1
|
Bahramibanan F, Taherkhani A, Najafi R, Alizadeh N, Ghadimipour H, Barati N, Derakhshandeh K, Soleimani M. Prognostic markers and molecular pathways in primary colorectal cancer with a high potential of liver metastases: a systems biology approach. Res Pharm Sci 2025; 20:121-141. [PMID: 40190820 PMCID: PMC11972027 DOI: 10.4103/rps.rps_128_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2025] Open
Abstract
Background and purpose Colorectal cancer (CRC) holds the position of being the third most prevalent cancer and the second primary cause of cancer-related fatalities on a global scale. Approximately 65% of CRC patients survive for 5 years following diagnosis. Metastasis and recurrence frequently occur in half of CRC patients diagnosed at the late stage. This study used bioinformatics analysis to identify key signaling pathways, hub genes, transcription factors, and protein kinases involved in transforming primary CRC with liver metastasis potential. Prognostic markers in CRC were also identified. Experimental approach The GSE81582 dataset was re-analyzed to identify differentially expressed genes (DEGs) in early CRC compared to non-tumoral tissues. A protein interaction network (PIN) was constructed, revealing significant modules and hub genes. Prognostic markers, transcription factors, and protein kinases were determined. Boxplot and gene set enrichment analyses were performed. Findings/Results This study identified 1113 DEGs in primary CRC compared to healthy controls. PIN analysis revealed 75 hub genes and 8 significant clusters associated with early CRC. The down-regulation of SUCLG2 and KPNA2 correlated with poor prognosis. SIN3A and CDK6 played crucial roles in early CRC transformation, affecting rRNA processing pathways. Conclusion and implications This study demonstrated several pathways, biological processes, and genes mediating the malignant transformation of healthy colorectal tissues to primary CRC and may help the prognosis and treatment of patients with early CRC.
Collapse
Affiliation(s)
- Fatemeh Bahramibanan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Neda Alizadeh
- Department of Anesthesiology and Critical Care, School of Medicine, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Hamidreza Ghadimipour
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Nastaran Barati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| |
Collapse
|
2
|
Qin R, Fan X, Huang Y, Chen S, Ding R, Yao Y, Wu R, Duan Y, Li X, Khan HU, Hu J, Wang H. Role of glucose metabolic reprogramming in colorectal cancer progression and drug resistance. Transl Oncol 2024; 50:102156. [PMID: 39405607 PMCID: PMC11736406 DOI: 10.1016/j.tranon.2024.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Colorectal cancer (CRC), with the incidence and mortality rising on a yearly basis, greatly threatens people's health. It is considered an important hallmark of tumorigenesis that aberrant glucose metabolism in cancer cells, particularly the Warburg effect. In CRC, the Warburg effect predominantly influences cancer development and progression via its involvement in the glycolytic pathway regarding cell metabolism. The critical mechanisms underlying this process include key glycolytic enzymes, transport proteins, regulatory molecules, and signaling pathways. Furthermore, targeting the reprogrammed glucose metabolism in cancer cells can be potentially used for CRC treatment. However, the mechanisms driving CRC onset and progression, especially in relation to glucose metabolism reprogramming, are not fully understood and represent an emerging field of research. The review aims at providing new insights into the role that glucose metabolism reprogramming plays in the progression of CRC progression together with its resistance to treatment. Ultimately, these insights strive to diminish the risks of CRC metastasis and recurrence.
Collapse
Affiliation(s)
- Rong Qin
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Xirui Fan
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Yun Huang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Sijing Chen
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Rui Ding
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Ying Yao
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Rui Wu
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Yiyao Duan
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Xiang Li
- Kunming Medical University, Kunming, Yunnan 650500, China
| | - Hameed Ullah Khan
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China
| | - Jun Hu
- The First People's Hospital of Kunming, Yunnan 650034, China.
| | - Hui Wang
- Department of Gastroenterology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, China; Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, China.
| |
Collapse
|
3
|
Liu Z, Lin Z, Jiang M, Zhu G, Xiong T, Cao F, Cui Y, Niu YN. Cancer-associated fibroblast exosomes promote prostate cancer metastasis through miR-500a-3p/FBXW7/HSF1 axis under hypoxic microenvironment. Cancer Gene Ther 2024; 31:698-709. [PMID: 38351137 DOI: 10.1038/s41417-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Metastasis is the main cause of deaths in prostate cancer (PCa). However, the exact mechanisms underlying PCa metastasis are not fully understood. In this study, we discovered pronounced hypoxia in primary lesions of metastatic PCa(mPCa). The exosomes secreted by cancer-associated fibroblasts (CAFs) under hypoxic conditions significantly enhance PCa metastasis both in vitro and in vivo. Through miRNA sequencing and reverse transcription quantitative PCR (RT-qPCR), we found that hypoxia elevated miR-500a-3p levels in CAFs exosomes. Subsequent RT-qPCR, western blotting, and dual luciferase reporter assays identified F-box and WD repeat domain-containing 7(FBXW7) as a target of miR-500a-3p. In addition, immunohistochemistry revealed that FBXW7 expression decreased with the progression of PCa, while heat shock transcription factor 1(HSF1) expression increased. Introducing an FBXW7 plasmid into PCa cells reduced their metastatic potential and significantly lowered HSF1 expression. These findings suggest that CAFs exosomes drive PCa metastasis via the miR-500a-3p/FBXW7/HSF1 axis in a hypoxic microenvironment. Targeting either hypoxia or exosomal miR-500a-3p could be a promising strategy for PCa management.
Collapse
Affiliation(s)
- Zhanliang Liu
- Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Zhemin Lin
- Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Mingxin Jiang
- Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Guangyi Zhu
- Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Tianyu Xiong
- Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China
| | - Fang Cao
- Cancer Hospital, Chinese Academy of Medical Science, 100021, Beijing, China
| | - Yun Cui
- Beijing Chaoyang Hospital, Capital Medical University, 100016, Beijing, China.
| | - Y N Niu
- Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.
| |
Collapse
|
4
|
Hashemi M, Abbaszadeh S, Rashidi M, Amini N, Talebi Anaraki K, Motahhary M, Khalilipouya E, Harif Nashtifani A, Shafiei S, Ramezani Farani M, Nabavi N, Salimimoghadam S, Aref AR, Raesi R, Taheriazam A, Entezari M, Zha W. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. ENVIRONMENTAL RESEARCH 2023; 233:116458. [PMID: 37348629 DOI: 10.1016/j.envres.2023.116458] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/11/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Abbaszadeh
- Faculty of Medicine, Islamic Azad University Tonekabon Branch, Tonekabon, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafisesadat Amini
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ensi Khalilipouya
- Department of Radiology, Mahdiyeh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sasan Shafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
| | - Rasoul Raesi
- Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
5
|
Liu Z, Zhou X, Chen B, Wu Z, Zhang C, Gu C, Li J, Yang X. Noncoding RNAs-based high KIF26B expression correlates with poor prognosis and tumor immune infiltration in colon cancer. Cell Cycle 2023; 22:1726-1742. [PMID: 37436127 PMCID: PMC10446804 DOI: 10.1080/15384101.2023.2222520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The protein kinesin family member 26B (KIF26B) is aberrantly expressed in various cancers. However, its particular role and association with tumor immune infiltration in colon adenocarcinoma (COAD) remain unclear. METHODS All original data were downloaded directly from The Cancer Genome Atlas (TCGA), UCSC Xena, and Gene Expression Omnibus (GEO) databases and processed with R 3.6.3. KIF26B expression was analyzed using Oncomine, TIMER, TCGA, GEO databases, and our clinical specimens. KIF26B expression at the protein level was explored with Human Protein Atlas (HPA) database. The upstream miRNAs and lncRNAs were predicted by StarBase and validated using RT-qPCR. Correlation of KIF26B expression with the expression of immune-related or immune checkpoint genes and GSEA analysis of KIF26B-related genes were investigated via R software. Relationship of KIF26B expression with immune biomarkers or tumor immune infiltration levels was studied through GEPIA2 and TIMER databases. RESULTS KIF26B was upregulated, and its overexpression was closely related to overall survival (OS), disease-specific survival (DSS), progression-free interval (PFI), T stage, N stage, and CEA levels in COAD. MIR4435-2HG/hsa-miR-500a-3p/KIF26B axis was identified as the promising regulatory pathway of KIF26B. KIF26B expression was positively correlated with immune-related genes, tumor immune infiltration, and biomarker genes of immune cells in COAD, and KIF26B-related genes were significantly enriched in macrophage activation-related pathways. Expression of immune checkpoint genes, including PDCD1, CD274, and CTLA4, was also closely related to KIF26B expression. CONCLUSIONS Our results clarified that ncRNA-based increased KIF26B expression was associated with a worse prognosis and high tumor immune infiltration in COAD.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Chen
- Nursing Department, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziyu Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cuifeng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Changji Gu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Li
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
FOXO1-Induced miR-502-3p Suppresses Colorectal Cancer Cell Growth through Targeting CDK6. JOURNAL OF ONCOLOGY 2023; 2023:2541391. [PMID: 36755807 PMCID: PMC9899593 DOI: 10.1155/2023/2541391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 02/01/2023]
Abstract
Colorectal cancer (CRC) is the most common tumor of the digestive system and the third most common tumor worldwide. To date, the prognosis of CRC patients remains poor. It is urgent to identify new therapeutic targets for CRC. As a tumor suppresser, microRNA (miRNA) miR-502-5p is downregulated in CRC tissues. Nevertheless, the role of miR-502-3p in CRC is largely unclear. Besides, the transcript factor forkhead box protein O1 (FOXO1) could suppress the CRC cell growth. However, the effect of FOXO1 on miR-502-3p in CRC remains unknown. By contrast, cyclin-dependent kinases 6 (CDK6) promotes the CRC cell growth. Yet the regulatory effect of miR-502-3p on CDK6 in CRC has not been reported. Thus, the primary aim of this study was to investigate whether FOXO1 enhanced miR-502-3p expression to suppress the CRC cell growth by targeting CDK6. Here, RNA level and protein level were detected by quantitative reverse transcription-PCR (qRT-PCR) and western blot (WB), respectively. Besides, the cell growth was detected by Cell Counting Kit 8 (CCK8) assay. Moreover, the regulatory effect of FOXO1 on miR-502-3p or miR-502-3p on CDK6 was determined using dual-luciferase reporter gene (DLR) assay. Results revealed that miR-502-3p and FOXO1 were downregulated in CRC cells. Besides, miR-502-3p suppressed the CRC cell growth. Moreover, FOXO1 could increase the miR-502-3p level through facilitating MIR502 transcription in CRC cells. In addition, miR-502-3p could suppress the CRC cell growth by targeting CDK6. These findings indicated that FOXO1 induced miR-502-3p expression to suppress the CRC cell growth through targeting CDK6, which might provide new therapeutic targets for CRC.
Collapse
|
7
|
Yan S, Wang S, Wang X, Dai W, Chu J, Cheng M, Guo Z, Xu D. Emerging role of non-coding RNAs in glucose metabolic reprogramming and chemoresistance in colorectal cancer. Front Oncol 2022; 12:954329. [PMID: 35978828 PMCID: PMC9376248 DOI: 10.3389/fonc.2022.954329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Metabolic reprogramming plays a critical role in colorectal cancer (CRC). It contributes to CRC by shaping metabolic phenotypes and causing uncontrolled proliferation of CRC cells. Glucose metabolic reprogramming is common in carcinogenesis and cancer progression. Growing evidence has implicated the modifying effects of non-coding RNAs (ncRNAs) in glucose metabolic reprogramming and chemoresistance in CRC. In this review, we have summarized currently published studies investigating the role of ncRNAs in glucose metabolic alterations and chemoresistance in CRC. Elucidating the interplay between ncRNAs and glucose metabolic reprogramming provides insight into exploring novel biomarkers for the diagnosis and prognosis prediction of CRC.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery of the Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Shufeng Wang
- Medical Experimental Training Center, Weifang Medical University, Weifang, China
| | - Xinyi Wang
- Clinical Medicine of Basic Medical School, Shandong First Medical University, Jinan, China
| | - Wenqing Dai
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Jinjin Chu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Zhiliang Guo
- Department of Spine Surgery, The 80th Group Army Hospital of Chinese People’s Liberation Army (PLA), Weifang, China
- *Correspondence: Zhiliang Guo, ; Donghua Xu,
| | - Donghua Xu
- Central Laboratory of the First Affiliated Hospital, Weifang Medical University, Weifang, China
- Department of Rheumatology of the First Affiliated Hospital, Weifang Medical University, Weifang, China
- *Correspondence: Zhiliang Guo, ; Donghua Xu,
| |
Collapse
|
8
|
Baig MH, Yousuf M, Khan MI, Khan I, Ahmad I, Alshahrani MY, Hassan MI, Dong JJ. Investigating the Mechanism of Inhibition of Cyclin-Dependent Kinase 6 Inhibitory Potential by Selonsertib: Newer Insights Into Drug Repurposing. Front Oncol 2022; 12:865454. [PMID: 35720007 PMCID: PMC9204300 DOI: 10.3389/fonc.2022.865454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/23/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play significant roles in numerous physiological, and are considered an attractive drug target for cancer, neurodegenerative, and inflammatory diseases. In the present study, we have aimed to investigate the binding affinity and inhibitory potential of selonsertib toward CDK6. Using the drug repurposing approach, we performed molecular docking of selonsertib with CDK6 and observed a significant binding affinity. To ascertain, we further performed essential dynamics analysis and free energy calculation, which suggested the formation of a stable selonsertib-CDK6 complex. The in-silico findings were further experimentally validated. The recombinant CDK6 was expressed, purified, and treated with selonsertib. The binding affinity of selonsertib to CDK6 was estimated by fluorescence binding studies and enzyme inhibition assay. The results indicated an appreciable binding of selonsertib against CDK6, which subsequently inhibits its activity with a commendable IC50 value (9.8 μM). We concluded that targeting CDK6 by selonsertib can be an efficient therapeutic approach to cancer and other CDK6-related diseases. These observations provide a promising opportunity to utilize selonsertib to address CDK6-related human pathologies.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mohd. Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, BezmialemVakif University, Istanbul, Turkey
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Ren H, Wang Y, Guo Y, Wang M, Ma X, Li W, Guo Y, Li Y. Matrine impedes colorectal cancer proliferation and migration by downregulating endoplasmic reticulum lipid raft associated protein 1 expression. Bioengineered 2022; 13:9780-9791. [PMID: 35412433 PMCID: PMC9161898 DOI: 10.1080/21655979.2022.2060777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Matrine exhibits anti-tumor effect on the proliferation and invasion of colorectal cancer (CRC) cells by reducing the activity of the p38 signaling pathway. However, these studies were limited because the underlying mechanism by which matrine inhibited CRC progression remained unclear. In this study, we provided for the first time that endoplasmic reticulum lipid raft associated protein 1 (Erlin1) is a novel target of matrine. Erlin1 was significantly upregulated in tumors and its knockdown suppressed the proliferation and migration of CRC cells, while its overexpression promoted CRC cell growth and migration. Furthermore, Erlin1 overexpression promoted inhibited apoptosis. Importantly, matrine treatment could reverse the oncogenic function of Erlin1 on CRC cell proliferation and migration. When Erlin1 was knocked down, matrine exhibited a more obvious anti-tumor effect in CRC cells. Partly due to this, matrine functions as an important anti-tumor drug and the results discovered here may clarify the mechanisms of matrine application for CRC treatment. CRC patients with low expression of Erlin1 might be more suitable for the treatment of matrine. This study could promote the application of matrine to be a promising therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Hongtao Ren
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yali Wang
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Guo
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mincong Wang
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiulong Ma
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wen Li
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuyan Guo
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yiming Li
- Department of General Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|