNAs can participate in the posttranscriptional regulation of gene expression, they may provide ideas for the development of new drugs or become new biomarkers for drug targets or disease diagnosis. In this work, we propose an miRNA-disease association prediction method based on meta-paths (MDPBMP). First, an miRNA-disease-gene heterogeneous information network was constructed, and seven symmetrical meta-paths were defined according to different semantics. After constructing the initial feature vector for the node, the vector information carried by all nodes on the meta-path instance is extracted and aggregated to update the feature vector of the starting node. Then, the vector information obtained by the nodes on different meta-paths is aggregated. Finally, miRNA and disease embedding feature vectors are used to calculate their associated scores. Compared with the other methods, MDPBMP obtained the highest AUC value of 0.9214. Among the top 50 predicted miRNAs for lung neoplasms, esophageal neoplasms, colon neoplasms and breast neoplasms, 49, 48, 49 and 50 have been verified. Furthermore, for breast neoplasms, we deleted all the known associations between breast neoplasms and miRNAs from the training set. These results also show that for new diseases without known related miRNA information, our model can predict their potential miRNAs. Code and data are available at https://github.com/LiangYu-Xidian/MDPBMP.
Collapse
Affiliation(s)
- Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| | - Yujia Zheng
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an 710071, P.R. China
| |
Collapse
|
11
|
Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, Wei X, Qiu J, Salahub DR, Xiong Y, Wei DQ. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 2021; 22:6261915. [PMID: 34009265 DOI: 10.1093/bib/bbab165] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of the miRNA-disease associations (MDAs) helps to understand the etiology and mechanisms of various diseases. However, the experimental methods are costly and time-consuming. Thus, it is urgent to develop computational methods towards the prediction of MDAs. Based on the graph theory, the MDA prediction is regarded as a node classification task in the present study. To solve this task, we propose a novel method MDA-GCNFTG, which predicts MDAs based on Graph Convolutional Networks (GCNs) via graph sampling through the Feature and Topology Graph to improve the training efficiency and accuracy. This method models both the potential connections of feature space and the structural relationships of MDA data. The nodes of the graphs are represented by the disease semantic similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity. Moreover, we considered six tasks simultaneously on the MDA prediction problem at the first time, which ensure that under both balanced and unbalanced sample distribution, MDA-GCNFTG can predict not only new MDAs but also new diseases without known related miRNAs and new miRNAs without known related diseases. The results of 5-fold cross-validation show that the MDA-GCNFTG method has achieved satisfactory performance on all six tasks and is significantly superior to the classic machine learning methods and the state-of-the-art MDA prediction methods. Moreover, the effectiveness of GCNs via the graph sampling strategy and the feature and topology graph in MDA-GCNFTG has also been demonstrated. More importantly, case studies for two diseases and three miRNAs are conducted and achieved satisfactory performance.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Xuhong Wang
- School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, China
| | - Qiuying Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, China
| | | | | | - Dennis Russell Salahub
- Department of Chemistry, University of Calgary, Fellow Royal Society of Canada and Fellow of the American Association for the Advancement of Science, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
12
|
Lei X, Mudiyanselage TB, Zhang Y, Bian C, Lan W, Yu N, Pan Y. A comprehensive survey on computational methods of non-coding RNA and disease association prediction. Brief Bioinform 2020; 22:6042241. [PMID: 33341893 DOI: 10.1093/bib/bbaa350] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
The studies on relationships between non-coding RNAs and diseases are widely carried out in recent years. A large number of experimental methods and technologies of producing biological data have also been developed. However, due to their high labor cost and production time, nowadays, calculation-based methods, especially machine learning and deep learning methods, have received a lot of attention and been used commonly to solve these problems. From a computational point of view, this survey mainly introduces three common non-coding RNAs, i.e. miRNAs, lncRNAs and circRNAs, and the related computational methods for predicting their association with diseases. First, the mainstream databases of above three non-coding RNAs are introduced in detail. Then, we present several methods for RNA similarity and disease similarity calculations. Later, we investigate ncRNA-disease prediction methods in details and classify these methods into five types: network propagating, recommend system, matrix completion, machine learning and deep learning. Furthermore, we provide a summary of the applications of these five types of computational methods in predicting the associations between diseases and miRNAs, lncRNAs and circRNAs, respectively. Finally, the advantages and limitations of various methods are identified, and future researches and challenges are also discussed.
Collapse
Affiliation(s)
- Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | | | - Yuchen Zhang
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Chen Bian
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Wei Lan
- School of Computer, Electronics and Information at Guangxi University, Nanning, China
| | - Ning Yu
- Department of Computing Sciences at the College at Brockport, State University of New York, Rochester, NY, USA
| | - Yi Pan
- Computer Science Department at Georgia State University, Atlanta, GA, USA
| |
Collapse
|
13
|
Wu TR, Yin MM, Jiao CN, Gao YL, Kong XZ, Liu JX. MCCMF: collaborative matrix factorization based on matrix completion for predicting miRNA-disease associations. BMC Bioinformatics 2020; 21:454. [PMID: 33054708 PMCID: PMC7556955 DOI: 10.1186/s12859-020-03799-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background MicroRNAs (miRNAs) are non-coding RNAs with regulatory functions. Many studies have shown that miRNAs are closely associated with human diseases. Among the methods to explore the relationship between the miRNA and the disease, traditional methods are time-consuming and the accuracy needs to be improved. In view of the shortcoming of previous models, a method, collaborative matrix factorization based on matrix completion (MCCMF) is proposed to predict the unknown miRNA-disease associations. Results The complete matrix of the miRNA and the disease is obtained by matrix completion. Moreover, Gaussian Interaction Profile kernel is added to the miRNA functional similarity matrix and the disease semantic similarity matrix. Then the Weight K Nearest Known Neighbors method is used to pretreat the association matrix, so the model is close to the reality. Finally, collaborative matrix factorization method is applied to obtain the prediction results. Therefore, the MCCMF obtains a satisfactory result in the fivefold cross-validation, with an AUC of 0.9569 (0.0005). Conclusions The AUC value of MCCMF is higher than other advanced methods in the fivefold cross validation experiment. In order to comprehensively evaluate the performance of MCCMF, accuracy, precision, recall and f-measure are also added. The final experimental results demonstrate that MCCMF outperforms other methods in predicting miRNA-disease associations. In the end, the effectiveness and practicability of MCCMF are further verified by researching three specific diseases.
Collapse
Affiliation(s)
- Tian-Ru Wu
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Meng-Meng Yin
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Cui-Na Jiao
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Ying-Lian Gao
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Xiang-Zhen Kong
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China
| | - Jin-Xing Liu
- School of Computer Science, Qufu Normal University, Rizhao, 276826, China.
| |
Collapse
|