1
|
Wang Z, Wallace DA, Spitzer BW, Huang T, Taylor K, Rotter JI, Rich SS, Liu PY, Daviglus ML, Hou L, Ramos AR, Kaur S, Durda JP, González HM, Fornage M, Redline S, Isasi CR, Sofer T. Analysis of C-reactive protein omics-measures associates methylation risk score with sleep health and related health outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.04.24313008. [PMID: 39281736 PMCID: PMC11398435 DOI: 10.1101/2024.09.04.24313008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Introduction DNA methylation (DNAm) predictors of high sensitivity C-reactive protein (CRP) offer a stable and accurate means of assessing chronic inflammation, bypassing the CRP protein fluctuations secondary to acute illness. Poor sleep health is associated with elevated inflammation (including elevated blood CRP levels) which may explain associations of sleep insufficiency with metabolic, cardiovascular and neurological diseases. Our study aims to characterize the relationships among sleep health phenotypes and CRP markers -blood, genetic, and epigenetic indicators-within the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Methods In HCHS/SOL, methylation risk scores (MRS)-CRP and polygenetic risk score (PRS)-CRP were constructed separately as weighted sums of methylation beta values or allele counts, respectively, for each individual. Sleep health phenotypes were measured using self-reported questionnaires and objective measurements. Survey-weighted linear regression established the association between the multiple sleep phenotypes (obstructive sleep apnea (OSA), sleep duration, insomnia and excessive sleepiness symptom), cognitive assessments, diabetes and hypertension with CRP markers while adjusting for age, sex, BMI, study center, and the first five principal components of genetic ancestry in HCHS/SOL. Results We included 2221 HCHS/SOL participants (age range 37-76 yrs, 65.7% female) in the analysis. Both the MRS-CRP (95% confidence interval (CI): 0.32-0.42, p = 3.3 × 10-38) and the PRS-CRP (95% CI: 0.15-0.25, p = 1 × 10-14) were associated with blood CRP level. Moreover, MRS-CRP was associated with sleep health phenotypes (OSA, long sleep duration) and related conditions (diabetes and hypertension), while PRS-CRP markers were not associated with these traits. Circulating CRP level was associated with sleep duration and diabetes. Associations between OSA traits and metabolic comorbidities weakened after adjusting for MRS-CRP, most strongly for diabetes, and least for hypertension. Conclusions MRS-CRP is a promising estimate for systemic and chronic inflammation as reflected by circulating CRP levels, which either mediates or serves as a common cause of the association between sleep phenotypes and related comorbidities, especially in the presence of diabetes.
Collapse
Affiliation(s)
- Ziqing Wang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Danielle A Wallace
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Brian W Spitzer
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tianyi Huang
- Laboratory of Epidemiology and Population Sciences, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Kent Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Peter Y Liu
- Division of Genetics, Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Martha L Daviglus
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alberto R Ramos
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sonya Kaur
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - J Peter Durda
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Hector M González
- Department of Neurosciences and Shiley-Marcos Alzheimer's Disease Center, University of California, San Diego, La Jolla, CA, USA
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Susan Redline
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Carmen R Isasi
- Department of Epidemiology & Population Health, Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tamar Sofer
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biostatistics, Harvard T.H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Nadiger N, Veed JK, Chinya Nataraj P, Mukhopadhyay A. DNA methylation and type 2 diabetes: a systematic review. Clin Epigenetics 2024; 16:67. [PMID: 38755631 PMCID: PMC11100087 DOI: 10.1186/s13148-024-01670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE DNA methylation influences gene expression and function in the pathophysiology of type 2 diabetes mellitus (T2DM). Mapping of T2DM-associated DNA methylation could aid early detection and/or therapeutic treatment options for diabetics. DESIGN A systematic literature search for associations between T2DM and DNA methylation was performed. Prospero registration ID: CRD42020140436. METHODS PubMed and ScienceDirect databases were searched (till October 19, 2023). Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and New Castle Ottawa scale were used for reporting the selection and quality of the studies, respectively. RESULT Thirty-two articles were selected. Four of 130 differentially methylated genes in blood, adipose, liver or pancreatic islets (TXNIP, ABCG1, PPARGC1A, PTPRN2) were reported in > 1 study. TXNIP was hypomethylated in diabetic blood across ethnicities. Gene enrichment analysis of the differentially methylated genes highlighted relevant disease pathways (T2DM, type 1 diabetes and adipocytokine signaling). Three prospective studies reported association of methylation in IGFBP2, MSI2, FTO, TXNIP, SREBF1, PHOSPHO1, SOCS3 and ABCG1 in blood at baseline with incident T2DM/hyperglycemia. Sex-specific differential methylation was reported only for HOOK2 in visceral adipose tissue (female diabetics: hypermethylated, male diabetics: hypomethylated). Gene expression was inversely associated with methylation status in 8 studies, in genes including ABCG1 (blood), S100A4 (adipose tissue), PER2 (pancreatic islets), PDGFA (liver) and PPARGC1A (skeletal muscle). CONCLUSION This review summarizes available evidence for using DNA methylation patterns to unravel T2DM pathophysiology. Further validation studies in diverse populations will set the stage for utilizing this knowledge for identifying early diagnostic markers and novel druggable pathways.
Collapse
Affiliation(s)
- Nikhil Nadiger
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
| | - Jyothisha Kana Veed
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
| | - Priyanka Chinya Nataraj
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India
- Vedantu, Bangalore, India
| | - Arpita Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's Medical College, St Johns National Academy of Health Sciences, Sarjapura Road, Koramangala, Bangalore, 560034, India.
| |
Collapse
|
3
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Tsai HH, Tantoh DM, Hsiao CH, Zhong JH, Chen CY, Liaw YP. Risk of gout in Taiwan Biobank participants pertaining to their sex and family history of gout among first-degree relatives. Clin Exp Med 2023; 23:5315-5325. [PMID: 37668883 DOI: 10.1007/s10238-023-01167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Family history of gout and sex are independently associated with gout. However, there is a paucity of research regarding the joint role of both factors in gout pathogenesis. Therefore, we assessed the independent and combined association of family history of gout and sex with gout. METHODS Our analysis included 132,311 Taiwan Biobank (TWB)-enrolled individuals comprising 21,159 gout cases and 111,152 controls. We subcategorized the family history of gout as (1) both siblings and parents had gout), (2) only parents had gout, and (3) only siblings had gout. RESULTS Generally, sex (men compared to women) and family history of gout were independently associated with a higher risk of gout. The odds ratio (OR); 95% confidence interval (CI) was 9.175; 8.801-9.566 for sex, and 2.306; 2.206-2.410 for family history. For the subcategories 'both siblings and had gout,' 'only parents had gout,' and 'only siblings had gout,' the odds ratios (ORs); 95% confidence intervals (CIs) were 4.944; 4.414-5.538, 2.041; 1.927-2.161, and 2.162; 2.012-2.323, respectively. The interaction between sex and family history was significant (p value = 0.0001). After stratification by sex, family history of gout remained significantly associated with a higher risk of gout in both sexes, even though the odds ratios were higher in men. For the subcategories 'both siblings and parents had gout,' 'only parent had gout,' and 'only siblings had gout,' the corresponding ORs; 95% CIs were 6.279; 5.243-7.520, 2.211; 2.062-2.371, and 2.148; 1.955-2.361 in men and 4.199; 3.566-4.945, 1.827; 1.640-2.035, and 2.093; 1.876-2.336 in women. After integrating sex and family history (reference: women with no family history), the highest risk of gout was observed in men who had at least one parent and sibling with a history of gout (OR; 95% CI 55.774; 46.360-67.101). CONCLUSION Sex and family history of gout were independently and interactively associated with gout. Sex-wise, men had a higher risk of gout than women. Family history was associated with a higher risk of gout in both sexes, but men had a higher risk. Notably, men having both siblings and parents with gout had the highest risk of gout.
Collapse
Affiliation(s)
- Hao-Hung Tsai
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan
- College of Medicine, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan
- Department of Medical Imaging, School of Medicine, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan
| | - Disline Manli Tantoh
- Department of Medical Imaging, Chung Shan Medical University Hospital, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan
| | - Chih-Hsuan Hsiao
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan
| | - Ji-Han Zhong
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan.
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan.
| | - Yung-Po Liaw
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan.
- Department of Medical Imaging, Chung Shan Medical University Hospital, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan.
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110, Sec. 1 Jianguo N. Rd., Taichung City, 40201, Taiwan.
| |
Collapse
|
5
|
Han S, Luo Y, Liu B, Guo T, Qin D, Luo F. Dietary flavonoids prevent diabetes through epigenetic regulation: advance and challenge. Crit Rev Food Sci Nutr 2023; 63:11925-11941. [PMID: 35816298 DOI: 10.1080/10408398.2022.2097637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology of diabetes has been studied extensively in various countries, but effective prevention and treatment methods are still insufficient. In recent years, epigenetics has received increasing attention from researchers in exploring the etiology and treatment of diabetes. DNA methylation, histone modifications, and non-coding RNAs play critical roles in the occurrence, maintenance, and progression of diabetes and its complications. Therefore, preventing or reversing the epigenetic alterations that occur during the development of diabetes may reduce the individual and societal burden of the disease. Dietary flavonoids serve as natural epigenetic modulators for the discovery of biomarkers for diabetes prevention and the development of alternative therapies. However, there is limited knowledge about the potential beneficial effects of flavonoids on the epigenetics of diabetes. In this review, the multidimensional epigenetic effects of different flavonoid subtypes in diabetes were summarized. Furthermore, it was discussed that parental flavonoid diets might reduce diabetes incidence in offspring, which represent a promising opportunity to prevent diabetes in the future. Future work will depend on exploring anti-diabetic effects of different flavonoids with different epigenetic regulation mechanisms and clinical trials.Highlights• "Epigenetic therapy" could reduce the burden of diabetic patients• "Epigenetic diet" ameliorates diabetes• Targeting epigenetic regulations by dietary flavonoids in the diabetes prevention• Dietary flavonoids prevent diabetes via transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Liu
- Central South Food Science Institute of Grain and Oil Co., Ltd., Hunan Grain Group Co., Ltd, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Research Center of Rice Deep Processing and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
6
|
Miller RG, Mychaleckyj JC, Onengut-Gumuscu S, Orchard TJ, Costacou T. TXNIP DNA methylation is associated with glycemic control over 28 years in type 1 diabetes: findings from the Pittsburgh Epidemiology of Diabetes Complications (EDC) study. BMJ Open Diabetes Res Care 2023; 11:e003068. [PMID: 36604111 PMCID: PMC9827189 DOI: 10.1136/bmjdrc-2022-003068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION DNA methylation (DNAme) has been cross-sectionally associated with type 2 diabetes and hemoglobin A1c (HbA1c) in the general population. However, longitudinal data and data in type 1 diabetes are currently very limited. Thus, we performed an epigenome-wide association study (EWAS) in an observational type 1 diabetes cohort to identify loci with DNAme associated with concurrent and future HbA1cs, as well as other clinical risk factors, over 28 years. RESEARCH DESIGN AND METHODS Whole blood DNAme in 683 597 CpGs was analyzed in the Pittsburgh Epidemiology of Diabetes Complications study of childhood onset (<17 years) type 1 diabetes (n=411). An EWAS of DNAme beta values and concurrent HbA1c was performed using linear models adjusted for diabetes duration, sex, pack years of smoking, estimated cell type composition variables, and technical/batch covariates. A longitudinal EWAS of subsequent repeated HbA1c measures was performed using mixed models. We further identified methylation quantitative trait loci (meQTLs) for significant CpGs and conducted a Mendelian randomization. RESULTS DNAme at cg19693031 (Chr 1, Thioredoxin-Interacting Protein (TXNIP)) and cg21534330 (Chr 17, Casein Kinase 1 Isoform Delta) was significantly inversely associated with concurrent HbA1c. In longitudinal analyses, hypomethylation of cg19693031 was associated with consistently higher HbA1c over 28 years, and with higher triglycerides, pulse rate, and albumin:creatinine ratio (ACR) independently of HbA1c. We further identified 34 meQTLs in SLC2A1/SLC2A1-AS1 significantly associated with cg19693031 DNAme. CONCLUSIONS Our results extend prior findings that TXNIP hypomethylation relates to worse glycemic control in type 1 diabetes by demonstrating the association persists over the long term. Additionally, the associations with triglycerides, pulse rate, and ACR suggest TXNIP DNAme could play a role in vascular damage independent of HbA1c. These findings strengthen potential for interventions targeting TXNIP to improve glycemic control in type 1 diabetes through its role in SLC2A1/glucose transporter 1-mediated glucose regulation.
Collapse
Affiliation(s)
- Rachel G Miller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Trevor J Orchard
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tina Costacou
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|