1
|
Wang Z, Sui X, Song W, Xue F, Han W, Hu Y, Jiang J. Reinforcement learning for individualized lung cancer screening schedules: A nested case-control study. Cancer Med 2024; 13:e7436. [PMID: 38949177 PMCID: PMC11215689 DOI: 10.1002/cam4.7436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND The current guidelines for managing screen-detected pulmonary nodules offer rule-based recommendations for immediate diagnostic work-up or follow-up at intervals of 3, 6, or 12 months. Customized visit plans are lacking. PURPOSE To develop individualized screening schedules using reinforcement learning (RL) and evaluate the effectiveness of RL-based policy models. METHODS Using a nested case-control design, we retrospectively identified 308 patients with cancer who had positive screening results in at least two screening rounds in the National Lung Screening Trial. We established a control group that included cancer-free patients with nodules, matched (1:1) according to the year of cancer diagnosis. By generating 10,164 sequence decision episodes, we trained RL-based policy models, incorporating nodule diameter alone, combined with nodule appearance (attenuation and margin) and/or patient information (age, sex, smoking status, pack-years, and family history). We calculated rates of misdiagnosis, missed diagnosis, and delayed diagnosis, and compared the performance of RL-based policy models with rule-based follow-up protocols (National Comprehensive Cancer Network guideline; China Guideline for the Screening and Early Detection of Lung Cancer). RESULTS We identified significant interactions between certain variables (e.g., nodule shape and patient smoking pack-years, beyond those considered in guideline protocols) and the selection of follow-up testing intervals, thereby impacting the quality of the decision sequence. In validation, one RL-based policy model achieved rates of 12.3% for misdiagnosis, 9.7% for missed diagnosis, and 11.7% for delayed diagnosis. Compared with the two rule-based protocols, the three best-performing RL-based policy models consistently demonstrated optimal performance for specific patient subgroups based on disease characteristics (benign or malignant), nodule phenotypes (size, shape, and attenuation), and individual attributes. CONCLUSIONS This study highlights the potential of using an RL-based approach that is both clinically interpretable and performance-robust to develop personalized lung cancer screening schedules. Our findings present opportunities for enhancing the current cancer screening system.
Collapse
Affiliation(s)
- Zixing Wang
- Peking University People's HospitalPeking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver DiseasesBeijingChina
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Xin Sui
- Department of RadiologyPeking Union Medical College HospitalBeijingChina
| | - Wei Song
- Department of RadiologyPeking Union Medical College HospitalBeijingChina
| | - Fang Xue
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Wei Han
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yaoda Hu
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Jingmei Jiang
- Department of Epidemiology and BiostatisticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| |
Collapse
|
2
|
Wang Z, Xue F, Sui X, Han W, Song W, Jiang J. Personalised follow-up and management schema for patients with screen-detected pulmonary nodules: A dynamic modelling study. Pulmonology 2024:S2531-0437(24)00040-0. [PMID: 38614860 DOI: 10.1016/j.pulmoe.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Selecting the time target for follow-up testing in lung cancer screening is challenging. We aim to devise dynamic, personalized lung cancer screening schema for patients with pulmonary nodules detected through low-dose computed tomography. METHODS We developed and validated dynamic models using data of pulmonary nodule patients (aged 55-74 years) from the National Lung Screening Trial. We predicted patient-specific risk profiles at baseline (R0) and updated the risk evaluation results in repeated screening rounds (R1 and R2). We used risk cutoffs to optimize time-dependent sensitivity at an early decision point (3 months) and time-dependent specificity at a late decision point (1 year). RESULTS In validation, area under receiver operating characteristic curve for predicting 12-month lung cancer onset was 0.867 (95 % confidence interval: 0.827-0.894) and 0.807 (0.765-0.948) at R0 and R1-R2, respectively. The personalized schema, compared with National Comprehensive Cancer Network (NCCN) guideline and Lung-RADS, yielded lower rates of delayed diagnosis (1.7% vs. 1.7% vs. 6.9 %) and over-testing (4.9% vs. 5.6% vs. 5.6 %) at R0, and lower rates of delayed diagnosis (0.0% vs. 18.2% vs. 18.2 %) and over-testing (2.6% vs. 8.3% vs. 7.3 %) at R2. Earlier test recommendation among cancer patients was more frequent using the personalized schema (vs. NCCN: 29.8% vs. 20.9 %, p = 0.0065; vs. Lung-RADS: 33.2% vs. 22.8 %, p = 0.0025), especially for women, patients aged ≥65 years, and part-solid or non-solid nodules. CONCLUSIONS The personalized schema is easy-to-implement and more accurate compared with rule-based protocols. The results highlight value of personalized approaches in realizing efficient nodule management.
Collapse
Affiliation(s)
- Z Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College. No. 5 Dongdansantiao Street, Dongcheng District, Beijing, China; Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases. No. 11 Xizhimen South Street, Beijing, China
| | - F Xue
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College. No. 5 Dongdansantiao Street, Dongcheng District, Beijing, China
| | - X Sui
- Department of Radiology, Peking Union Medical College Hospital. No.1 Shuaifuyuan Street, Dongcheng District, Beijing, China
| | - W Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College. No. 5 Dongdansantiao Street, Dongcheng District, Beijing, China
| | - W Song
- Department of Radiology, Peking Union Medical College Hospital. No.1 Shuaifuyuan Street, Dongcheng District, Beijing, China
| | - J Jiang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College. No. 5 Dongdansantiao Street, Dongcheng District, Beijing, China.
| |
Collapse
|
3
|
Anatomical type analysis of right interlobar artery based on chest thin-slice CT scan and three-dimensional reconstruction. J Cardiothorac Surg 2022; 17:328. [PMID: 36539834 PMCID: PMC9768935 DOI: 10.1186/s13019-022-02088-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To analyse and summarize branching pattern types of the interlobar portion of right pulmonary arteries (RPA) through chest thin-slice CT scans and three-dimensional reconstruction. METHODS A total of 179 patients (58 males and 121 females, with an average age of 53.9 years) at the Thoracic Surgery Department of Ningbo First Hospital were retrospectively included from December 2020 to December 2021. All patients completed preoperative thin-slice CT scans and three-dimensional reconstructions of the chest. The clinical data and branching patterns were collected. Data were analysed using SPSS 21.0. RESULTS The branching pattern types of the interlobar portion of RPA were divided into 4 types according to the order and number of branches: Type I (145/179, 81.0%), Asc. A2, MA, A6; Type II (28/179, 15.6%), Asc. A2 deletion, MA, A6; Type III (5/179, 2.8%), Asc. A2, A6, MA; and Type IV (1/179, 0.6%), MA, Asc. A2, A6. Type I was the most common pattern. Furthermore, according to the number of branches of MA and A6, this pattern can be subdivided into 15 subcategories. CONCLUSION Chest thin-slice CT scans and 3D reconstructions can provide surgeons with accurate lung anatomy, which helps surgeons perform preoperative planning and complete surgery successfully.
Collapse
|
4
|
Chen W, Wang L, Hou Y, Li L, Chang L, Li Y, Xie K, Qiu L, Mao D, Li W, Xia Y. Combined Radiomics-Clinical Model to Predict Radiotherapy Response in Inoperable Stage III and IV Non-Small-Cell Lung Cancer. Technol Cancer Res Treat 2022; 21:15330338221142400. [PMID: 36476110 PMCID: PMC9742722 DOI: 10.1177/15330338221142400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose: Radiotherapy is a promising treatment option for lung cancer, but patients' responses vary. The purpose of the study was to investigate the potential of radiomics and clinical signature for predicting the radiotherapy sensitivity and overall survival of inoperable stage III and IV non-small-cell lung cancer (NSCLC) patients. Materials: This retrospective study collected 104 inoperable stage III and IV NSCLC patients at the Yunnan Cancer Hospital from October 2016 to September 2020. They were divided into radiation-sensitive and non-sensitive groups. We used analysis of variance (ANOVA) to select features and support vector machine (SVM) to build the radiomic model. Furthermore, the logistic regression method was used to screen out clinically relevant predictive factors and construct the combined model of radiomics-clinical features. Finally, survival was estimated using the Kaplan-Meier method. Results: There were 40 patients in the radiation-sensitive group and 64 in the non-sensitive group. These patients were divided into training set (73 cases) and testing set (31 cases) according to the ratio of 7:3. Nine radiomics features and one clinical feature were significantly associated with radiotherapy sensitivity. Both the radiomics model and combined model have good predictive performance (the areas under the curve (AUC) values of the testing set were 0.864 (95% confidence interval [CI]: 0.683-0.996) and 0.868 (95% CI: 0.689-1.000), respectively). Only platelet level status was associated with overall survival. Conclusion: The combined model constructed based on radiomics and clinical features can effectively identify the radiation-sensitive population and provide valuable clinical information. Patients with higher platelet levels may have a poor prognosis.
Collapse
Affiliation(s)
- Wenrui Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Li Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Yunfen Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Kun Xie
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Linbo Qiu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Dan Mao
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Wenhui Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China,Wenhui Li, PhD, Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, 519 Kunzhou Rd., Kunming, Yunnan 650118, China.
| | - Yaoxiong Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| |
Collapse
|
5
|
Saman H, Raza A, Patil K, Uddin S, Crnogorac-Jurcevic T. Non-Invasive Biomarkers for Early Lung Cancer Detection. Cancers (Basel) 2022; 14:5782. [PMID: 36497263 PMCID: PMC9739091 DOI: 10.3390/cancers14235782] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
Worldwide, lung cancer (LC) is the most common cause of cancer death, and any delay in the detection of new and relapsed disease serves as a major factor for a significant proportion of LC morbidity and mortality. Though invasive methods such as tissue biopsy are considered the gold standard for diagnosis and disease monitoring, they have several limitations. Therefore, there is an urgent need to identify and validate non-invasive biomarkers for the early diagnosis, prognosis, and treatment of lung cancer for improved patient management. Despite recent progress in the identification of non-invasive biomarkers, currently, there is a shortage of reliable and accessible biomarkers demonstrating high sensitivity and specificity for LC detection. In this review, we aim to cover the latest developments in the field, including the utility of biomarkers that are currently used in LC screening and diagnosis. We comment on their limitations and summarise the findings and developmental stages of potential molecular contenders such as microRNAs, circulating tumour DNA, and methylation markers. Furthermore, we summarise research challenges in the development of biomarkers used for screening purposes and the potential clinical applications of newly discovered biomarkers.
Collapse
Affiliation(s)
- Harman Saman
- Hamad Medical Corporation, Doha 3050, Qatar
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK
| | - Afsheen Raza
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha 3050, Qatar
| | - Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Research Centre, Qatar University, Doha 2731, Qatar
| | | |
Collapse
|
6
|
Lancaster HL, Heuvelmans MA, Oudkerk M. Low-dose computed tomography lung cancer screening: Clinical evidence and implementation research. J Intern Med 2022; 292:68-80. [PMID: 35253286 PMCID: PMC9311401 DOI: 10.1111/joim.13480] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lung cancer causes more deaths than breast, cervical, and colorectal cancer combined. Nevertheless, population-based lung cancer screening is still not considered standard practice in most countries worldwide. Early lung cancer detection leads to better survival outcomes: patients diagnosed with stage 1A lung cancer have a >75% 5-year survival rate, compared to <5% at stage 4. Low-dose computed tomography (LDCT) thorax imaging for the secondary prevention of lung cancer has been studied at length, and has been shown to significantly reduce lung cancer mortality in high-risk populations. The US National Lung Screening Trial reported a 20% overall reduction in lung cancer mortality when comparing LDCT to chest X-ray, and the Nederlands-Leuvens Longkanker Screenings Onderzoek (NELSON) trial more recently reported a 24% reduction when comparing LDCT to no screening. Hence, the focus has now shifted to implementation research. Consequently, the 4-IN-THE-LUNG-RUN consortium based in five European countries, has set up a large-scale multicenter implementation trial. Successful implementation of and accessibility to LDCT lung cancer screening are dependent on many factors, not limited to population selection, recruitment strategy, computed tomography screening frequency, lung-nodule management, participant compliance, and cost effectiveness. This review provides an overview of current evidence for LDCT lung cancer screening, and draws attention to major factors that need to be addressed to successfully implement standardized, effective, and accessible screening throughout Europe. Evidence shows that through the appropriate use of risk-prediction models and a more personalized approach to screening, efficacy could be improved. Furthermore, extending the screening interval for low-risk individuals to reduce costs and associated harms is a possibility, and through the use of volumetric-based measurement and follow-up, false positive results can be greatly reduced. Finally, smoking cessation programs could be a valuable addition to screening programs and artificial intelligence could offer a solution to the added workload pressures radiologists are facing.
Collapse
Affiliation(s)
- Harriet L Lancaster
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - Marjolein A Heuvelmans
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - Matthijs Oudkerk
- Institute for Diagnostic Accuracy, Groningen, The Netherlands.,Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Wang Z, Yang C, Han W, Sui X, Zheng F, Xue F, Xu X, Wu P, Chen Y, Gu W, Song W, Jiang J. Quantifying lung cancer heterogeneity using novel CT features: a cross-institute study. Insights Imaging 2022; 13:82. [PMID: 35482262 PMCID: PMC9050978 DOI: 10.1186/s13244-022-01204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Radiomics-based image metrics are not used in the clinic despite the rapidly growing literature. We selected eight promising radiomic features and validated their value in decoding lung cancer heterogeneity. METHODS CT images of 236 lung cancer patients were obtained from three different institutes, whereupon radiomic features were extracted according to a standardized procedure. The predictive value for patient long-term prognosis and association with routinely used semantic, genetic (e.g., epidermal growth factor receptor (EGFR)), and histopathological cancer profiles were validated. Feature measurement reproducibility was assessed. RESULTS All eight selected features were robust across repeat scans (intraclass coefficient range: 0.81-0.99), and were associated with at least one of the cancer profiles: prognostic, semantic, genetic, and histopathological. For instance, "kurtosis" had a high predictive value of early death (AUC at first year: 0.70-0.75 in two independent cohorts), negative association with histopathological grade (Spearman's r: - 0.30), and altered expression levels regarding EGFR mutation and semantic characteristics (solid intensity, spiculated shape, juxtapleural location, and pleura tag; all p < 0.05). Combined as a radiomic score, the features had a higher area under curve for predicting 5-year survival (train: 0.855, test: 0.780, external validation: 0.760) than routine characteristics (0.733, 0.622, 0.613, respectively), and a better capability in patient death risk stratification (hazard ratio: 5.828, 95% confidence interval: 2.915-11.561) than histopathological staging and grading. CONCLUSIONS We highlighted the clinical value of radiomic features. Following confirmation, these features may change the way in which we approach CT imaging and improve the individualized care of lung cancer patients.
Collapse
Affiliation(s)
- Zixing Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Cuihong Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xin Sui
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fuling Zheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Xue
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoli Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yali Chen
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wentao Gu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jingmei Jiang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences / School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|