1
|
Wang Y. Durvalumab and T-DXd Synergistically Promote Apoptosis of Cholangiocarcinoma Cells by Downregulating EGR1 Expression Through Inhibiting P38 MAPK Pathway. Appl Biochem Biotechnol 2025; 197:1773-1789. [PMID: 39607471 DOI: 10.1007/s12010-024-05112-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Cholangiocarcinoma is a hepatobiliary system tumor with a high mortality rate. Although durvalumab and trastuzumab deruxtecan (T-DXd) have shown efficacy in treating cancers such as non-small cell lung cancer, their effects and regulatory mechanisms in cholangiocarcinoma remain unclear. In this study, we aimed to investigate the role and mechanism of durvalumab and T-DXd in inducing apoptosis in cholangiocarcinoma cells. Cholangiocarcinoma cells were treated with varying concentrations of durvalumab and T-DXd, either individually or in combination, to evaluate their effects. Apoptosis was quantified using flow cytometry. Quantitative real-time PCR (qPCR) and Western blotting were used to measure the mRNA expression and protein levels of genes associated with apoptosis and cell cycle regulation. The underlying mechanism was further explored through pathway enrichment analysis of differentially expressed genes (DEGs) and corroborated by qPCR and Western blotting. Xenotransplantation models using immune-deficient NOD-SCID/IL2Rγnull (NSG) mice were established to assess the in vivo effects of durvalumab and T-DXd. Our results showed that both durvalumab and T-DXd inhibited cholangiocarcinoma cell proliferation in a dose-dependent manner. Both agents promoted apoptosis and arrested the cell cycle of cholangiocarcinoma cells, with the combination treatment having the most significant effect. Furthermore, treatment with durvalumab, T-DXd, and the combination downregulated the protein levels of early growth response 1 (EGR1) by inactivating the p38 mitogen-activated protein kinase (MAPK) pathway. In vivo experiments indicated that durvalumab and T-DXd prolonged the survival of NSG mice bearing cholangiocarcinoma xenografts. In conclusion, our findings demonstrated that durvalumab and T-DXd synergistically promoted apoptosis in cholangiocarcinoma cells by inhibiting EGR1 expression through inactivation of the p38 MAPK pathway. This study confirmed the potential of durvalumab and T-DXd for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Yuepeng Wang
- Department of Medical Oncology, Xinglongtai District, Panjin Central Hospital, No.32, Liaohe Middle RoadLiaoning Province 124010, Panjin City, China.
| |
Collapse
|
2
|
Ye J, Chen Z, Zhang C, Xie R, Chen H, Ren P. PPIH is a novel diagnostic biomarker associated with immune infiltration in cholangiocarcinoma. BMC Cancer 2025; 25:218. [PMID: 39920663 PMCID: PMC11806719 DOI: 10.1186/s12885-025-13607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Cholangiocarcinoma (CHOL) is the second most common primary liver malignancy, characterized by high aggressiveness and heterogeneity. It is typically diagnosed at an advanced stage, leading to a poor prognosis. Although Peptidyl Proline Isomerase H (PPIH) has been implicated in various tumors, its role in CHOL remains unexplored. This study aims to investigate the diagnostic value and potential function of PPIH in CHOL. METHODS We analyzed the expression levels, prognostic significance, and diagnostic efficiency of PPIH in CHOL using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, coupled with gene enrichment analyses. The CIBERSORT database was employed to assess the correlation between PPIH expression and immune cell infiltration in CHOL. Additionally, immunohistochemical experiments were conducted to validate PPIH expression levels in CHOL tissues and to explore its correlation with TP53 gene mutations. RESULTS Our findings indicate that overexpression of PPIH mRNA in CHOL is associated with poor prognosis, with increased PPIH protein levels observed in CHOL tissues. Furthermore, PPIH expression showed a positive correlation with TP53 mutations. PPIH demonstrated strong diagnostic value for CHOL. Moreover, PPIH may influence tumor progression through its involvement in cell cycle regulation and spliceosome pathways, and is associated with immune cell infiltration levels. CONCLUSION The results of this study suggest that PPIH is a potential novel biomarker with significant diagnostic value for patients with CHOL. PPIH may also play a role in modulating the immune microenvironment, contributing to poor prognosis.
Collapse
Affiliation(s)
- Jun Ye
- Precision Medical Laboratory Center, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Zhitao Chen
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Chuan Zhang
- Department of Pathology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Rui Xie
- Chengdu Gaoxin -Daan Medical Laboratory Co., Ltd, Chengdu, Sichuan, 610000, China
| | - Haini Chen
- Precision Medical Laboratory Center, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
- The Second Affiliated Hospital of Guizhou Medical University, Kangfu Road, Kaili, 556000, China.
| | - Peng Ren
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
- The Second Affiliated Hospital of Guizhou Medical University, Kangfu Road, Kaili, 556000, China.
| |
Collapse
|
3
|
Sugimoto N, Noura S, Kato T, Yoshioka S, Hata T, Naito A, Tei M, Tamagawa H, Komori T, Ide Y, Fukuzaki T, Danno K, Sawada G, Kagawa Y, Shimokawa T, Miyoshi N, Ogino T, Uemura M, Yamamoto H, Murata K, Doki Y, Eguchi H. The Efficacy of FOLFIRI Plus Ramucirumab in Recurrent Colorectal Cancer Refractory to Adjuvant Chemotherapy with Oxaliplatin/Fluoropyrimidine-Including Biomarker Analyses. Cancers (Basel) 2024; 17:91. [PMID: 39796720 PMCID: PMC11719561 DOI: 10.3390/cancers17010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND FOLFIRI (5-FU + leucovorin + irinotecan) plus ramucirumab is one of the standards in second-line metastatic colorectal cancer (CRC) patients progressing after treatment with oxaliplatin/fluoropyrimidine with bevacizumab, but there is no evidence on its efficacy without prior bevacizumab. Moreover, VEGF-D has not been confirmed as a predictive biomarker for ramucirumab's efficacy, either. METHODS The RAINCLOUD study was a multicenter, single-arm, phase II trial conducted in Japan. Patients with recurrent CRC pretreated with fluoropyrimidine and oxaliplatin without bevacizumab were analyzed. The primary endpoint was progression-free survival (PFS). The secondary endpoints measured were overall survival (OS), overall response rate (ORR), and safety. RESULTS A total of 48 patients were enrolled from 15 sites between September 2017 and September 2020. Their median age was 63.5 years (25~77), 20.1% had a right-sided tumor, and 68.8% had RAS-mutant cancer. The median PFS was 8.9 months (90% CI: 6.3-11.8), so the primary endpoint was met. Their median OS and ORR were 22.3 months (95% CI: 17.4-NA) and 41.7% (95% CI: 4.9-7.6), respectively. An incidence of grade 3/4 adverse events that reached over 5% applied to neutropenia (44%), leucopenia (10%), and hypertension (8%). In the biomarker analysis, the serum VEGF-D levels post-treatment were higher than those pre-treatment, but the PFS in those with high VEGF-D levels trended towards being worse than that in those with low VEGF-D (7.6M/5.6M (p = 0.095; HR: 0.56)). Instead, those with low TSP-2 had a better PFS than those with high TSP-2 (7.5M/4.3M (p = 0.022; HR: 0.45)). CONCLUSIONS Our data suggested that FOLFIRI plus ramucirumab was effective and tolerable for CRC refractory to fluoropyrimidine and oxaliplatin without anti-angiogenesis. Serum VEGF-D levels may not be predictive but TSP-2 may be a potential prognostic biomarker for ramucirumab's efficacy.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka 5418567, Japan
| | - Shingo Noura
- Department of Surgery, Sakai City Medical Center, Sakai 5938304, Japan;
| | - Takeshi Kato
- Department of Surgery, National Hospital Organization Osaka National Hospital, Osaka 5400006, Japan;
| | | | - Taishi Hata
- Department of Surgery, Japan Organization of Occupational Health and Safety, Kansai Rosai Hospital, Amagasaki 6608511, Japan; (T.H.); (K.M.)
| | - Atsushi Naito
- Department of Surgery, Osaka Police Hospital, Osaka 5438922, Japan;
| | - Mitsuyoshi Tei
- Department of Surgery, Osaka Rosai Hospital, Sakai 5918025, Japan;
| | - Hiroshi Tamagawa
- Department of Gastrointestinal Surgery, Otemae Hospital, Osaka 5400008, Japan;
| | - Takamichi Komori
- Department of Surgery, Hyogo Prefectural Nishinomiya Hospital, Nishinomiya 6620918, Japan;
| | - Yoshihito Ide
- Department of Surgery, Japan Community Healthcare Organization Osaka Hospital, Osaka 5530003, Japan;
| | - Takayuki Fukuzaki
- Department of Gastroenterological Surgery, Osaka Saiseikai Senri Hospital, Suita 5650862, Japan;
| | - Katsuki Danno
- Department of Surgery, Minoh City Hospital, Minoh 5620014, Japan;
| | - Genta Sawada
- Department of Surgery, Itami City Hospital, Itami 6648540, Japan;
| | - Yoshinori Kagawa
- Department of Gastroenterological Surgery, Osaka General Medical Center, Osaka 5588558, Japan;
| | - Toshio Shimokawa
- Clinical Study Support Center, Wakayama Medical University Hospital, Wakayama 6418509, Japan;
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 5650871, Japan; (N.M.); (T.O.); (M.U.); (H.Y.); (Y.D.); (H.E.)
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 5650871, Japan; (N.M.); (T.O.); (M.U.); (H.Y.); (Y.D.); (H.E.)
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 5650871, Japan; (N.M.); (T.O.); (M.U.); (H.Y.); (Y.D.); (H.E.)
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 5650871, Japan; (N.M.); (T.O.); (M.U.); (H.Y.); (Y.D.); (H.E.)
| | - Kohei Murata
- Department of Surgery, Japan Organization of Occupational Health and Safety, Kansai Rosai Hospital, Amagasaki 6608511, Japan; (T.H.); (K.M.)
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 5650871, Japan; (N.M.); (T.O.); (M.U.); (H.Y.); (Y.D.); (H.E.)
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita 5650871, Japan; (N.M.); (T.O.); (M.U.); (H.Y.); (Y.D.); (H.E.)
| |
Collapse
|
4
|
Humphries EM, Loudon C, Craft GE, Hains PG, Robinson PJ. Quantitative Comparison of Deparaffinization, Rehydration, and Extraction Methods for FFPE Tissue Proteomics and Phosphoproteomics. Anal Chem 2024; 96:13358-13370. [PMID: 39102789 DOI: 10.1021/acs.analchem.3c04479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are suitable for proteomic and phosphoproteomic biomarker studies by data-independent acquisition mass spectrometry. The choice of the sample preparation method influences the number, intensity, and reproducibility of identifications. By comparing four deparaffinization and rehydration methods, including heptane, histolene, SubX, and xylene, we found that heptane and methanol produced the lowest coefficients of variation (CVs). Using this, five extraction methods from the literature were modified and evaluated for their performance using kidney, leg muscle, lung, and testicular rat organs. All methods performed well, except for SP3 due to insufficient tissue lysis. Heat n' Beat was the fastest and most reproducible method with the highest digestion efficiency and lowest CVs. S-Trap produced the highest peptide yield, while TFE produced the best phosphopeptide enrichment efficiency. The quantitation of FFPE-derived peptides remains an ongoing challenge with bias in UV and fluorescence assays across methods, most notably in SPEED. Functional enrichment analysis demonstrated that each method favored extracting some gene ontology cellular components over others including chromosome, cytoplasmic, cytoskeleton, endoplasmic reticulum, membrane, mitochondrion, and nucleoplasm protein groups. The outcome is a set of recommendations for choosing the most appropriate method for different settings.
Collapse
Affiliation(s)
- Erin M Humphries
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Clare Loudon
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - George E Craft
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
5
|
Wei W, Wu Y, Chen DD, Song Y, Xu G, Shi Q, Dong XP. Proteomics profiling for the global and acetylated proteins of papillary thyroid cancers. Proteome Sci 2023; 21:6. [PMID: 37101287 PMCID: PMC10131382 DOI: 10.1186/s12953-023-00207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/16/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy cancer among the malignancies of thyroid. Despite of wide usages of proteomics in PTC, the profile of acetylated proteins in PTC remains unsettled, which is helpful for understanding the carcinogenesis mechanism and identifying useful biomarkers for PTC. METHODS The surgically removed specimens of cancer tissues (Ca-T) and adjacent normal tissues (Ca-N) from 10 female patients pathological diagnosed as PTC (TNM stage III) were enrolled in the study. After preparing the pooled extracts of the whole proteins and the acetylated proteins from 10 cases, TMT labeling and LC/MS/MS methods were applied to the assays of global proteomics and acetylated proteomics separately. Bioinformatics analysis, including KEGG, gene ontology (GO) and hierarchical clustering were performed. Some differentially expressed proteins (DEPs) and differentially expressed acetylated proteins (DEAPs) were validated by individual Western blots. RESULTS Controlled with the normal tissues adjacent to the lesions, 147 out of 1923 identified proteins in tumor tissues were considered as DEPs in global proteomics, including 78 up-regulated and 69 down-regulated ones, while 57 out of 311 identified acetylated proteins in tumor tissues were DEAPs in acetylated proteomics, including 32 up-regulated and 25 down-regulated, respectively. The top 3 up- and down-regulated DEPs were fibronectin 1, KRT1B protein and chitinase-3-like protein 1, as well as keratin, type I cytoskeletal 16, A-gamma globin Osilo variant and Huntingtin interacting protein-1. The top 3 up- and down-regulated DEAPs were ribosomal protein L18a-like protein, alpha-1-acid glycoprotein 2 and eukaryotic peptide chain release factor GTP-binding subunit ERF3A, as well as trefoil factor 3, thyroglobulin and histone H2B. Functional GO annotation and KEGG pathway analysis based on the DEPs and DEAPs showed completely different changing pictures. Contrary to the top 10 up- and -down regulated DEPs, most of which were addressed in PTC and other types of carcinomas, changes of the majority DEAPs were not mentioned in the literatures. CONCLUSIONS Taken the profiling of the global and acetylated proteomics together will provide more broad view of protein alterations on the carcinogenesis and new direction for selecting biomarker for diagnosis of PTC.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Head and Neck Surgery Department, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuezhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Yuntao Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Head and Neck Surgery Department, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Guohui Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Head and Neck Surgery Department, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China.
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China.
| |
Collapse
|
6
|
Li H, Cao L, Li H. COL3A1, CXCL8, VCAN, THBS2, and COL1A2 are correlated with the onset of biliary atresia. Medicine (Baltimore) 2023; 102:e33299. [PMID: 36930067 PMCID: PMC10019104 DOI: 10.1097/md.0000000000033299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Biliary atresia (BA) is a devastating progressive fibro inflammatory disorder in infants. The exact etiology of BA is still unclear. This study aimed screen key genes potentially associated with the occurrence of BA. METHODS All BA data was obtained from GSE46960 dataset. The limma package in R language was used for differentially expressed gene (DEG) analyses. gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis were performed on the screened DEGs, using "clusterProfiler" package. protein-protein interaction network was built based on STRING Cytoscape software (Bethesda, Rockville, MD). The logistic regression model was constructed based on the selected DEGs. RESULTS There were totally 78 DEGs in BA samples compared with normal samples, which were significantly enriched in 200 biological process terms, 37 molecular function terms, 17 cellular component terms, and 18 Kyoto encyclopedia of genes and genomes pathways. Among which, the top 10 genes with the highest importance in protein-protein interaction network were selected. Subsequently, on the basis of the stepwise regression method and 5-fold cross-validation, the logistic regression model constructed based on COL3A1, CXCL8, VCAN, THBS2, and COL1A2 was finally evidenced to predict the BA sample relatively reliably. CONCLUSIONS In conclusion, COL3A1, CXCL8, VCAN, THBS2, and COL1A2 are potentially crucial genes in BA. The logistic regression model constructed based on them could predict the BA sample relatively reliably.
Collapse
Affiliation(s)
- Hui Li
- Department of Obstetric, Tianjin First Central Hospital, Tianjin, P. R. China
| | - Lei Cao
- Biological Sample Resource Sharing Center, Tianjin First Central Hospital, Tianjin, P. R. China
| | - Hong Li
- Department of Obstetric, Tianjin First Central Hospital, Tianjin, P. R. China
| |
Collapse
|
7
|
Davidson JM, Rayner SL, Liu S, Cheng F, Di Ieva A, Chung RS, Lee A. Inter-Regional Proteomic Profiling of the Human Brain Using an Optimized Protein Extraction Method from Formalin-Fixed Tissue to Identify Signaling Pathways. Int J Mol Sci 2023; 24:ijms24054283. [PMID: 36901711 PMCID: PMC10001664 DOI: 10.3390/ijms24054283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Proteomics offers vast potential for studying the molecular regulation of the human brain. Formalin fixation is a common method for preserving human tissue; however, it presents challenges for proteomic analysis. In this study, we compared the efficiency of two different protein-extraction buffers on three post-mortem, formalin-fixed human brains. Equal amounts of extracted proteins were subjected to in-gel tryptic digestion and LC-MS/MS. Protein, peptide sequence, and peptide group identifications; protein abundance; and gene ontology pathways were analyzed. Protein extraction was superior using lysis buffer containing tris(hydroxymethyl)aminomethane hydrochloride, sodium dodecyl sulfate, sodium deoxycholate, and Triton X-100 (TrisHCl, SDS, SDC, Triton X-100), which was then used for inter-regional analysis. Pre-frontal, motor, temporal, and occipital cortex tissues were analyzed by label free quantification (LFQ) proteomics, Ingenuity Pathway Analysis and PANTHERdb. Inter-regional analysis revealed differential enrichment of proteins. We found similarly activated cellular signaling pathways in different brain regions, suggesting commonalities in the molecular regulation of neuroanatomically-linked brain functions. Overall, we developed an optimized, robust, and efficient method for protein extraction from formalin-fixed human brain tissue for in-depth LFQ proteomics. We also demonstrate herein that this method is suitable for rapid and routine analysis to uncover molecular signaling pathways in the human brain.
Collapse
Affiliation(s)
- Jennilee M. Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
- Correspondence: (J.M.D.); (A.D.I.)
| | - Stephanie L. Rayner
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Sidong Liu
- Centre for Health Informatics, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW 2109, Australia
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Flora Cheng
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
- Correspondence: (J.M.D.); (A.D.I.)
| | - Roger S. Chung
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Level 1, 75 Talavera Road, Sydney, NSW 2109, Australia
| |
Collapse
|
8
|
Lin Y, Lin E, Li Y, Chen X, Chen M, Huang J, Guo W, Chen L, Wu L, Zhang X, Zhang W, Jin X, Zhang J, Fu F, Wang C. Thrombospondin 2 is a Functional Predictive and Prognostic Biomarker for Triple-Negative Breast Cancer Patients With Neoadjuvant Chemotherapy. Pathol Oncol Res 2022; 28:1610559. [DOI: 10.3389/pore.2022.1610559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022]
Abstract
Background: Triple-negative breast cancer (TNBC) is characterized by a more aggressive biological behavior and unfavorable outcome. Circulating and histological expression of THBS2 has been demonstrated to be a novel diagnostic and prognostic biomarker in patients with various types of tumors. However, few studies have evaluated the predictive and prognostic value of THBS2 in TNBC specifically.Methods: In total, 185 triple-negative breast cancer patients (TNBC) with preoperative neoadjuvant chemotherapy were enrolled in this study. Serum THBS2 (sTHBS2) level was measured both prior to the start of NAC and at surgery by enzyme-linked immunosorbent assay (ELISA). Histological THBS2 (hTHBS2) expression in patients with residual tumors was evaluated by immunohistochemistry (IHC) staining method. Correlations between variables and treatment response were studied. Kaplan-Meier plots and Cox proportional hazard regression model were applied for survival analysis. Functional activities of THBS2 in TNBC cells were determined by CCK-8 assay, colony formation, wound healing, and transwell assay.Results: Of the 185 patients, 48 (25.9%) achieved pathological complete response (pCR) after completion of NAC. Elevated pCR rates were observed in patients with a lower level of sTHBS2 at surgery and higher level of sTHBS2 change (OR = 0.88, 95%CI: 0.79–0.98, p = 0.020 and OR = 1.12, 95%CI: 1.02–1.23, p = 0.015, respectively). In survival analysis, hTHBS2 expression in residual tumor was of independent prognostic value for both disease-free survival (HR = 2.21, 95%CI = 1.24–3.94, p = 0.007) and overall survival (HR = 2.07, 95%CI = 1.09–3.92, p = 0.026). For functional studies, THBS2 was indicated to inhibit proliferation, migration, and invasion abilities of TNBC cells in vitro.Conclusion: Our findings confirmed the value of serum THBS2 level to predict pCR for TNBC patients and the prognostic performance of histological THBS2 expression in non-pCR responders after NAC. THBS2 might serve as a promising functional biomarker for patients with triple-negative breast cancer.
Collapse
|
9
|
Macias RIR, Cardinale V, Kendall TJ, Avila MA, Guido M, Coulouarn C, Braconi C, Frampton AE, Bridgewater J, Overi D, Pereira SP, Rengo M, Kather JN, Lamarca A, Pedica F, Forner A, Valle JW, Gaudio E, Alvaro D, Banales JM, Carpino G. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut 2022; 71:1669-1683. [PMID: 35580963 DOI: 10.1136/gutjnl-2022-327099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour arising from the biliary system. In Europe, this tumour frequently presents as a sporadic cancer in patients without defined risk factors and is usually diagnosed at advanced stages with a consequent poor prognosis. Therefore, the identification of biomarkers represents an utmost need for patients with CCA. Numerous studies proposed a wide spectrum of biomarkers at tissue and molecular levels. With the present paper, a multidisciplinary group of experts within the European Network for the Study of Cholangiocarcinoma discusses the clinical role of tissue biomarkers and provides a selection based on their current relevance and potential applications in the framework of CCA. Recent advances are proposed by dividing biomarkers based on their potential role in diagnosis, prognosis and therapy response. Limitations of current biomarkers are also identified, together with specific promising areas (ie, artificial intelligence, patient-derived organoids, targeted therapy) where research should be focused to develop future biomarkers.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) group, University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Guido
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Cedric Coulouarn
- UMR_S 1242, COSS, Centre de Lutte contre le Cancer Eugène Marquis, INSERM University of Rennes 1, Rennes, France
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Adam E Frampton
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey, UK
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stephen P Pereira
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Marco Rengo
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Jakob N Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Angela Lamarca
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Federica Pedica
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Alejandro Forner
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- BCLC group, Liver Unit, Hospital Clínic Barcelona. IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Jesus M Banales
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| |
Collapse
|
10
|
Gao F, Chen W, Zhao T, Yu J, Feng X, Wang L, Jiang T, Cao H. Diagnostic and Prognostic Roles of Thrombospondin-2 in Digestive System Cancers. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3749306. [PMID: 35872838 PMCID: PMC9303135 DOI: 10.1155/2022/3749306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cancers of digestive system have high case-fatality rate. It is important to find more appropriate methods in diagnosing and predicting gastrointestinal malignances. And thrombospondin-2 (TSP-2) was reported to have the functions, although results were not identical. So we performed this meta-analysis to clarify the significance of TSP-2 in this area. METHODS PubMed, Embase, Web of Science, Cochrane Library, and Clinicaltrial.gov were searched for relevant studies. Data were extracted from these involved records. For the meta-analysis of diagnostic test, bivariate mixed effect model was used to estimate diagnostic accuracy. For prognosis part, HRs and their 95% CIs were pooled to compare the overall survival (OS) and disease-free survival (DFS) between patients with high TSP-2 and low TSP-2. RESULTS Nine records were eligible for the analysis of diagnostic test. Pooled results were as follows: sensitivity 0.60 (0.52, 0.68), specificity 0.96 (0.91, 0.98), positive likelihood ratio (PLR) 15.4 (7.3, 32.2), negative likelihood ratio (NLR) 0.42 (0.34, 0.50), and diagnostic odds ratio (DOR) 37 (18, 76). While in prognosis part, 10 articles were included. Patients with increased TSP-2 had shorter OS (HR = 1.64, 95% CI = 1.21-2.22); however, no difference was found in DFS between TSP-2 high and low groups (HR = 1.44, 95% CI = 0.28-7.33). CONCLUSIONS TSP-2, as a diagnostic marker, has a high specificity but a moderate sensitivity. Meanwhile, it plays a role in predicting OS. Therefore, making TSP-2 a routine assay could be beneficial to high-risk individuals and patients with digestive malignances.
Collapse
Affiliation(s)
- Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Tingxiao Zhao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
| | - Lan Wang
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou City 310003, China
| | - Tianan Jiang
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou City 310003, China
| |
Collapse
|
11
|
Byrling J, Hilmersson KS, Ansari D, Andersson R, Andersson B. Thrombospondin-2 as a diagnostic biomarker for distal cholangiocarcinoma and pancreatic ductal adenocarcinoma. Clin Transl Oncol 2022; 24:297-304. [PMID: 34319497 PMCID: PMC8794913 DOI: 10.1007/s12094-021-02685-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Distal cholangiocarcinoma and pancreatic ductal adenocarcinoma are malignancies with poor prognoses that can be difficult to distinguish preoperatively. Thrombospondin-2 has been proposed as a novel diagnostic biomarker for early pancreatic ductal adenocarcinoma. The aim of the present study was to evaluate thrombospondin-2 as a diagnostic and prognostic biomarker in combination with current biomarker CA 19-9 for distal cholangiocarcinoma and pancreatic ductal adenocarcinoma. METHODS Thrombospondin-2 was measured in prospectively collected serum samples from patients who underwent surgery with a histopathological diagnosis of distal cholangiocarcinoma (N = 51), pancreatic ductal adenocarcinoma (N = 52) and benign pancreatic diseases (N = 27) as well as healthy blood donors (N = 52) using an enzyme-linked immunosorbent assay. RESULTS Thrombospondin-2 levels (ng/ml) were similar in distal cholangiocarcinoma 55 (41-77) and pancreatic ductal adenocarcinoma 48 (35-80) (P = 0.221). Thrombospondin-2 + CA 19-9 had an area under the curve of 0.92 (95% CI 0.88-0.97) in differentiating distal cholangiocarcinoma and pancreatic ductal adenocarcinoma from healthy donors which was superior to CA 19-9 alone (P < 0.001). The diagnostic value of adding thrombospondin-2 to CA 19-9 was larger in early disease stages. Thrombospondin-2 did not provide additional value to CA 19-9 in differentiating the benign disease group; however, heterogeneity was notable in the benign cohort. Three of five patients with autoimmune pancreatitis patients had greatly elevated thrombospondin-2 levels. Thrombospondin-2 levels had no correlation with prognoses. CONCLUSIONS Serum thrombospondin-2 in combination with CA 19-9 has potential as a biomarker for distal cholangiocarcinoma and pancreatic cancer.
Collapse
Affiliation(s)
- J Byrling
- Department of Surgery, Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, 221 85, Lund, Sweden
| | - K S Hilmersson
- Department of Surgery, Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, 221 85, Lund, Sweden
| | - D Ansari
- Department of Surgery, Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, 221 85, Lund, Sweden
| | - R Andersson
- Department of Surgery, Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, 221 85, Lund, Sweden
| | - B Andersson
- Department of Surgery, Clinical Sciences Lund, Surgery, Lund University and Skåne University Hospital, 221 85, Lund, Sweden.
| |
Collapse
|
12
|
Almeida N, Rodriguez J, Pla Parada I, Perez-Riverol Y, Woldmar N, Kim Y, Oskolas H, Betancourt L, Valdés JG, Sahlin KB, Pizzatti L, Szasz AM, Kárpáti S, Appelqvist R, Malm J, B. Domont G, C. S. Nogueira F, Marko-Varga G, Sanchez A. Mapping the Melanoma Plasma Proteome (MPP) Using Single-Shot Proteomics Interfaced with the WiMT Database. Cancers (Basel) 2021; 13:6224. [PMID: 34944842 PMCID: PMC8699267 DOI: 10.3390/cancers13246224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Plasma analysis by mass spectrometry-based proteomics remains a challenge due to its large dynamic range of 10 orders in magnitude. We created a methodology for protein identification known as Wise MS Transfer (WiMT). Melanoma plasma samples from biobank archives were directly analyzed using simple sample preparation. WiMT is based on MS1 features between several MS runs together with custom protein databases for ID generation. This entails a multi-level dynamic protein database with different immunodepletion strategies by applying single-shot proteomics. The highest number of melanoma plasma proteins from undepleted and unfractionated plasma was reported, mapping >1200 proteins from >10,000 protein sequences with confirmed significance scoring. Of these, more than 660 proteins were annotated by WiMT from the resulting ~5800 protein sequences. We could verify 4000 proteins by MS1t analysis from HeLA extracts. The WiMT platform provided an output in which 12 previously well-known candidate markers were identified. We also identified low-abundant proteins with functions related to (i) cell signaling, (ii) immune system regulators, and (iii) proteins regulating folding, sorting, and degradation, as well as (iv) vesicular transport proteins. WiMT holds the potential for use in large-scale screening studies with simple sample preparation, and can lead to the discovery of novel proteins with key melanoma disease functions.
Collapse
Affiliation(s)
- Natália Almeida
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
| | - Jimmy Rodriguez
- Division of Chemistry I, Department of Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden;
| | - Indira Pla Parada
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Yasset Perez-Riverol
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK;
| | - Nicole Woldmar
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Laboratory of Molecular Biology and Blood Proteomics—LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
| | - Yonghyo Kim
- Data Convergence Drug Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Henriett Oskolas
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Lazaro Betancourt
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Jeovanis Gil Valdés
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - K. Barbara Sahlin
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Luciana Pizzatti
- Laboratory of Molecular Biology and Blood Proteomics—LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
| | | | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, 1085 Budapest, Hungary;
| | - Roger Appelqvist
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, 22185 Lund, Sweden; (H.O.); (L.B.); (J.G.V.); (R.A.)
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| | - Gilberto B. Domont
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Fábio C. S. Nogueira
- Laboratory of Proteomics/LADETEC, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-598, Brazil;
- Proteomics Unit, Institute of Chemistry, Universidade Federal Do Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Center, Department of Biomedical Engineering, Lund University, BMC D13, 22184 Lund, Sweden; (N.W.); (K.B.S.); (G.M.-V.)
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo 160-0023, Japan
| | - Aniel Sanchez
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 20502 Malmö, Sweden; (I.P.P.); (J.M.)
| |
Collapse
|
13
|
Chen W, Song J, Liu S, Tang B, Shen L, Zhu J, Fang S, Wu F, Zheng L, Qiu R, Chen C, Gao Y, Tu J, Zhao Z, Ji J. USP9X promotes apoptosis in cholangiocarcinoma by modulation expression of KIF1Bβ via deubiquitinating EGLN3. J Biomed Sci 2021; 28:44. [PMID: 34112167 PMCID: PMC8191029 DOI: 10.1186/s12929-021-00738-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Cholangiocarcinoma represents the second most common primary liver malignancy. The incidence rate has constantly increased over the last decades. Cholangiocarcinoma silent nature limits early diagnosis and prevents efficient treatment. Methods Immunoblotting and immunohistochemistry were used to assess the expression profiling of USP9X and EGLN3 in cholangiocarcinoma patients. ShRNA was used to silence gene expression. Cell apoptosis, cell cycle, CCK8, clone formation, shRNA interference and xenograft mouse model were used to explore biological function of USP9X and EGLN3. The underlying molecular mechanism of USP9X in cholangiocarcinoma was determined by immunoblotting, co-immunoprecipitation and quantitative real time PCR (qPCR). Results Here we demonstrated that USP9X is downregulated in cholangiocarcinoma which contributes to tumorigenesis. The expression of USP9X in cholangiocarcinoma inhibited cell proliferation and colony formation in vitro as well as xenograft tumorigenicity in vivo. Clinical data demonstrated that expression levels of USP9X were positively correlated with favorable clinical outcomes. Mechanistic investigations further indicated that USP9X was involved in the deubiquitination of EGLN3, a member of 2-oxoglutarate and iron-dependent dioxygenases. USP9X elicited tumor suppressor role by preventing degradation of EGLN3. Importantly, knockdown of EGLN3 impaired USP9X-mediated suppression of proliferation. USP9X positively regulated the expression level of apoptosis pathway genes de through EGLN3 thus involved in apoptosis of cholangiocarcinoma. Conclusion These findings help to understand that USP9X alleviates the malignant potential of cholangiocarcinoma through upregulation of EGLN3. Consequently, we provide novel insight into that USP9X is a potential biomarker or serves as a therapeutic or diagnostic target for cholangiocarcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00738-2.
Collapse
Affiliation(s)
- Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Jingjing Song
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Siyu Liu
- Clinical Laboratory, Lishui Central Hospital, Lishui, 323000, China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Fazong Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Chunmiao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Yang Gao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University/Affiliated Lishui Hospital of Zhejiang University/Clinical College of The Affiliated Central Hospital of Lishui University, Lishui, 323000, China.
| |
Collapse
|
14
|
Zou S, Li J, Yan J, Xu J, Lin M, Cao D. Distribution of serum Thrombospondin-2, a novel tumor marker, in general population and cancer patients in China. Clin Chim Acta 2021; 518:123-127. [PMID: 33794141 DOI: 10.1016/j.cca.2021.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Distribution of serum thrombospondin-2 in general population and cancer patients in China have not been reported. METHODS This study evaluated the expression level of serum thrombospondin-2 in general population and various cancer patients, the 95% confidence interval was used for the derivation of reference range. The comparison of the expression levels in controls for age and gender was performed. The associations between candidate biomarkers (thrombospondin-2 [THBS2]) expression and tumor metastasis status were also explored. RESULTS 125 healthy controls and 193 various cancer patients were enrolled. The mean ± SD in serum THBS2 levels in general population was 42.37 ± 12.24 ng/ml, there was no significant sex and age difference, the reference range is 18.37-66.36 ng/ml. Most cancer patients present a decreased serum THBS2 level except hepatoma and lymphoma which most patients showed a relatively high level of THBS2. There was no statistical difference of serum THBS2 level between metastasis and non-metastasis group in breast, lung, cervical, colorectal cancer, nasopharyngeal carcinoma and hepatoma (P > 0.05) while a significant negative correlation was observed in ovarian cancer (P = 0.0209). CONCLUSIONS The distribution of serum THBS2 displayed an obvious heterogeneity among various cancers comparing to health controls, ovarian cancer patients detected with low THBS2 expression may be more prone to develop metastasis in China.
Collapse
Affiliation(s)
- Seyin Zou
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| | - Jie Li
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Junping Yan
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jinhong Xu
- Guangdong Medical University, Guangdong 523000, China
| | - Maorui Lin
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|