1
|
Ma Y, Wang J, Fan J, Jia H, Li J. Interrelation of Natural Polyphenol and Fibrosis in Diabetic Nephropathy. Molecules 2024; 30:20. [PMID: 39795078 PMCID: PMC11722366 DOI: 10.3390/molecules30010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Diabetic nephropathy (DN) is a common and serious complication of diabetes mellitus and a major cause of end-stage renal disease (ESRD). Renal fibrosis, which corresponds to excessive deposition of extracellular matrix and leads to scarring, is a characteristic feature of the various progressive stages of DN. It can trigger various pathological processes leading to the activation of autophagy, inflammatory responses and a vicious circle of oxidative stress and inflammation. Although it is known that DN can be alleviated by mechanisms linked to antioxidants, reducing inflammation and improving autophagy, how to improve DN by reducing fibrosis using natural polyphenols needs to be studied further. Nowadays, natural polyphenolic compounds with excellent safety and efficacy are playing an increasingly important role in drug discovery. Therefore, this review reveals the multiple mechanisms associated with fibrosis in DN, as well as the different signaling pathways (including TGF-β/SMAD, mTORC1/p70S6K, JAK/STAT/SOCS and Wnt/β-catenin) and the potential role in the fibrotic niche. In parallel, we summarize the types of polyphenolic compounds and their pharmacodynamic effects, and finally evaluate the use of polyphenols to modulate relevant targets and pathways, providing potential research directions for polyphenols to improve DN. In summary, the problem of long-term monotherapy resistance can be reduced with natural polyphenols, while reducing the incidence of toxic side effects. In addition, potential targets and their inhibitors can be identified through these pathways, offering potential avenues of research for natural polyphenols in the pharmacological treatment of multisite fibrosis.
Collapse
Affiliation(s)
- Ye Ma
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiakun Wang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Juyue Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Huiyang Jia
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China; (Y.M.); (J.W.); (J.F.)
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
2
|
Bazrgar M, Mirmotalebisohi SA, Ahmadi M, Azimi P, Dargahi L, Zali H, Ahmadiani A. Comprehensive analysis of lncRNA-associated ceRNA network reveals novel potential prognostic regulatory axes in glioblastoma multiforme. J Cell Mol Med 2024; 28:e18392. [PMID: 38864705 PMCID: PMC11167707 DOI: 10.1111/jcmm.18392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 06/13/2024] Open
Abstract
Deciphering the lncRNA-associated competitive endogenous RNA (ceRNA) network is essential in decoding glioblastoma multiforme (GBM) pathogenesis by regulating miRNA availability and controlling mRNA stability. This study aimed to explore novel biomarkers for GBM by constructing a lncRNA-miRNA-mRNA network. A ceRNA network in GBM was constructed using lncRNA, mRNA and miRNA expression profiles from the TCGA and GEO datasets. Seed nodes were identified by protein-protein interaction (PPI) network analysis of deregulated-mRNAs (DEmRNAs) in the ceRNA network. A lncRNA-miRNA-seed network was constructed by mapping the seed nodes into the preliminary ceRNA network. The impact of the seed nodes on the overall survival (OS) of patients was assessed by the GSCA database. Functional enrichment analysis of the deregulated-lncRNAs (DElncRNA) in the ceRNA network and genes interacting with OS-related genes in the PPI network were performed. Finally, the positive correlation between seed nodes and their associated lncRNAs and the expression level of these molecules in GBM tissue compared with normal samples was validated using the GEPIA database. Our analyzes revealed that three novel regulatory axes AL161785.1/miR-139-5p/MS4A6A, LINC02611/miR-139-5p/MS4A6A and PCED1B-AS1/miR-433-3p/MS4A6A may play essential roles in GBM pathogenesis. MS4A6A is upregulated in GBM and closely associated with shorter survival time of patients. We also identified that MS4A6A expression positively correlates with genes related to tumour-associated macrophages, which induce macrophage infiltration and immune suppression. The functional enrichment analysis demonstrated that DElncRNAs are mainly involved in neuroactive ligand-receptor interaction, calcium/MAPK signalling pathway, ribosome, GABAergic/Serotonergic/Glutamatergic synapse and immune system process. In addition, genes related to MS4A6A contribute to immune and inflammatory-related biological processes. Our findings provide novel insights to understand the ceRNA regulation in GBM and identify novel prognostic biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Maryam Bazrgar
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Parisa Azimi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Leila Dargahi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
- Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Reese-Petersen AL, Breisnes HW, Gabor D, Rønnow SR, Manoel B, Bajaj M, Arenstorff CSV, Aighobahi E, Vestermark R, Karsdal MA. Biomarker-guided drug development provides value for patients, payers and drug developers: lessons learned from 25 years in the biomarker industry. Biomarkers 2024; 29:222-232. [PMID: 38606909 DOI: 10.1080/1354750x.2024.2342016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION There is an urgent, persistent, need for better biomarkers in clinical drug development. More informative biomarkers can increase the likelihood of drug advancement or approval, and implementing biomarkers increases the success rate in drug development. Biomarkers may guide decisions and allow resources to be directed to the projects most likely to succeed. However, biomarkers that are validated to high standards are needed, reflecting biological and pathological processes accurately. Such biomarkers are needed to develop treatments faster, and to improve and guide clinical trial design by selecting and de-selecting patients. METHODS In this review based on the authors' previous published experience and interaction with pharmaceutical- and biomarker stakeholders, we highlight the use and value of biomarkers in clinical development according to the BEST guidelines. We highlight the value of 3 types of biomarkers that may provide optimal value to stakeholders: diagnostic, prognostic and pharmacodynamic biomarkers. RESULTS A more appropriate clinical trial design, increasing the ratio between benefits and side effects, may come from a more tailored biomarker-approach identifying suitable molecular endotypes of patients to treat. DISCUSSION Biomarkers may guide drug developers in selecting the optimal projects to progress, when designing clinical studies and development paths. Biomarkers may aid in the diagnosis and prognostic assessment of patients and assist in matching the molecular endotype to the selected treatment, which improves the success rate of clinical development progression. The aim of this paper is to provide a comprehensive ideation framework for how to utilize biomarkers in clinical development, with a focus on utility for patients, payers and drug developers.
Collapse
Affiliation(s)
| | | | - Daniel Gabor
- Research and Development, Nordic Bioscience A/S, Herlev, Denmark
| | - Sarah R Rønnow
- Research and Development, Nordic Bioscience A/S, Herlev, Denmark
| | - Bruna Manoel
- Research and Development, Nordic Bioscience A/S, Herlev, Denmark
| | - Mayuur Bajaj
- Research and Development, Nordic Bioscience A/S, Herlev, Denmark
| | | | - Elijah Aighobahi
- Research and Development, Nordic Bioscience A/S, Herlev, Denmark
| | - Rune Vestermark
- Research and Development, Nordic Bioscience A/S, Herlev, Denmark
| | - Morten A Karsdal
- Research and Development, Nordic Bioscience A/S, Herlev, Denmark
| |
Collapse
|
4
|
Musiu C, Lupo F, Agostini A, Lionetto G, Bevere M, Paiella S, Carbone C, Corbo V, Ugel S, De Sanctis F. Cellular collusion: cracking the code of immunosuppression and chemo resistance in PDAC. Front Immunol 2024; 15:1341079. [PMID: 38817612 PMCID: PMC11137177 DOI: 10.3389/fimmu.2024.1341079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriella Lionetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
5
|
Macdonald JK, Clift CL, Saunders J, Zambrzycki SC, Mehta AS, Drake RR, Angel PM. Differential Protease Specificity by Collagenase as a Novel Approach to Serum Proteomics That Includes Identification of Extracellular Matrix Proteins without Enrichment. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:487-497. [PMID: 38329320 PMCID: PMC10921462 DOI: 10.1021/jasms.3c00366] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
Circulating extracellular matrix (ECM) proteins are serological biomarkers of interest due to their association with pathologies involving disease processes such as fibrosis and cancers. In this study, we investigate the potential for serum biomarker research using differential protease specificity (DPS), leveraging alternate protease specificity as a targeting mechanism to selectively digest circulating ECM protein serum proteins. A proof-of-concept study is presented using serum from patients with cirrhotic liver or hepatocellular carcinoma. The approach uses collagenase DPS for digestion of deglycosylated serum and liquid-chromatography-trapped ion mobility-tandem mass spectrometry (LC-TIMS-MS/MS) to enhance the detection of ECM proteins in serum. It requires no sample enrichment and minimizes the albumin average precursor intensity readout to less than 1.2%. We further demonstrate the capabilities for using the method as a high-throughput matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS) assay coupled with reference library searching. A goal is to improve the depth and breadth of biofluid proteomics for noninvasive assays.
Collapse
Affiliation(s)
- Jade K. Macdonald
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | | | | | - Stephen C. Zambrzycki
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Anand S. Mehta
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Richard R. Drake
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Peggi M. Angel
- Department of Cell and Molecular
Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
6
|
Rebelo R, Xavier CPR, Giovannetti E, Vasconcelos MH. Fibroblasts in pancreatic cancer: molecular and clinical perspectives. Trends Mol Med 2023; 29:439-453. [PMID: 37100646 DOI: 10.1016/j.molmed.2023.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2023]
Abstract
Pancreatic stellate cells (PSCs) and cancer-associated fibroblasts (CAFs) are highly abundant cells in the pancreatic tumor microenvironment (TME) that modulate desmoplasia. The formation of a dense stroma leads to immunosuppression and therapy resistance that are major causes of treatment failure in pancreatic ductal adenocarcinoma (PDAC). Recent evidence suggests that several subpopulations of CAFs in the TME can interconvert, explaining the dual roles (antitumorigenic and protumorigenic) of CAFs in PDAC and the contradictory results of CAF-targeted therapies in clinical trials. This highlights the need to clarify CAF heterogeneity and their interactions with PDAC cells. This review focuses on the communication between activated PSCs/CAFs and PDAC cells, as well as on the mechanisms underlying this crosstalk. CAF-focused therapies and emerging biomarkers are also outlined.
Collapse
Affiliation(s)
- Rita Rebelo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal
| | - Cristina P R Xavier
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - M Helena Vasconcelos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, Faculty of Pharmacy of the University of Porto (FFUP), Porto, Portugal.
| |
Collapse
|
7
|
Nissen NI, Johansen AZ, Chen IM, Jensen C, Madsen EA, Hansen CP, Thorlacius-Ussing J, Karsdal M, Johansen JS, Diab HMH, Jørgensen LN, Willumsen N. High serum levels of the C-propetide of type V collagen (PRO-C5) are prognostic for short overall survival in patients with pancreatic ductal adenocarcinoma. Front Mol Biosci 2023; 10:1158058. [PMID: 36968276 PMCID: PMC10036831 DOI: 10.3389/fmolb.2023.1158058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a pronounced fibrotic tumor microenvironment, which impairs treatment response. Type I and V collagens are responsible for the densely packed fibrils in the tumor fibrosis environment. While the role of the major type I collagen in cancer is well described, less is known about the minor type V collagen. Quantifying collagen propeptides in serum has been shown to have prognostic and predictive value. In this study, we evaluated the clinical utility of measuring the propeptide of type V collagen (PRO-C5) in serum from a discovery cohort and a validation cohort of patients with PDAC as well as in non-pancreatic solid tumor types to explore the relevance of the PRO-C5 biomarker in cancer.Methods: Serum PRO-C5 was measured in three cohorts: a discovery cohort (19 healthy controls, 12 patients with chronic pancreatitis and 33 patients with PDAC (stage I-IV)), a validation cohort (800 patients with PDAC (stage I-IV)), and a non-pancreatic solid tumor type cohort of 33 healthy controls and 200 patients with 10 different non-pancreatic solid tumor types. The levels of serum PRO-C5 in patients with cancer were compared to levels in healthy controls. The association between PRO-C5 levels and overall survival (OS) was evaluated in patients with PDAC after adjusting for established prognostic factors.Results: PRO-C5 was significantly increased in serum from patients with PDAC compared to healthy controls (p < 0.001). High PRO-C5 levels were significantly associated with short OS in both the discovery- and the validation cohort, especially in early stages of PDAC (validation cohort stage II, HR = 2.0, 95%CI1.2-3.4). The association was independent of other prognostic parameters including stage, performance status and CA19-9. Furthermore, serum levels of PRO-C5 were significantly increased in serum from patients with other non-pancreatic solid tumor types compared to healthy controls.Conclusion: High levels of serum PRO-C5 is prognostic for short OS in patients with PDAC and may provide clinical value in many other tumor types beyond PDAC. This underlines the importance of type V collagen in tumor fibrosis. PRO-C5 could have the potential to be used in several aspects within drug discovery, patient stratification and drug efficacy.
Collapse
Affiliation(s)
- Neel I. Nissen
- Nordic Bioscience A/S, Herlev, Denmark
- *Correspondence: Neel I. Nissen,
| | - Astrid Z. Johansen
- Department of Oncology, Copenhagen University Hospital, Gentofte, Denmark
| | - Inna M. Chen
- Department of Oncology, Copenhagen University Hospital, Gentofte, Denmark
| | | | | | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | | | | | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital, Gentofte, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Copenhagen University Hospital, Gentofte, Denmark
| | - Hadi M. H. Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars N. Jørgensen
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Seki T, Saida Y, Kishimoto S, Lee J, Otowa Y, Yamamoto K, Chandramouli GV, Devasahayam N, Mitchell JB, Krishna MC, Brender JR. PEGPH20, a PEGylated human hyaluronidase, induces radiosensitization by reoxygenation in pancreatic cancer xenografts. A molecular imaging study. Neoplasia 2022; 30:100793. [PMID: 35523073 PMCID: PMC9079680 DOI: 10.1016/j.neo.2022.100793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022]
Abstract
PURPOSE PEGylated human hyaluronidase (PEGPH20) enzymatically depletes hyaluronan, an important component of the extracellular matrix, increasing the delivery of therapeutic molecules. Combinations of chemotherapy and PEGPH20, however, have been unsuccessful in Phase III clinical trials. We hypothesize that by increasing tumor oxygenation by improving vascular patency and perfusion, PEGPH20 will also act as a radiosensitization agent. EXPERIMENTAL DESIGN The effect of PEGPH20 on radiation treatment was analyzed with respect to tumor growth, survival time, p02, local blood volume, and the perfusion/permeability of blood vessels in a human pancreatic adenocarcinoma BxPC3 mouse model overexpressing hyaluronan synthase 3 (HAS3). RESULTS Mice overexpressing HAS3 developed fast growing, radiation resistant tumors that became rapidly more hypoxic as time progressed. Treatment with PEGPH20 increased survival times when used in combination with radiation therapy, significantly more than either radiation therapy or PEGPH20 alone. In mice that overexpressed HAS3, EPR imaging showed an increase in local pO2 that could be linked to increases in perfusion/permeability and local blood volume immediately after PEGPH20 treatment. Hyperpolarized [1-13C] pyruvate suggested PEGPH20 caused a metabolic shift towards decreased glycolytic flux. These effects were confined to the mice overexpressing HAS3 - no effect of PEGPH20 on survival, radiation treatment, or pO2 was seen in wild type BxPC3 tumors. CONCLUSIONS PEGPH20 may be useful for radiosensitization of pancreatic cancer but only in the subset of tumors with substantial hyaluronan accumulation. The response of the treatment may potentially be monitored by non-invasive imaging of the hemodynamic and metabolic changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Tomohiro Seki
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States; Josai University, Faculty of Pharmaceutical Sciences, Sakado, Japan
| | - Yu Saida
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States; Department of Respiratory Medicine and Infectious Diseases, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Jisook Lee
- Halozyme Therapeutics, San Diego, California, United States
| | - Yasunori Otowa
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Gadisetti Vr Chandramouli
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States
| | - Jeffery R Brender
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, United States.
| |
Collapse
|
9
|
Abstract
Cancer is a complex disease and a significant cause of mortality worldwide. Over the course of nearly all cancer types, collagen within the tumor microenvironment influences emergence, progression, and metastasis. This review discusses collagen regulation within the tumor microenvironment, pathological involvement of collagen, and predictive values of collagen and related extracellular matrix components in main cancer types. A survey of predictive tests leveraging collagen assays using clinical cohorts is presented. A conclusion is that collagen has high predictive value in monitoring cancer processes and stratifying by outcomes. New approaches should be considered that continue to define molecular facets of collagen related to cancer.
Collapse
|
10
|
Willumsen N, Jensen C, Green G, Nissen NI, Neely J, Nelson DM, Pedersen RS, Frederiksen P, Chen IM, Boisen MK, Johansen AZ, Madsen DH, Svane IM, Lipton A, Leitzel K, Ali SM, Erler JT, Hurkmans DP, Mathijssen RHJ, Aerts J, Eslam M, George J, Christiansen C, Bissel MJ, Karsdal MA. Fibrotic activity quantified in serum by measurements of type III collagen pro-peptides can be used for prognosis across different solid tumor types. Cell Mol Life Sci 2022; 79:204. [PMID: 35332383 PMCID: PMC8948122 DOI: 10.1007/s00018-022-04226-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/15/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
Abstract
Due to activation of fibroblast into cancer-associated fibroblasts, there is often an increased deposition of extracellular matrix and fibrillar collagens, e.g. type III collagen, in the tumor microenvironment (TME) that leads to tumor fibrosis (desmoplasia). Tumor fibrosis is closely associated with treatment response and poor prognosis for patients with solid tumors. To assure that the best possible treatment option is provided for patients, there is medical need for identifying patients with high (or low) fibrotic activity in the TME. Measuring unique collagen fragments such as the pro-peptides released into the bloodstream during fibrillar collagen deposition in the TME can provide a non-invasive measure of the fibrotic activity. Based on data from 8 previously published cohorts, this review provides insight into the prognostic value of quantifying tumor fibrosis by measuring the pro-peptide of type III collagen in serum of a total of 1692 patients with different solid tumor types and discusses the importance of tumor fibrosis for understanding prognosis and for potentially guiding future drug development efforts that aim at overcoming the poor outcome associated with a fibrotic TME.
Collapse
Affiliation(s)
| | - Christina Jensen
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | | | - Neel I Nissen
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | | | | | | | | | - Inna M Chen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Mogens K Boisen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel H Madsen
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Allan Lipton
- Penn State Hershey Medical Center, Hershey, PA, USA
| | - Kim Leitzel
- Penn State Hershey Medical Center, Hershey, PA, USA
| | | | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Daan P Hurkmans
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Joachim Aerts
- Department of Pulmonology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | | | - Mina J Bissel
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Morten A Karsdal
- Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| |
Collapse
|
11
|
Nissen NI, Johansen AZ, Chen I, Johansen JS, Pedersen RS, Hansen CP, Karsdal MA, Willumsen N. Collagen Biomarkers Quantify Fibroblast Activity In Vitro and Predict Survival in Patients with Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:819. [PMID: 35159087 PMCID: PMC8833921 DOI: 10.3390/cancers14030819] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
The use of novel tools to understand tumour-fibrosis in pancreatic ductal adenocarcinoma (PDAC) and novel anti-fibrotic treatments are highly needed. We established a pseudo-3D in vitro model including humane pancreatic fibroblasts (PFs) and pancreatic cancer-associated fibroblasts (CAFs) in combination with clinical collagen biomarkers, as a translational anti-fibrotic drug screening tool. Furthermore, we investigated the prognostic potential of serum collagen biomarkers in 810 patients with PDAC. PFs and CAFs were cultured in Ficoll-media. Cells were treated w/wo TGF-ß1 and the anti-fibrotic compound ALK5i. Biomarkers measuring the formation of type III (PRO-C3) and VI (PRO-C6) collagens were measured by ELISA in supernatant at days 3, 6, 9, and 12. PRO-C3 and PRO-C6, and their association with overall survival (OS), were evaluated in serum with PDAC (n = 810). PRO-C3 and PRO-C6 were upregulated in CAFs compared to PFs (p < 0.0001.). TGF-ß1 increased PRO-C3 in both PFs and CAFs (p < 0.0001). The anti-fibrotic compound ALK5i inhibited both PRO-C3 and PRO-C6 (p < 0.0001). High serum levels of PRO-C3 and PRO-C6 in patients with PDAC were associated with short OS (PRO-C3: HR = 1.48, 95%CI: 1.29-1.71, p < 0.0001 and PRO-C6: HR = 1.31, 95%CI: 1.14-1.50, p = 0.0002). PRO-C3 and PRO-C6 have the potential to be used both pre-clinically and clinically as a measure of tumor fibrosis and CAF activity.
Collapse
Affiliation(s)
- Neel I. Nissen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), 2200 Copenhagen, Denmark
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
| | - Astrid Z. Johansen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (A.Z.J.); (I.C.); (J.S.J.)
| | - Inna Chen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (A.Z.J.); (I.C.); (J.S.J.)
| | - Julia S. Johansen
- Department of Oncology, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark; (A.Z.J.); (I.C.); (J.S.J.)
- Department of Medicine, Copenhagen University Hospital—Herlev and Gentofte, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rasmus S. Pedersen
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
- Department of Biomedical Science, University of Copenhagen (UCPH), 2200 Copenhagen, Denmark
| | - Carsten P. Hansen
- Department of Surgery, Copenhagen University Hospital—Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Morten A. Karsdal
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
| | - Nicholas Willumsen
- Biomarkers & Research, Nordic Bioscience, 2730 Herlev, Denmark; (R.S.P.); (M.A.K.); (N.W.)
| |
Collapse
|
12
|
Jensen C, Nissen NI, Von Arenstorff CS, Karsdal MA, Willumsen N. Serological assessment of collagen fragments and tumor fibrosis may guide immune checkpoint inhibitor therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:326. [PMID: 34656158 PMCID: PMC8520279 DOI: 10.1186/s13046-021-02133-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Despite the overall clinical success of immune checkpoint inhibitors (ICIs) for treating patients with solid tumors, a large number of patients do not benefit from this approach. Consequently, there is a need for predictive biomarkers. The most prevalent biomarkers such as PD-L1 expression and tumor mutational burden (TMB) do not reliably predict response to ICIs across different solid tumor types suggesting that a broader view of regulating factors in the tumor microenvironment is needed. Emerging evidence indicates that one central common denominator of resistance to ICIs may be fibrotic activity characterized by extracellular matrix (ECM) and collagen production by cancer-associated fibroblasts (CAFs). A fibroblast-and collagen-rich stroma attenuates immunotherapy response by contributing to inhibition and exclusion of T cells. Here we review opportunities and limitations in the utilization of the most prevalent biomarkers for ICIs and elaborate on the unique opportunities with biomarkers originating from the activated fibroblasts producing an impermeable ECM. We propose that ECM and collagen biomarkers measured non-invasively may be a novel and practical approach to optimize treatment strategies and improve patient selection for ICI therapy.
Collapse
Affiliation(s)
- Christina Jensen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark.
| | - Neel I Nissen
- Biomarkers & Research, Nordic Bioscience, 2730, Herlev, Denmark
| | | | | | | |
Collapse
|
13
|
Marozzi M, Parnigoni A, Negri A, Viola M, Vigetti D, Passi A, Karousou E, Rizzi F. Inflammation, Extracellular Matrix Remodeling, and Proteostasis in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22158102. [PMID: 34360868 PMCID: PMC8346982 DOI: 10.3390/ijms22158102] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted and complex pathology characterized by uncontrolled cell proliferation and decreased apoptosis. Most cancers are recognized by an inflammatory environment rich in a myriad of factors produced by immune infiltrate cells that induce host cells to differentiate and to produce a matrix that is more favorable to tumor cells’ survival and metastasis. As a result, the extracellular matrix (ECM) is changed in terms of macromolecules content, degrading enzymes, and proteins. Altered ECM components, derived from remodeling processes, interact with a variety of surface receptors triggering intracellular signaling that, in turn, cancer cells exploit to their own benefit. This review aims to present the role of different aspects of ECM components in the tumor microenvironment. Particularly, we highlight the effect of pro- and inflammatory factors on ECM degrading enzymes, such as metalloproteases, and in a more detailed manner on hyaluronan metabolism and the signaling pathways triggered by the binding of hyaluronan with its receptors. In addition, we sought to explore the role of extracellular chaperones, especially of clusterin which is one of the most prominent in the extracellular space, in proteostasis and signaling transduction in the tumor microenvironment. Although the described tumor microenvironment components have different biological roles, they may engage common signaling pathways that favor tumor growth and metastasis.
Collapse
Affiliation(s)
- Marina Marozzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Aide Negri
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
- Correspondence:
| | - Federica Rizzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| |
Collapse
|
14
|
Nissen NI, Kehlet S, Johansen AZ, Chen IM, Karsdal M, Johansen JS, Diab HMH, Jørgensen LN, Sun S, Manon-Jensen T, He Y, Langholm L, Willumsen N. Noninvasive prognostic biomarker potential of quantifying the propeptides of Type XI collagen alpha-1 chain (PRO-C11) in patients with pancreatic ductal adenocarcinoma. Int J Cancer 2021; 149:228-238. [PMID: 33687786 DOI: 10.1002/ijc.33551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
Type XI collagen has been associated with tumor fibrosis and aggressiveness in patients with pancreatic ductal adenocarcinoma (PDAC). The propeptide on Type XI collagen is released into the circulation after proteolytic processing at either amino acid 253 or 511. This allows for a noninvasive biomarker approach to quantify Type XI collagen production. We developed two ELISA-based biomarkers, targeting the two enzymatic cleavage sites (PRO-C11-253 and PRO-C11-511). In a discovery cohort including serum from patients with PDAC (n = 39, Stages 1-4), chronic pancreatitis (CP, n = 12) and healthy controls (n = 20), PRO-C11-511, but not PRO-C11-253, was significantly upregulated in patients with PDAC and CP compared to healthy controls. Furthermore, PRO-C11-511 levels >75th percentile were associated with poor overall survival (OS) (HR, 95% CI: 3.40, 1.48-7.83). The PRO-C11-511 biomarker potential was validated in serum from 686 patients with PDAC. Again, high levels of PRO-C11-511 (>75th percentile) were associated with poor OS (HR, 95% CI: 1.68, 1.40-2.02). Furthermore, PRO-C11-511 remained significant after adjusting for clinical risk factors (HR, 95% CI: 1.50, 1.22-1.86). In conclusion, quantifying serum levels of Type XI collagen with PRO-C11-511 predicts poor OS in patients with PDAC. This supports that Type XI collagen is important for PDAC biology and that PRO-C11-511 has prognostic noninvasive biomarker potential for patients with PDAC.
Collapse
Affiliation(s)
- Neel Ingemann Nissen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Inna M Chen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Karsdal
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hadi M H Diab
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Lars N Jørgensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Digestive Disease Center, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Shu Sun
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | | - Yi He
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | - Lasse Langholm
- Biomarkers & Research, Nordic Bioscience, Herlev, Denmark
| | | |
Collapse
|
15
|
Ramos MIP, Tian L, de Ruiter EJ, Song C, Paucarmayta A, Singh A, Elshof E, Vijver SV, Shaik J, Bosiacki J, Cusumano Z, Jensen C, Willumsen N, Karsdal MA, Liu L, Langermann S, Willems S, Flies D, Meyaard L. Cancer immunotherapy by NC410, a LAIR-2 Fc protein blocking human LAIR-collagen interaction. eLife 2021; 10:62927. [PMID: 34121658 PMCID: PMC8225389 DOI: 10.7554/elife.62927] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Collagens are a primary component of the extracellular matrix and are functional ligands for the inhibitory immune receptor leukocyte-associated immunoglobulin-like receptor (LAIR)-1. LAIR-2 is a secreted protein that can act as a decoy receptor by binding collagen with higher affinity than LAIR-1. We propose that collagens promote immune evasion by interacting with LAIR-1 expressed on immune cells, and that LAIR-2 releases LAIR-1-mediated immune suppression. Analysis of public human datasets shows that collagens, LAIR-1 and LAIR-2 have unique and overlapping associations with survival in certain tumors. We designed a dimeric LAIR-2 with a functional IgG1 Fc tail, NC410, and showed that NC410 increases human T cell expansion and effector function in vivo in a mouse xenogeneic-graft versus-host disease model. In humanized mouse tumor models, NC410 reduces tumor growth that is dependent on T cells. Immunohistochemical analysis of human tumors shows that NC410 binds to collagen-rich areas where LAIR-1+ immune cells are localized. Our findings show that NC410 might be a novel strategy for cancer immunotherapy for immune-excluded tumors.
Collapse
Affiliation(s)
- M Ines Pascoal Ramos
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | | | | | | | | | - Akashdip Singh
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Eline Elshof
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Saskia V Vijver
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | | | | | | | | | | | | | | | | | - Stefan Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | | | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| |
Collapse
|