1
|
Zhao J, Miao D. Precision oncology in colorectal cancer: An anatomical revolution through molecular-clinical integration across colonic subsites. Clin Res Hepatol Gastroenterol 2025; 49:102613. [PMID: 40374162 DOI: 10.1016/j.clinre.2025.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/08/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Colorectal cancer (CRC) exhibits significant heterogeneity across different colonic subsites, which vary in embryological origin, microbiome, metabolome, and molecular profiles, affecting tumorigenesis, treatment response, and prognosis. We emphasize the importance of this subsite heterogeneity to advance precision medicine in CRC.
Collapse
Affiliation(s)
- Jiefeng Zhao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
| | - Daxing Miao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
| |
Collapse
|
2
|
Isik D, Kinikoglu O. Prognostic and Molecular Characterization of Metastatic Transverse Colon Cancer: Insights From a Single-Center Retrospective Study. Cureus 2024; 16:e75046. [PMID: 39629291 PMCID: PMC11614356 DOI: 10.7759/cureus.75046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Metastatic transverse colon cancer (TCC) represents a unique subset of colorectal cancer with features of both right and left colon tumors due to its distinct embryologic origin. This study retrospectively analyzes the clinical, pathological, and molecular factors influencing survival outcomes in TCC patients treated at a single center. METHODS For this study, we reviewed the files of 372 metastatic patients and analyzed the data of 71 patients with a diagnosis of TCC in detail. The remaining patients were patients with right or left colon tumors and we compared the overall survival (OS), molecular mutations (KRAS, NRAS, BRAF, MSI status), and clinicopathological features of our patients with transverse colon tumors with these patients. RESULTS The median OS for TCC patients was 19.7 months, with metastasectomy and Eastern Cooperative Oncology Group (ECOG) performance status emerging as significant prognostic factors. Molecular analyses revealed KRAS mutations in 49% and BRAF mutations in 13% of TCC cases, aligning TCC closer to right-sided tumors in certain molecular characteristics. However, histopathologic diversity, including mucinous histology in 20% of TCC cases, indicated a need to consider TCC as a distinct entity. CONCLUSION These findings underscore the complex biological nature of TCC and the necessity for tailored therapeutic approaches, especially as survival rates remain suboptimal. Further multicenter, prospective studies are recommended to establish refined treatment strategies for TCC patients.
Collapse
Affiliation(s)
- Deniz Isik
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| | - Oguzcan Kinikoglu
- Medical Oncology, Kartal Dr. Lütfi Kirdar City Hospital, Health Science University, Istanbul, TUR
| |
Collapse
|
3
|
Zou J, Xu B, Luo P, Chen T, Duan H. Non-coding RNAs in bladder cancer, a bridge between gut microbiota and host? Front Immunol 2024; 15:1482765. [PMID: 39628486 PMCID: PMC11611751 DOI: 10.3389/fimmu.2024.1482765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
In recent years, the role of gut microbiota (GM) in bladder cancer has attracted significant attention. Research indicates that GM not only contributes to bladder carcinogenesis but also influences the efficacy of adjuvant therapies for bladder cancer. Despite this, interventions targeting GM have not been widely employed in the prevention and treatment of bladder cancer, mainly due to the incomplete understanding of the complex interactions between the host and gut flora. Simultaneously, aberrantly expressed non-coding RNAs (ncRNAs) have been frequently associated with bladder cancer, playing crucial roles in processes such as cell proliferation, invasion, and drug resistance. It is widely known that the regulation of GM-mediated host pathophysiological processes is partly regulated through epigenetic pathways. At the same time, ncRNAs are increasingly regarded as GM signaling molecules involved in GM-mediated epigenetic regulation. Accordingly, this review analyzes the ncRNAs that are closely related to the GM in the context of bladder cancer occurrence and treatment, and summarizes the role of their interaction with the GM in bladder cancer-related phenotypes. The aim is to delineate a regulatory network between GM and ncRNAs and provide a new perspective for the study and prevention of bladder cancer.
Collapse
Affiliation(s)
- Jun Zou
- Department of Otorhinolaryngology, The Affiliated Fengcheng Hospital of Yichun University, Fengcheng, Jiangxi, China
| | - Baisheng Xu
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Huanglin Duan
- Department of Urology, The First People's Hospital of Xiushui, Jiujiang, Jiangxi, China
| |
Collapse
|
4
|
Suresh RS, Garcia LE, Gearhart SL. Young-Onset Rectal Cancer: Is It for Real? Adv Surg 2024; 58:275-291. [PMID: 39089782 DOI: 10.1016/j.yasu.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The incidence of early-onset colorectal cancer has been rising over the last two decades. Tumors in young patients have distinct features compared to older patients. They predominantly arise in the distal colon and rectum and have poor histological features. Patients tend to present at a more advanced stage and be exposed to more aggressive management approaches; however, this has not translated into a significant survival benefit compared to their older counterparts. This chapter will share current evidence on risk factors and management options for early onset colorectal cancer with a focus on rectal cancer.
Collapse
Affiliation(s)
- Reena S Suresh
- Department of Surgery, Division of Colorectal Surgery, Johns Hopkins School of Medicine, 600 N. Wolfe Street / Blalock 618, Baltimore, MD 21287, USA
| | - Leonardo E Garcia
- Department of Surgery, Division of Colorectal Surgery, Johns Hopkins School of Medicine, 600 N. Wolfe Street / Blalock 618, Baltimore, MD 21287, USA
| | - Susan L Gearhart
- Department of Surgery, Division of Colorectal Surgery, Johns Hopkins School of Medicine, 600 N. Wolfe Street / Blalock 618, Baltimore, MD 21287, USA.
| |
Collapse
|
5
|
Liu X, Li X, Xie M, Guo J, Zheng X, Shi S, Cui Q, Zhang D, Zhang Z, Wang Z. Association of gut microbiome and oral cavity cancer: A two sample mendelian randomization and case-control study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101736. [PMID: 38086473 DOI: 10.1016/j.jormas.2023.101736] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Considering the interconnectedness of the oral cavity and gut tract and the presence of abundant natural microbiota in both. We utilized Mendelian Randomization (MR) in a two-sample study to unveil the genetic causal impact of gut microbiota on the development of oral cavity cancer. MATERIALS & METHODS The instrumental variables employed in this study consisted of single nucleotide polymorphisms (SNPs) that demonstrated a robust association with 211 distinct gut microbiota taxa, encompassing a sample size of 18,340 individuals. Our investigation sought to explore the potential causal relationship between these genetic variants and the incidence of oral cavity cancer. To accomplish this, we adopted a random effect inverse variance-weighted approach to analyze the causal effect. Additionally, sensitivity analyses were performed utilizing Cochran's Q tests, funnel plots, leave-one-out analyses, and MR-Egger intercept tests, to assess the robustness and validity of our findings. RESULTS Five gut microbiota taxa (the family Prevotellaceae, the genus Alloprevotella, the genus Erysipelatoclostridium, the genus Parabacteroides, the genus Ruminococcus gauvreauii group) are predicted to play a causal role in promoting the initiation of the risk of oral cavity cancer. While the genus Christensenellaceae R 7 group, the genus Intestinimonas, the genus Ruminococcaceae, and the order Bacillales causally reduce the risk of oral cavity cancer. Furthermore, no significant evidence suggesting heterogeneity or pleiotropy was observed. DISCUSSION The novel genetic causal effects of 211 gut microbiota taxa on oral cavity cancer are elucidated in this investigation, thus offering valuable insights for clinical interventions targeting oral cavity cancer.
Collapse
Affiliation(s)
- Xinpeng Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, P.R. China
| | - Xinping Li
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, P.R. China
| | - Menglan Xie
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, P.R. China
| | - Jinyuan Guo
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, P.R. China
| | - Xianghuai Zheng
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, P.R. China
| | - Shanwei Shi
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, P.R. China
| | - Qiuju Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, P.R. China
| | - Danya Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, P.R. China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, P.R. China.
| | - Zhiping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, P.R. China.
| |
Collapse
|
6
|
Xu P, Tao Z, Yang H, Zhang C. Obesity and early-onset colorectal cancer risk: emerging clinical evidence and biological mechanisms. Front Oncol 2024; 14:1366544. [PMID: 38764574 PMCID: PMC11100318 DOI: 10.3389/fonc.2024.1366544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
Early-onset colorectal cancer (EOCRC) is defined as diagnosed at younger than 50 years of age and indicates a health burden globally. Patients with EOCRC have distinct risk factors, clinical characteristics, and molecular pathogenesis compared with older patients with CRC. Further investigations have identified different roles of obesity between EOCRC and late-onset colorectal cancer (LOCRC). Most studies have focused on the clinical characteristics of obesity in EOCRC, therefore, the mechanism involved in the association between obesity and EOCRC remains inconclusive. This review further states that obesity affects the carcinogenesis of EOCRC as well as its development and progression, which may lead to obesity-related metabolic syndrome, intestinal dysbacteriosis, and intestinal inflammation.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Zuo Tao
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, China
| | - Cheng Zhang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Zhao H, Song G, Wang R, Guan N, Yun C, Yang J, Ma JB, Li H, Xiao W, Peng L. Primary tumor resection improves prognosis of unresectable carcinomas of the transverse colon including flexures with pulmonary metastasis: a cohort study. Eur J Cancer Prev 2024; 33:95-104. [PMID: 37823436 PMCID: PMC10833197 DOI: 10.1097/cej.0000000000000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Studies of unresectable colorectal cancer pulmonary metastasis (CRPM) have rarely analyzed patient prognosis from the perspective of colonic subsites. This study aimed to evaluate the effects of primary tumor resection (PTR) on the prognosis of patients with unresectable pulmonary metastases of transverse colon cancer pulmonary metastasis (UTCPM), hepatic flexure cancer pulmonary metastasis (UHFPM), and splenic flexure cancer pulmonary metastasis (USFPM). METHODS Patients were identified from the Surveillance, Epidemiology, and End Results database between 2000 and 2018. The Cox proportional hazards regression models were used to identify prognostic factors of overall survival (OS) and cause-specific survival (CSS). The Kaplan-Meier analyses and log-rank tests were conducted to assess the effectiveness of PTR on survival. RESULTS This study included 1294 patients: 419 with UHFPM, 636 with UTCPM, and 239 with USFPM. Survival analysis for OS and CSS in the PTR groups, showed that there were no statistical differences in the the UHFPM, UTCPM, and USFPM patients. There were statistical differences in the UHFPM, UTCPM, and USFPM patients for OS and CSS. Three non-PTR subgroups showed significant statistical differences for OS and CSS. CONCLUSION We confirmed the different survival rates of patients with UTCPM, UHFPM, and USFPM and proved for the first time that PTR could provide survival benefits for patients with unresectable CRPM from the perspective of the colonic subsites of the transverse colon, hepatic flexure, and splenic flexure.
Collapse
Affiliation(s)
- Huixia Zhao
- Department of Oncology, The Fourth Medical Center of PLA General Hospital
| | - Guangze Song
- Department of Orthopedics, Aerospace Center Hospital, Beijing
| | - Ruliang Wang
- Department of Oncology, Haihe Hospital, Tianjin University, Tianjin
| | - Na Guan
- Jinzhou Medical University, Shenyang
| | - Chao Yun
- Department of Oncology, The Fourth Medical Center of PLA General Hospital
| | - Jingwen Yang
- Department of Oncology, The Fourth Medical Center of PLA General Hospital
| | - Jin-Bao Ma
- Department of Drug-resistance Tuberculosis, West Section of HangTian Avenue, Xi’an Chest Hospital, Xi’an, Shanxi Province, China
| | - Hui Li
- Department of Oncology, The Fourth Medical Center of PLA General Hospital
| | - Wenhua Xiao
- Department of Oncology, The Fourth Medical Center of PLA General Hospital
| | - Liang Peng
- Department of Oncology, The Fourth Medical Center of PLA General Hospital
| |
Collapse
|
8
|
Ren B, Yang Y, Lv Y, Liu K. Survival outcome and prognostic factors for early-onset and late-onset metastatic colorectal cancer: a population based study from SEER database. Sci Rep 2024; 14:4377. [PMID: 38388566 PMCID: PMC10883940 DOI: 10.1038/s41598-024-54972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024] Open
Abstract
Colorectal cancer is the third most common cancer worldwide and there has been a concerning increase in the incidence rate of colorectal cancer among individuals under the age of 50. This study compared the survival outcome between early-onset and late-onset metastatic colorectal cancer to find the differences and identify their prognostic factors. We obtained patient data from SEER database. Survival outcome was estimated using Kaplan-Meier survival curves and compared using the log-rank test. Univariate and multivariate analyses were conducted utilizing COX models to identify their independent prognostic factors. A total of 10,036 early-onset metastatic colorectal (EOCRC) cancer patients and 56,225 late-onset metastatic colorectal cancer (LOCRC) patients between 2010 and 2019 were included in this study. EOCRC has more survival benefits than LOCRC. Tumor primary location (p < 0.001), the location of metastasis (p < 0.001) and treatment modalities (p < 0.001) affect the survival outcomes between these two groups of patients. Female patients had better survival outcomes in EOCRC group (p < 0.001), but no difference was found in LOCRC group (p = 0.57). In conclusion, our study demonstrated that EOCRC patients have longer survival time than LOCRC patients. The sex differences in survival of metastatic colorectal cancer patients are associated with patients' age. These findings contribute to a better understanding of the differences between metastatic EOCRC and LOCRC, and can help inform the development of more precise treatment guidelines to improve prognosis.
Collapse
Affiliation(s)
- Bingyi Ren
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yichen Yang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Kang Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
9
|
Li W, Zhou X, Yuan S, Wang L, Yu L, Sun J, Chen J, Xiao Q, Wan Z, Zheng JS, Zhang CX, Larsson SC, Farrington SM, Law P, Houlston RS, Tomlinson I, Ding KF, Dunlop MG, Theodoratou E, Li X. Exploring the Complex Relationship between Gut Microbiota and Risk of Colorectal Neoplasia Using Bidirectional Mendelian Randomization Analysis. Cancer Epidemiol Biomarkers Prev 2023; 32:809-817. [PMID: 37012201 PMCID: PMC10233354 DOI: 10.1158/1055-9965.epi-22-0724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/07/2022] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Human gut microbiome has complex relationships with the host, contributing to metabolism, immunity, and carcinogenesis. METHODS Summary-level data for gut microbiota and metabolites were obtained from MiBioGen, FINRISK and human metabolome consortia. Summary-level data for colorectal cancer were derived from a genome-wide association study meta-analysis. In forward Mendelian randomization (MR), we employed genetic instrumental variables (IV) for 24 gut microbiota taxa and six bacterial metabolites to examine their causal relationship with colorectal cancer. We also used a lenient threshold for nine apriori gut microbiota taxa as secondary analyses. In reverse MR, we explored association between genetic liability to colorectal neoplasia and abundance of microbiota studied above using 95, 19, and 7 IVs for colorectal cancer, adenoma, and polyps, respectively. RESULTS Forward MR did not find evidence indicating causal relationship between any of the gut microbiota taxa or six bacterial metabolites tested and colorectal cancer risk. However, reverse MR supported genetic liability to colorectal adenomas was causally related with increased abundance of two taxa: Gammaproteobacteria (β = 0.027, which represents a 0.027 increase in log-transformed relative abundance values of Gammaproteobacteria for per one-unit increase in log OR of adenoma risk; P = 7.06×10-8), Enterobacteriaceae (β = 0.023, P = 1.29×10-5). CONCLUSIONS We find genetic liability to colorectal neoplasia may be associated with abundance of certain microbiota taxa. It is more likely that subset of colorectal cancer genetic liability variants changes gut biology by influencing both gut microbiota and colorectal cancer risk. IMPACT This study highlights the need of future complementary studies to explore causal mechanisms linking both host genetic variation with gut microbiome and colorectal cancer susceptibility.
Collapse
Affiliation(s)
- Wanxin Li
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Zhou
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Yuan
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Yu
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Xiao
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Ian Tomlinson
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Ke-Feng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Malcolm G. Dunlop
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Evropi Theodoratou
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Xia C, Su J, Liu C, Mai Z, Yin S, Yang C, Fu L. Human microbiomes in cancer development and therapy. MedComm (Beijing) 2023; 4:e221. [PMID: 36860568 PMCID: PMC9969057 DOI: 10.1002/mco2.221] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Colonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different. Here, we summarize how microbiomes contribute to carcinogenesis and disease progression in cancers of the skin, mouth, esophagus, lung, gastrointestinal, genital, blood, and lymph malignancy. We also insight into the molecular mechanisms of triggering, promoting, or inhibiting carcinogenesis and disease progress induced by microbiomes or/and their secretions of bioactive metabolites. And then, the strategies of application of microorganisms in cancer treatment were discussed in detail. However, the mechanisms by which human microbiomes function are still poorly understood. The bidirectional interactions between microbiotas and endocrine systems need to be clarified. Probiotics and prebiotics are believed to benefit human health via a variety of mechanisms, in particular, in tumor inhibition. It is largely unknown how microbial agents cause cancer or how cancer progresses. We expect this review may open new perspectives on possible therapeutic approaches of patients with cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jiyan Su
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Chuansheng Yang
- Department of Head‐Neck and Breast SurgeryYuebei People's Hospital of Shantou UniversityShaoguanChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
11
|
Sillo TO, Beggs AD, Middleton G, Akingboye A. The Gut Microbiome, Microsatellite Status and the Response to Immunotherapy in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065767. [PMID: 36982838 PMCID: PMC10054450 DOI: 10.3390/ijms24065767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
There is increasing evidence in a range of cancer types that the microbiome plays a direct role in modulating the anti-cancer immune response both at the gut level and systemically. Differences in the gut microbiota have been shown to correlate with differences in immunotherapy responses in a range of non-gastrointestinal tract cancers. DNA mismatch repair-deficient (dMMR) colorectal cancer (CRC) is radically different to DNA mismatch repair-proficient (pMMR) CRC in clinical phenotype and in its very good responses to immunotherapy. While this has usually been thought to be due to the high mutational burden in dMMR CRC, the gut microbiome is radically different in dMMR and pMMR CRC in terms of both composition and diversity. It is probable that differences in the gut microbiota contribute to the varied responses to immunotherapy in dMMR versus pMMR CRC. Targeting the microbiome offers a way to boost the response and increase the selection of patients who might benefit from this therapy. This paper reviews the available literature on the role of the microbiome in the response to immunotherapy in dMMR and pMMR CRC, explores the potential causal relationship and discusses future directions for study in this exciting and rapidly changing field.
Collapse
Affiliation(s)
- Toritseju O Sillo
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
12
|
The Gut Microbiota Metabolite Urolithin B Prevents Colorectal Carcinogenesis by Remodeling Microbiota and PD-L1/HLA-B. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6480848. [PMID: 36778211 PMCID: PMC9908333 DOI: 10.1155/2023/6480848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023]
Abstract
Colorectal cancer has risen to the third occurring cancer in the world. Fluorouracil (5-Fu), oxaliplatin, and cisplatin are the most effective chemotherapeutic agents for clinical chemotherapy. Nevertheless, due to chemotherapeutic drug resistance, the survival rate of patients with CRC remains very low. In this study, we used the inflammation-induced or mutation-family-inherited murine CRC models to study the anticancer and immunotherapy effects of urolithin B (UB), the final metabolite of polyphenols in the gastrointestinal tract. The label-free proteomics analysis and the gene ontology (GO) classifications were used to test and analyze the proteins affected by UB. And 16S rDNA sequencing and flow cytometry were utilized to uncover gut microbiome composition and immune defense improved by UB administration. The results indicated that urolithin B prevents colorectal carcinogenesis by remodeling gut microbial and tumor immune microenvironments, such as HLA-B, NK cells, regulatory T cells, and γδ TCR cells, and decreasing the PD-L1. The combination of urolithin B with first-line therapeutic drugs improved the colorectal intestinal hematochezia by shaping gut microbiota, providing a strategy for the treatment of immunotherapy treatment for CRC treatments. UB combined with anti-PD-1 antibody could inhibit the growth of colon cancer. Urolithin B may thus contribute to anticancer treatments and provide a high immune response microenvironment for CRC patients' further immunotherapy.
Collapse
|
13
|
Shuwen H, Yangyanqiu W, Jian C, Boyang H, Gong C, Jing Z. Synergistic effect of sodium butyrate and oxaliplatin on colorectal cancer. Transl Oncol 2022; 27:101598. [PMID: 36512976 PMCID: PMC9763735 DOI: 10.1016/j.tranon.2022.101598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oxaliplatin (OXA) is a chemotherapy agent commonly used in the treatment of colorectal cancer (CRC). Sodium butyrate (NaB) has an antitumor effect. METHODS In total, 30 patients in stage III who completed 8 cycles of chemotherapy regimens were recruited for this study. The patients were divided into good and bad groups based on the chemotherapy efficacy. Gas chromatography-mass spectrometry (GC/MS) was used to detect microbial metabolites in stool samples from CRC patients. Cell counting kit-8 (CCK-8), Annexin-V APC/7-AAD double staining, Transwell assays, scratch-wound assays, and EdU assays were used to detect cell proliferation, apoptosis, invasion and migration, respectively. Fluoroelectron microscopy was used to observe the cell structures. To verify the inhibitory effect of NaB and OXA at animal level, a subcutaneous transplanted tumor model was established. Finally, 16S sequencing technology was used to detect intestinal bacteria. GC-MS was used to detect metabolites in mouse stools. RESULTS NaB was a differential metabolite that affected the efficacy of OXA. NAB and oxaliplatin can synergically inhibit cell proliferation, migration and invasion, and induce cell apoptosis. Animal experiments confirmed the inhibitory effect of oxaliplatin and sodium butyrate on tumor in mice. In addition, the intestinal microbe detection and microbial metabolite detection in fecal samples from mice showed significant differences between butyrate-producing bacteria and NaB. CONCLUSION NaB and OXA can synergistically inhibit the proliferation, invasion and metastasis of CRC cells and promote the apoptosis of CRC cells. NaB, as an OXA synergist, has the potential to become a new clinical adjuvant in CRC chemotherapy.
Collapse
Affiliation(s)
- Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, PR China,Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Zhejiang Province, PR China
| | - Wang Yangyanqiu
- Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang Province, PR China
| | - Chu Jian
- Zhejiang Chinese Medical University, Zhejiang Province, PR China
| | - Hu Boyang
- Zhejiang Chinese Medical University, Zhejiang Province, PR China
| | - Chen Gong
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, PR China
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Zhejiang Province, PR China,Corresponding author at: No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, PR China.
| |
Collapse
|
14
|
Dai W, Wang Z, Liang X, Wang M, Ni W, Yang Y, Zang YS. Circulating lncRNA EGFR-AS1 as a diagnostic biomarker of colorectal cancer and an indicator of tumor burden. J Gastrointest Oncol 2022; 13:2439-2446. [PMID: 36388668 PMCID: PMC9660029 DOI: 10.21037/jgo-22-968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies. Although CRC treatment has been significantly improved, patient survival remains low because most patients already have advanced disease at diagnosis. Early screening and diagnosis of tumors is critical; however, the current tissue biopsy and radiological evaluation methods have very limited effectiveness. Therefore, establishing new convenient and non-invasive biomarkers is urgently needed for timely detection, therapeutic assessment, and prognostic prediction. At present, non-coding RNAs (ncRNAs) have attracted research attention owing to their potential oncological applications. METHODS The long ncRNA epidermal growth factor receptor antisense RNA 1 (EGFR-AS1) is overexpressed in multiple malignancies including CRC. The present study examined the circulating EGFR-AS1 level in CRC, and the results showed that EGFR-AS1 could be considered an indicator of tumor burden. RESULTS Elevated circulating EGFR-AS1 levels were detected in CRC cases (n=128) compared with control cases comprising endoscopy confirmed CRC-free individuals [n=64, median expression normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 1.578 vs. 0.780, P<0.001]. Individuals with larger tumors (≥5 cm) had elevated circulating EGFR-AS1 levels compared to those with smaller tumors (<5 cm, 1.739 vs. 1.290, P<0.001). The expression of serum EGFR-AS1 in stage III/IV CRC was higher than that in stage I/II CRC (1.691 vs. 1.412, P<0.05). Plasma EGFR-AS1 levels were markedly reduced following surgical resection of colorectal lesions in a subset of patients [n=32, 1.192 (pre-surgery) vs. 0.692, P<0.001]. Furthermore, the expression of EGFR-AS1 in resected CRC tissues was significantly higher than that in paracancerous tissues (n=32, 1.336 vs. 0.487, P<0.001). CONCLUSIONS These results highlight the potential of EGFR-AS1 as a diagnostic biomarker in CRC.
Collapse
Affiliation(s)
- Weiping Dai
- Department of Oncology, Second Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Zhan Wang
- Department of Oncology, Second Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Xiaoben Liang
- E.N.T. Department, Children’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Miaomiao Wang
- Department of Oncology, Second Affiliated Hospital of Navy Medical University, Shanghai, China
| | - Wanliu Ni
- Department of Gastroenterology, Beizhan Hospital of Shanghai, Shanghai, China
| | - Ye Yang
- Department of Gastroenterology, Beizhan Hospital of Shanghai, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Oncology, Second Affiliated Hospital of Navy Medical University, Shanghai, China
| |
Collapse
|
15
|
Garcia-Etxebarria K, Etxart A, Barrero M, Nafria B, Segues Merino NM, Romero-Garmendia I, Franke A, D’Amato M, Bujanda L. Performance of the Use of Genetic Information to Assess the Risk of Colorectal Cancer in the Basque Population. Cancers (Basel) 2022; 14:4193. [PMID: 36077729 PMCID: PMC9454881 DOI: 10.3390/cancers14174193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/14/2023] Open
Abstract
Although the genetic contribution to colorectal cancer (CRC) has been studied in various populations, studies on the applicability of available genetic information in the Basque population are scarce. In total, 835 CRC cases and 940 controls from the Basque population were genotyped and genome-wide association studies were carried out. Mendelian Randomization analyses were used to discover the effect of modifiable risk factors and microbiota on CRC. In total, 25 polygenic risk score models were evaluated to assess their performance in CRC risk calculation. Moreover, 492 inflammatory bowel disease cases were used to assess whether that genetic information would not confuse both conditions. Five suggestive (p < 5 × 10−6) loci were associated with CRC risk, where genes previously associated with CRC were located (e.g., ABCA12, ATIC or ERBB4). Moreover, the analyses of CRC locations detected additional genes consistent with the biology of CRC. The possible contribution of cholesterol, BMI, Firmicutes and Cyanobacteria to CRC risk was detected by Mendelian Randomization. Finally, although polygenic risk score models showed variable performance, the best model performed correctly regardless of the location and did not misclassify inflammatory bowel disease cases. Our results are consistent with CRC biology and genetic risk models and could be applied to assess CRC risk in the Basque population.
Collapse
Affiliation(s)
- Koldo Garcia-Etxebarria
- Biodonostia, Gastrointestinal Genetics Group, 20014 San Sebastián, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Ane Etxart
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Maialen Barrero
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Beatriz Nafria
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Nerea Miren Segues Merino
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (Universidad del País Vasco/Euskal Herriko Unibertsitatea), 48940 Leioa, Spain
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE, Basque Research and Technology Alliance, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Sciences, 48009 Bilbao, Spain
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
- Biodonostia, Gastrointestinal Disease Group, Universidad del País Vasco (UPV/EHU), 20014 San Sebastián, Spain
| |
Collapse
|
16
|
Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, Hasanpoor Z, Zadeh FA, Kahrizi MS. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. Lab Invest 2022; 20:301. [PMID: 35794566 PMCID: PMC9258144 DOI: 10.1186/s12967-022-03492-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Collapse
|
17
|
Huo RX, Wang YJ, Hou SB, Wang W, Zhang CZ, Wan XH. Gut mucosal microbiota profiles linked to colorectal cancer recurrence. World J Gastroenterol 2022; 28:1946-1964. [PMID: 35664963 PMCID: PMC9150055 DOI: 10.3748/wjg.v28.i18.1946] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Emerging evidence links gut microbiota to various human diseases including colorectal cancer (CRC) initiation and development. However, gut microbiota profiles associated with CRC recurrence and patient prognosis are not completely understood yet, especially in a Chinese cohort. AIM To investigate the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. METHODS We obtained the composition and structure of gut microbiota collected from 75 patients diagnosed with CRC and 26 healthy controls. The patients were followed up by regular examination to determine whether tumors recurred. Triplet-paired samples from on-tumor, adjacent-tumor and off-tumor sites of patients diagnosed with/without CRC recurrence were analyzed to assess spatial-specific patterns of gut mucosal microbiota by 16S ribosomal RNA sequencing. Next, we carried out bioinformatic analyses, Kaplan-Meier survival analyses and Cox regression analyses to determine the relationship between gut mucosal microbiota profiles and CRC recurrence and patient prognosis. RESULTS We observed spatial-specific patterns of gut mucosal microbiota profiles linked to CRC recurrence and patient prognosis. A total of 17 bacterial genera/families were identified as potential biomarkers for CRC recurrence and patient prognosis, including Anaerotruncus, Bacteroidales, Coriobacteriaceae, Dialister, Eubacterium, Fusobacterium, Filifactor, Gemella, Haemophilus, Mogibacteriazeae, Pyramidobacter, Parvimonas, Porphyromonadaceae, Slackia, Schwartzia, TG5 and Treponema. CONCLUSION Our work suggests that intestinal microbiota can serve as biomarkers to predict the risk of CRC recurrence and patient death.
Collapse
Affiliation(s)
- Rui-Xue Huo
- Department of Oncology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Yi-Jia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Shao-Bin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Wei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Chun-Ze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
- Tianjin Institute of Coloproctology, Tianjin 300121, China
| | - Xue-Hua Wan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| |
Collapse
|
18
|
Xu J, Sun Z, Ju H, Xie E, Mu Y, Xu J, Pan S. Construction of Novel Prognostic Nomogram for Mucinous and Signet Ring Cell Colorectal Cancer Patients with a Survival Longer Than 5 Years. Int J Gen Med 2022; 15:2549-2573. [PMID: 35282643 PMCID: PMC8906868 DOI: 10.2147/ijgm.s353523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Juan Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, People’s Republic of China
| | - Ziwei Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, People’s Republic of China
| | - Huanyu Ju
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, People’s Republic of China
| | - Erfu Xie
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, People’s Republic of China
| | - Yuan Mu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, People’s Republic of China
| | - Jian Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, People’s Republic of China
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, People’s Republic of China
- Correspondence: Shiyang Pan, Tel +86 139 5181 4639, Email
| |
Collapse
|
19
|
Alderweireldt E, Grootaert C, De Wever O, Van Camp J. A two-front nutritional environment fuels colorectal cancer: perspectives for dietary intervention. Trends Endocrinol Metab 2022; 33:105-119. [PMID: 34887164 DOI: 10.1016/j.tem.2021.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) develops and progresses in a nutritional environment comprising a continuously changing luminal cocktail of external dietary and microbial factors on the apical side, and a dynamic host-related pool of systemic factors on the serosal side. In this review, we highlight how this two-front environment influences the bioenergetic status of colonocytes throughout CRC development from (cancer) stem cells to cancer cells in nutrient-rich and nutrient-poor conditions, and eventually to metastatic cells, which, upon entry to the circulation and during metastatic seeding, are forced to metabolically adapt. Furthermore, given the influence of diet on the two-front nutritional environment, we discuss dietary strategies that target the specific metabolic preferences of these cells, with a possible impact on colon cancer cell bioenergetics and CRC outcome.
Collapse
Affiliation(s)
- Elien Alderweireldt
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Charlotte Grootaert
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - John Van Camp
- Laboratory of Food Chemistry and Human Nutrition, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| |
Collapse
|
20
|
Wang X, Ye P, Fang L, Ge S, Huang F, Polverini PJ, Heng W, Zheng L, Hu Q, Yan F, Wang W. Active Smoking Induces Aberrations in Digestive Tract Microbiota of Rats. Front Cell Infect Microbiol 2021; 11:737204. [PMID: 34917518 PMCID: PMC8668415 DOI: 10.3389/fcimb.2021.737204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking could have certain effects on gut microbiota. Some pioneering studies have investigated effects of active smoking on the microbiome in local segments of the digestive tract, while active smoking-induced microbiome alterations in the whole digestive tract have not been fully investigated. Here, we developed a rat model of active smoking and characterized the effects of active smoking on the microbiota within multiple regions along the digestive tract. Blood glucose and some metabolic factors levels, the microbial diversity and composition, relative abundances of taxa, bacterial network correlations and predictive functional profiles were compared between the control group and active smoking group. We found that active smoking induced hyperglycemia and significant reductions in serum insulin and leptin levels. Active smoking induced region-specific shifts in microbiota structure, composition, network correlation and metabolism function along the digestive tract. Our results demonstrated that active smoking resulted in a reduced abundance of some potentially beneficial genera (i.e. Clostridium, Turicibacter) and increased abundance of potentially harmful genera (i.e. Desulfovibrio, Bilophila). Functional prediction suggested that amino acid, lipid, propanoate metabolism function could be impaired and antioxidant activity may be triggered. Active smoking may be an overlooked risk to health through its potential effects on the digestive tract microbiota, which is involved in the cause and severity of an array of chronic diseases.
Collapse
Affiliation(s)
- Xiang Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Pei Ye
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Li Fang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sheng Ge
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fan Huang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peter J Polverini
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| | - Weiwei Heng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lichun Zheng
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingang Hu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenmei Wang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Duijster JW, Franz E, Neefjes J, Mughini-Gras L. Bacterial and Parasitic Pathogens as Risk Factors for Cancers in the Gastrointestinal Tract: A Review of Current Epidemiological Knowledge. Front Microbiol 2021; 12:790256. [PMID: 34956157 PMCID: PMC8692736 DOI: 10.3389/fmicb.2021.790256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
The oncogenic potential of viral infections is well established and documented for many years already. However, the contribution of (commensal) bacteria and parasites to the development and progression of cancers has only recently gained momentum, resulting in a rapid growth of publications on the topic. Indeed, various bacteria and parasites have been suggested to play a role in the development of gastrointestinal cancer in particular. Therefore, an overview of the current epidemiological knowledge on the association between infections with bacteria and parasites and cancers of the gastrointestinal tract is needed. In this review, we summarized the methodological characteristics and main results of epidemiological studies investigating the association of 10 different bacteria (Bacteroides fragilis, Campylobacter spp., Clostridium spp., Enterococcus faecalis, Escherichia coli, Fusobacterium nucleatum, Porphyromonas gingivalis, non-typhoidal Salmonella, Salmonella Typhi, and Streptococcus spp.) and three parasites (Cryptosporidium spp., Schistosoma spp., and Strongyloides stercoralis) with gastrointestinal cancer. While the large body of studies based on microbiome sequencing provides valuable insights into the relative abundance of different bacterial taxa in cancer patients as compared to individuals with pre-malignant conditions or healthy controls, more research is needed to fulfill Koch's postulates, possibly making use of follow-up data, to assess the complex role of bacterial and parasitic infections in cancer epidemiology. Studies incorporating follow-up time between detection of the bacterium or parasite and cancer diagnosis remain valuable as these allow for estimation of cause-effect relationships.
Collapse
Affiliation(s)
- Janneke W. Duijster
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
22
|
He T, Cheng X, Xing C. The gut microbial diversity of colon cancer patients and the clinical significance. Bioengineered 2021; 12:7046-7060. [PMID: 34551683 PMCID: PMC8806656 DOI: 10.1080/21655979.2021.1972077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
The microbial diversity and communities in the excrement of healthy and patients suffered from cancer were identified by 16SrDNA sequencing performed on the Illumina Hi Seq sequencing platform. The microbial difference was also analyzed. The sequencing results showed high quality of the data, and the microbial communities were more various in the excrement of cancer patients. And the abundance of Firmicutes phylum was significantly reduced in cancer group. The phylum of Fermicutes, Bacteroidetes in cancer group are significantly down-regulated and up-regulated compared with normal group. The species of Faecalibacterium prausnitzii, Bateroides vulgatus and Fusicatenibacter saccharivorans are significantly lower in cancer group than that in normal group (P< 0.05). The species of Prevetella copri, M. uniformis, and Escherichia coli are significantly higher in the cancer group than that in normal group. The comparative results indicated that beneficial bacterium significantly decreased in colorectal cancer (CRC) group, and harmful bacterium significantly increased in the colon cancer group, meanwhile the acidity, sugar increased whereas the oxygen content decreased to facilitate the growth of harmful bacterium. The results would provide microbial approaches for the treatment of colon cancer by the intake of beneficial microbial communities.
Collapse
Affiliation(s)
- Tengfei He
- Department of Genenal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaohui Cheng
- Department of Genenal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chungen Xing
- Department of Genenal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
23
|
Zwinsová B, Petrov VA, Hrivňáková M, Smatana S, Micenková L, Kazdová N, Popovici V, Hrstka R, Šefr R, Bencsiková B, Zdražilová-Dubská L, Brychtová V, Nenutil R, Vídeňská P, Budinská E. Colorectal Tumour Mucosa Microbiome Is Enriched in Oral Pathogens and Defines Three Subtypes That Correlate with Markers of Tumour Progression. Cancers (Basel) 2021; 13:cancers13194799. [PMID: 34638284 PMCID: PMC8507728 DOI: 10.3390/cancers13194799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Long-term dysbiosis of the gut microbiome has a significant impact on colorectal cancer (CRC) progression and explains part of the observed heterogeneity of the disease. Even though the shifts in gut microbiome in the normal-adenoma-carcinoma sequence were described, the landscape of the microbiome within CRC and its associations with clinical variables remain under-explored. We performed 16S rRNA gene sequencing of paired tumour tissue, adjacent visually normal mucosa and stool swabs of 178 patients with stage 0-IV CRC to describe the tumour microbiome and its association with clinical variables. We identified new genera associated either with CRC tumour mucosa or CRC in general. The tumour mucosa was dominated by genera belonging to oral pathogens. Based on the tumour microbiome, we stratified CRC patients into three subtypes, significantly associated with prognostic factors such as tumour grade, sidedness and TNM staging, BRAF mutation and MSI status. We found that the CRC microbiome is strongly correlated with the grade, location and stage, but these associations are dependent on the microbial environment. Our study opens new research avenues in the microbiome CRC biomarker detection of disease progression while identifying its limitations, suggesting the need for combining several sampling sites (e.g., stool and tumour swabs).
Collapse
Affiliation(s)
- Barbora Zwinsová
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Vyacheslav A. Petrov
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Martina Hrivňáková
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Stanislav Smatana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
- Research Centre of Information Technology, IT4Innovations Centre of Excellence, Brno University of Technology, 601 90 Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Natálie Kazdová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Vlad Popovici
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Roman Šefr
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Beatrix Bencsiková
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Lenka Zdražilová-Dubská
- Department of Pharmacology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Laboratory Medicine-Clinical Microbiology and Immunology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Veronika Brychtová
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Rudolf Nenutil
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
| | - Petra Vídeňská
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
| | - Eva Budinská
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic; (B.Z.); (M.H.); (R.H.); (R.Š.); (B.B.); (V.B.); (R.N.); (P.V.)
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (V.A.P.); (S.S.); (L.M.); (N.K.); (V.P.)
- Correspondence:
| |
Collapse
|
24
|
Koulouris A, Tsagkaris C, Messaritakis I, Gouvas N, Sfakianaki M, Trypaki M, Spyrou V, Christodoulakis M, Athanasakis E, Xynos E, Tzardi M, Mavroudis D, Souglakos J. Resectable Colorectal Cancer: Current Perceptions on the Correlation of Recurrence Risk, Microbiota and Detection of Genetic Mutations in Liquid Biopsies. Cancers (Basel) 2021; 13:3522. [PMID: 34298740 PMCID: PMC8304269 DOI: 10.3390/cancers13143522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic colorectal cancer (mCRC) remains a highly lethal malignancy, although considerable progress has resulted from molecular alterations in guiding optimal use of available treatments. CRC recurrence remains a great barrier in the disease management. Hence, the spotlight turns to newly mapped fields concerning recurrence risk factors in patients with resectable CRC with a focus on genetic mutations, microbiota remodeling and liquid biopsies. There is an urgent need for novel biomarkers to address disease recurrence since specific genetic signatures can identify a higher or lower recurrence risk (RR) and, thus, be used both as biomarkers and treatment targets. To a large extent, CRC is mediated by the immune and inflammatory interplay of microbiota, through intestinal dysbiosis. Clarification of these mechanisms will yield new opportunities, leading not only to the appropriate stratification policies, but also to more precise, personalized monitoring and treatment navigation. Under this perspective, early detection of post-operative CRC recurrence is of utmost importance. Ongoing trials, focusing on circulating tumor cells (CTCs) and, even more, circulating tumor DNA (ctDNA), seem to pave the way to a promising, minimally invasive but accurate and life-saving monitoring, not only supporting personalized treatment but favoring patients' quality of life, as well.
Collapse
Affiliation(s)
- Andreas Koulouris
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.S.); (M.T.); (D.M.); (J.S.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | | | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.S.); (M.T.); (D.M.); (J.S.)
| | - Nikolaos Gouvas
- Medical School, University of Cyprus, Nicosia 20537, Cyprus;
| | - Maria Sfakianaki
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.S.); (M.T.); (D.M.); (J.S.)
| | - Maria Trypaki
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.S.); (M.T.); (D.M.); (J.S.)
| | - Vasiliki Spyrou
- Department of Radiation Oncology, Hygeia Hospital, 15123 Athens, Greece;
| | - Manousos Christodoulakis
- Department of General Surgery, Venizeleio General Hospital, Leoforos Knossou 44, 71409 Heraklion, Greece;
| | - Elias Athanasakis
- Department of Surgery, University General Hospital of Heraklion, 71110 Heraklion, Greece;
| | - Evangelos Xynos
- Department of Surgery, Creta Interclinic Hospital of Heraklion, 71305 Heraklion, Greece;
| | - Maria Tzardi
- Laboratory of Pathology, University General Hospital of Heraklion, 70013 Heraklion, Greece;
| | - Dimitrios Mavroudis
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.S.); (M.T.); (D.M.); (J.S.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, Medical School, University of Crete, 70013 Heraklion, Greece; (A.K.); (M.S.); (M.T.); (D.M.); (J.S.)
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
25
|
Zhao J, Zhu J, Sun R, Huang C, Yuan R, Zhu Z. Primary tumor resection improves prognosis of unresectable carcinomas of the transverse colon including flexures with liver metastasis: a preliminary population-based analysis. BMC Cancer 2021; 21:503. [PMID: 33957871 PMCID: PMC8101189 DOI: 10.1186/s12885-021-08157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Studies on unresectable colorectal cancer liver metastasis(CRLM) rarely analyze the prognosis of the patients from the point of colonic subsites. We aimed to evaluate the effect of primary tumor resection (PTR) and different scope of colectomy on the prognosis of patients with unresectable transverse colon cancer liver metastasis (UTCLM), hepatic flexure cancer liver metastasis (UHFLM), and splenic flexure cancer liver metastasis (USFLM). PATIENTS AND METHODS The patients were identified from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2015. Cox proportional hazards regression models were used to identify prognostic factors of overall survival (OS) and cause-specific survival (CSS). Kaplan-Meier analyses and log-rank tests were conducted to assess the effectiveness of PTR on survival. RESULTS In total, this study included a cohort of 1960 patients: 556 cases of UHFLM, 1008 cases of UTCLM, and 396 cases of USFLM. The median survival time of whole patients was 11.0 months, ranging from 7.0 months for UHFLM patients to 15.0 months for USFLM patients. USFLM patients had the best OS and CSS, followed by UTCLM patients. UHFLM patients had the worst OS and CSS (All P < 0.001). PTR could improve the OS and CSS of UTCLM, UHFLM, and USFLM (All P < 0.001). Subgroups analysis revealed that USFLM patients with tumor size≤5 cm and negative CEA had not demonstrated an improved OS and CSS after PTR. Multivariate analysis showed that PTR and perioperative chemotherapy were common independent prognostic factors for UHFLM, UTCLM, and USFLM patients. There was no difference between segmental colon resection and larger colon resection on CSS of UHFLM, UTCLM, and USFLM patients. CONCLUSIONS We confirmed the different survival of patients with UTCLM, UHFLM, and USFLM, and for the first time, we proved that PTR could provide survival benefits for patients with unresectable CRLM from the perspective of colonic subsites of transverse colon, hepatic flexure, and splenic flexure. Besides, PTR may not improve the prognosis of USFLM patients with CEA- negative or tumor size≤5 cm. For oncologic outcomes, we concluded that segmental colon resection seemed an effective surgical procedure for UTCLM, UHFLM, and USFLM.
Collapse
Affiliation(s)
- Jiefeng Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jinfeng Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Rui Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Chao Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Rongfa Yuan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Zhengming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
26
|
Zeng T, Yu X, Chen Z. Applying artificial intelligence in the microbiome for gastrointestinal diseases: A review. J Gastroenterol Hepatol 2021; 36:832-840. [PMID: 33880762 DOI: 10.1111/jgh.15503] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022]
Abstract
For a long time, gut bacteria have been recognized for their important roles in the occurrence and progression of gastrointestinal diseases like colorectal cancer, and the ever-increasing amounts of microbiome data combined with other high-quality clinical and imaging datasets are leading the study of gastrointestinal diseases into an era of biomedical big data. The "omics" technologies used for microbiome analysis continuously evolve, and the machine learning or artificial intelligence technologies are key to extract the relevant information from microbiome data. This review intends to provide a focused summary of recent research and applications of microbiome big data and to discuss the use of artificial intelligence to combat gastrointestinal diseases.
Collapse
Affiliation(s)
- Tao Zeng
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiangtian Yu
- Clinical Reasearch Center, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhangran Chen
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
27
|
Cui Y, Han B, Zhang H, Liu H, Zhang F, Niu R. Identification of Metabolic-Associated Genes for the Prediction of Colon and Rectal Adenocarcinoma. Onco Targets Ther 2021; 14:2259-2277. [PMID: 33833525 PMCID: PMC8020594 DOI: 10.2147/ott.s297134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
Background and Aim Uncontrolled proliferation is the most prominent biological feature of tumors. In order to rapidly proliferate, tumor cells regulate their metabolic behavior by controlling the expression of metabolism-related genes (MRGs) to maximize the utilization of available nutrients. In this study, we aimed to construct prognosis models for colorectal adenocarcinoma (COAD) and rectum adenocarcinoma (READ) using MRGs to predict the prognoses of patients. Methods We first acquired the gene expression profiles of COAD and READ from the TCGA database, and then utilized univariate Cox analysis, Lasso regression, and multivariable Cox analysis to identify the MRGs for risk models. Results Eight genes (CPT1C, PLCB2, PLA2G2D, GAMT, ENPP2, PIP4K2B, GPX3, and GSR) in the colon cancer risk model and six genes (TDO2, PKLR, GAMT, EARS2, ACO1, and WAS) in the rectal cancer risk model were identified successfully. Multivariate Cox analysis indicated that these two models could accurately and independently predict overall survival (OS) for patients with COAD or READ. Furthermore, functional enrichment analysis was used to identify the metabolism pathway of MRGs in the risk models and analyzed these genes comprehensively. Then, we verified the prognosis model in independent COAD cohorts (GSE17538) and detected the correlations of the protein expression levels of GSR and ENPP2 with prognosis for COAD or READ. Conclusion In this study, 14 MRGs were identified as potential prognostic biomarkers and therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Baoai Han
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Hui Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin, 300060, People's Republic of China
| |
Collapse
|
28
|
Wang PP, Ding SY, Sun YY, Li YH, Fu WN. MYCT1 Inhibits the Adhesion and Migration of Laryngeal Cancer Cells Potentially Through Repressing Collagen VI. Front Oncol 2021; 10:564733. [PMID: 33680912 PMCID: PMC7931689 DOI: 10.3389/fonc.2020.564733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
MYCT1, a target of c-Myc, inhibits laryngeal cancer cell migration, but the underlying mechanism remains unclear. In the study, we detected differentially expressed genes (DEGs) from laryngeal cancer cells transfected by MYCT1 using RNA-seq (GSE123275). DEGs from head and neck squamous cell carcinoma (HNSCC) were first screened by comparison of transcription data from the Gene Expression Omnibus (GSE6631) and the Cancer Genome Atlas (TCGA) datasets using weighted gene co-expression network analysis (WGCNA). GO and KEGG pathway analysis explained the functions of the DEGs. The DEGs overlapped between GSE6631and TCGA datasets were then compared with ours to find the key DEGs downstream of MYCT1 related to the adhesion and migration of laryngeal cancer cells. qRT-PCR and Western blot were applied to validate gene expression at mRNA and protein levels, respectively. Finally, the cell adhesion, migration, and wound healing assays were to check cell adhesion and migration abilities, respectively. As results, 39 overlapping genes were enriched in the GSE6631 and TCGA datasets, and most of them revealed adhesion function. Thirteen of 39 genes including COL6 members COL6A1, COL6A2, and COL6A3 were overlapped in GSE6631, TCGA, and GSE123275 datasets. Similar to our RNA-seq results, we confirmed that COL6 is a target of MYCT1 in laryngeal cancer cells. We also found that MYCT1 inhibited the adhesion and migration of laryngeal cancer cells via COL6. These indicate that COL6 is a potential target of MYCT1 and participates the adhesion and migration of laryngeal cancer cells, which provides an important clue for further study on how MYCT1 regulating COL6 in laryngeal cancer progression.
Collapse
Affiliation(s)
- Peng-Peng Wang
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Si-Yu Ding
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yuan-Yuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, China
| | - Yun-Hui Li
- Department of Laboratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei-Neng Fu
- Department of Medical Genetics, China Medical University, Shenyang, China
| |
Collapse
|
29
|
A Zn(II)-MOF with Suitable Pore Surroundings for Cyanosilylation Reaction and Protective Effect on Bladder Cancer Cells by Regulating miR-130 and CYLD. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Han S, Zhuang J, Wu Y, Wu W, Yang X. Progress in Research on Colorectal Cancer-Related Microorganisms and Metabolites. Cancer Manag Res 2020; 12:8703-8720. [PMID: 33061569 PMCID: PMC7518784 DOI: 10.2147/cmar.s268943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Intestinal flora is an important component in the human body, which have been reported to be involved in the occurrence and development of colorectal cancer (CRC). Indeed, changes in the intestinal flora in CRC patients compared to those in control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. In this review, we summarize the current knowledge on the potential links between the intestinal microbiota and CRC. We illustrated the mechanisms by which intestinal flora imbalance affects CRC, mainly focusing on inflammation, microbial metabolites, and specific bacteria species. In addition, we discuss how a diet exhibits a strong impact on microbial composition and provides risks for developing CRC. Finally, we describe the potential future directions that are based on intestinal microbiota manipulation for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Shuwen Han
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| | - Jing Zhuang
- Graduate School of Nursing, Huzhou University, Huzhou 313000, People's Republic of China
| | - Yinhang Wu
- Graduate School of Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Wei Wu
- Department of Gastroenterology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| | - Xi Yang
- Department of Oncology, Huzhou Cent Hospital, Affiliated Cent Hospital HuZhou University, Huzhou 313000, People's Republic of China
| |
Collapse
|
31
|
Zhang Y, Wang J, Dai N, Han P, Li J, Zhao J, Yuan W, Zhou J, Zhou F. Alteration of plasma metabolites associated with chemoradiosensitivity in esophageal squamous cell carcinoma via untargeted metabolomics approach. BMC Cancer 2020; 20:835. [PMID: 32878621 PMCID: PMC7466788 DOI: 10.1186/s12885-020-07336-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND To investigate the differences in plasma metabolomic characteristics between pathological complete response (pCR) and non-pCR patients and identify biomarker candidates for predicting the response to neoadjuvant chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC). METHODS A total of 46 ESCC patients were included in this study. Gas chromatography time-of- flight mass spectrometry (GC-TOF/MS) technology was applied to detect the plasma samples collected before nCRT via untargeted metabolomics analysis. RESULTS Five differentially expressed metabolites (out of 109) was found in plasma between pCR and non-pCR groups. Compared with non-pCR group, isocitric acid (p = 0.0129), linoleic acid (p = 0.0137), citric acid (p = 0.0473) were upregulated, while L-histidine (p = 0.0155), 3'4 dihydroxyhydrocinnamic acid (p = 0.0339) were downregulated in the pCR plasma samples. Pathway analyses unveiled that citrate cycle (TCA cycle), glyoxylate and dicarboxylate metabolic pathway were associated with ESCC chemoradiosensitivity. CONCLUSION The present study provided supporting evidence that GC-TOF/MS based metabolomics approach allowed identification of metabolite differences between pCR and non-pCR patients in plasma levels, and the systemic metabolic status of patients may reflect the response of ESCC patient to neoadjuvant chemoradiotherapy.
Collapse
Affiliation(s)
- Yaowen Zhang
- Anyang Cancer Hospital, The 4th Affiliated Hospital of Henan University of Science and Technology, No.1 Huanbin North Road, Anyang, 455000, Henan Province, China
| | - Jianpo Wang
- Anyang Cancer Hospital, The 4th Affiliated Hospital of Henan University of Science and Technology, No.1 Huanbin North Road, Anyang, 455000, Henan Province, China
| | - Ningtao Dai
- Anyang Cancer Hospital, The 4th Affiliated Hospital of Henan University of Science and Technology, No.1 Huanbin North Road, Anyang, 455000, Henan Province, China
| | - Peng Han
- Anyang Cancer Hospital, The 4th Affiliated Hospital of Henan University of Science and Technology, No.1 Huanbin North Road, Anyang, 455000, Henan Province, China
| | - Jian Li
- Anyang Cancer Hospital, The 4th Affiliated Hospital of Henan University of Science and Technology, No.1 Huanbin North Road, Anyang, 455000, Henan Province, China
| | - Jiangman Zhao
- Shanghai Zhangjiang Institue of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China
| | - Weilan Yuan
- Shanghai Zhangjiang Institue of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China
| | - Jiahuan Zhou
- Shanghai Zhangjiang Institue of Medical Innovation, Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China.
| | - Fuyou Zhou
- Anyang Cancer Hospital, The 4th Affiliated Hospital of Henan University of Science and Technology, No.1 Huanbin North Road, Anyang, 455000, Henan Province, China.
| |
Collapse
|
32
|
Roberto M, Arrivi G, Lo Bianco F, Cascinu S, Gelsomino F, Caputo F, Cerma K, Ghidini M, Ratti M, Pizzo C, Ficorella C, Parisi A, Cortellini A, Urbano F, Calandrella ML, Dell’Aquila E, Minelli A, Fulgenzi CAM, Gariazzo L, Montori A, Pilozzi E, Di Girolamo M, Marchetti P, Mazzuca F. Evaluation of Prognostic Factors for Survival in Transverse Colon Cancer. Cancers (Basel) 2020; 12:cancers12092457. [PMID: 32872561 PMCID: PMC7563638 DOI: 10.3390/cancers12092457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Transverse colon cancer (TCC) is mostly included among right-sided colon cancer, and sometimes even excluded at all, thus it is not completely clear if they present total similarities with right-sided ones or if they have their own specific features. With a median follow-up of 34 months, we concluded that TCC shares some clinicopathological characteristics with left-sided colon cancer and many others with the right-sided ones, but only poorly/undifferentiated tumor grade and BRAF V600E mutation are independent prognostic factors for survival, regardless of tumor stage. The present study provides more insightful knowledge of clinicopathological characteristics of TCC patients, emphasize the role of BRAF mutation since the early stage of disease and lay the basis for new treatment algorithms in this specific setting of colon cancer. Abstract Background: Although most of the analyses included transverse colon cancers (TCC) among right colon cancer (RCC), it is not completely clear if they present total similarities with RCC or if they have their specific features. Therefore, we present an observational study to evaluate clinicopathological characteristics and survival data of patients with TCC. Methods: We retrospectively reviewed 450 RCC, of whom 97 stages I–IV TCC were included in this multicenter study; clinicopathological and molecular parameters were analyzed to identify prognostic factors for disease-free survival (DFS) and overall survival (OS). Results: Most of TCC cases were male (61%), with ≤70 years old (62%), and good performance status (ECOG PS 0, 68%). According to WHO classification, 41 (49%) and 40 (48%) tumors were classified as well to moderate and poorly/undifferentiated respectively, regardless of mucinous component (30%). About molecular data, 8 (26%), 45 (63%), and 14 (24%) were MSI-H, KRAS wild-type, and BRAF V600E mutant, respectively. With a median follow-up of 34 months, there were 29 and 50 disease recurrences and deaths respectively. Charlson comorbidity index ≥5 was a significant prognostic factor for DFS (HR = 7.67, 95% CI 2.27–25.92). Colon obstruction/perforation (HR = 2.65, 95% CI 1.01–7.01), and BRAF mutant (HR = 3.03, 95% CI 0.97–9.50) cases showed a worst, despite not statistically significant, DFS. Whereas for OS, at the multivariate model, only tumor grade differentiation (HR = 5.26, 95% CI 1.98–14.01) and BRAF mutation status (3.71, 95% CI 1.07–12.89) were independent prognostic factors. Conclusions: Poorly/undifferentiated tumor grade and BRAF V600E mutation are independent prognostic factors for OS in TCC. Further prospective clinical trials are needed to better define TCC treatment in order to improve patient outcome.
Collapse
Affiliation(s)
- Michela Roberto
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant’ Andrea Hospital, Sapienza University of Rome, 00187 Rome, Italy; (M.R.); (G.A.); (F.L.B.); (L.G.); (P.M.)
| | - Giulia Arrivi
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant’ Andrea Hospital, Sapienza University of Rome, 00187 Rome, Italy; (M.R.); (G.A.); (F.L.B.); (L.G.); (P.M.)
| | - Francesca Lo Bianco
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant’ Andrea Hospital, Sapienza University of Rome, 00187 Rome, Italy; (M.R.); (G.A.); (F.L.B.); (L.G.); (P.M.)
| | - Stefano Cascinu
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125 Modena, Italy; (S.C.); (F.G.); (F.C.); (K.C.)
| | - Fabio Gelsomino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125 Modena, Italy; (S.C.); (F.G.); (F.C.); (K.C.)
| | - Francesco Caputo
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125 Modena, Italy; (S.C.); (F.G.); (F.C.); (K.C.)
| | - Krisida Cerma
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41125 Modena, Italy; (S.C.); (F.G.); (F.C.); (K.C.)
| | - Michele Ghidini
- Oncology Unit, Oncology Department, ASST of Cremona, 26100 Cremona, Italy; (M.G.); (M.R.); (C.P.)
| | - Margherita Ratti
- Oncology Unit, Oncology Department, ASST of Cremona, 26100 Cremona, Italy; (M.G.); (M.R.); (C.P.)
| | - Claudio Pizzo
- Oncology Unit, Oncology Department, ASST of Cremona, 26100 Cremona, Italy; (M.G.); (M.R.); (C.P.)
| | - Corrado Ficorella
- Medical Oncology, St. Salvatore Hospital, University of L’Aquila, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.F.); (A.P.); (A.C.)
| | - Alessandro Parisi
- Medical Oncology, St. Salvatore Hospital, University of L’Aquila, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.F.); (A.P.); (A.C.)
| | - Alessio Cortellini
- Medical Oncology, St. Salvatore Hospital, University of L’Aquila, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (C.F.); (A.P.); (A.C.)
| | - Federica Urbano
- Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy; (F.U.); (M.L.C.)
| | - Maria Letizia Calandrella
- Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy; (F.U.); (M.L.C.)
| | - Emanuela Dell’Aquila
- Medical Oncology Department, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (E.D.); (A.M.); (C.A.M.F.)
| | - Alessandro Minelli
- Medical Oncology Department, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (E.D.); (A.M.); (C.A.M.F.)
| | | | - Ludovica Gariazzo
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant’ Andrea Hospital, Sapienza University of Rome, 00187 Rome, Italy; (M.R.); (G.A.); (F.L.B.); (L.G.); (P.M.)
| | - Andrea Montori
- Department of Clinical and Molecular Medicine, UOC Anatomia Patologica, Sant’ Andrea Hospital, Sapienza University of Rome, 00187 Rome, Italy; (A.M.); (E.P.)
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, UOC Anatomia Patologica, Sant’ Andrea Hospital, Sapienza University of Rome, 00187 Rome, Italy; (A.M.); (E.P.)
| | - Marco Di Girolamo
- Department of Radiology, Sant’Andrea University Hospital, 00187 Rome, Italy;
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant’ Andrea Hospital, Sapienza University of Rome, 00187 Rome, Italy; (M.R.); (G.A.); (F.L.B.); (L.G.); (P.M.)
- Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy; (F.U.); (M.L.C.)
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant’ Andrea Hospital, Sapienza University of Rome, 00187 Rome, Italy; (M.R.); (G.A.); (F.L.B.); (L.G.); (P.M.)
- Correspondence:
| |
Collapse
|