1
|
Liu J, Huang H, Zhang X, Shen Y, Jiang D, Hu S, Li S, Yan Z, Hu W, Luo J, Yao H, Chen Y, Tang B. Unveiling the Cuproptosis in Colitis and Colitis-Related Carcinogenesis: A Multifaceted Player and Immune Moderator. RESEARCH (WASHINGTON, D.C.) 2025; 8:0698. [PMID: 40370501 PMCID: PMC12076167 DOI: 10.34133/research.0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Cuproptosis represents a novel mechanism of cellular demise characterized by the intracellular buildup of copper ions. Unlike other cell death mechanisms, its distinct process has drawn considerable interest for its promising applications in managing inflammatory bowel disease (IBD) and colorectal cancer (CRC). Emerging evidence indicates that copper metabolism and cuproptosis may exert dual regulatory effects within pathological cellular environments, specifically modulating oxidative stress responses, metabolic reprogramming, and immunotherapeutic efficacy. An appropriate level of copper may promote disease progression and exert synergistic effects, but exceeding a certain threshold, copper can inhibit disease development by inducing cuproptosis in pathological cells. This makes abnormal copper levels a potential new therapeutic target for IBD and CRC. This review emphasizes the dual function of copper metabolism and cuproptosis in the progression of IBD and CRC, while also exploring the potential application of copper-based therapies in disease treatment. The analysis further delineates the modulatory influence of tumor immune microenvironment on cuproptosis dynamics, while establishing the therapeutic potential of cuproptosis-targeted strategies in circumventing resistance to both conventional chemotherapeutic agents and emerging immunotherapies. This provides new research directions for the development of future cuproptosis inducers. Finally, this article discusses the latest advances in potential molecular targets of cuproptosis and their related genes in the treatment of IBD and CRC, highlighting future research priorities and unresolved issues.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hairuo Huang
- China Medical University, Shenyang 110122, China
| | - Xiaojie Zhang
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yang Shen
- Department of Radiation Oncology, Zhongshan Hospital,
Fudan University, Shanghai 200000, China
| | - DeMing Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering,
Zhejiang University, Hangzhou 310007, China
| | - Shurong Hu
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuyan Li
- Department of Nursing, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zelin Yan
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University,
Zhejiang Provincial Key Laboratory of Gastrointestinal Diseases Pathophysiology, Hangzhou 310006, China
| | - Wen Hu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University,
Zhejiang Provincial Key Laboratory of Gastrointestinal Diseases Pathophysiology, Hangzhou 310006, China
| | - Jinhua Luo
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Haibo Yao
- Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People’s Hospital,
Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, China
| | - Yan Chen
- Department of Gastroenterology, the Second Affiliated Hospital,
Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Bufu Tang
- Department of Interventional Radiology, Zhongshan Hospital,
Fudan University, Shanghai 200000, China
| |
Collapse
|
2
|
Zhao W, Zhang Z, Xie M, Ding F, Zheng X, Sun S, Du J. Exploring tumor-associated macrophages in glioblastoma: from diversity to therapy. NPJ Precis Oncol 2025; 9:126. [PMID: 40316746 PMCID: PMC12048723 DOI: 10.1038/s41698-025-00920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
Glioblastoma is the most aggressive and lethal cancer of the central nervous system, presenting substantial treatment challenges. The current standard treatment, which includes surgical resection followed by temozolomide and radiation, offers limited success. While immunotherapies, such as immune checkpoint inhibitors, have proven effective in other cancers, they have not demonstrated significant efficacy in GBM. Emerging research highlights the pivotal role of tumor-associated macrophages (TAMs) in supporting tumor growth, fostering treatment resistance, and shaping an immunosuppressive microenvironment. Preclinical studies show promising results for therapies targeting TAMs, suggesting potential in overcoming these barriers. TAMs consist of brain-resident microglia and bone marrow-derived macrophages, both exhibiting diverse phenotypes and functions within the tumor microenvironment. This review delves into the origin, heterogeneity, and functional roles of TAMs in GBM, underscoring their dual roles in tumor promotion and suppression. It also summarizes recent progress in TAM-targeted therapies, which may, in combination with other treatments like immunotherapy, pave the way for more effective and personalized strategies against this aggressive malignancy.
Collapse
Affiliation(s)
- Wenwen Zhao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhi Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mingyuan Xie
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Feng Ding
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiangrong Zheng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shicheng Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianyang Du
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
3
|
Manara MC, Fiori V, Sparti A, Scotlandi K. CD99: A Key Regulator in Immune Response and Tumor Microenvironment. Biomolecules 2025; 15:632. [PMID: 40427525 DOI: 10.3390/biom15050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
CD99 is a membrane protein critical for various immunological functions, including T-cell activation, protein trafficking, cell apoptosis, and leukocyte movement. It is also highly expressed in certain malignant tumors, contributing to the development, invasion, immune evasion, and adaptation of tumor cells to stress stimuli, including drug resistance. CD99 is crucial at the intersection of normal biological processes and pathological conditions like cancer. While research indicates that CD99 may interact homotypically, there is evidence of some heterotypic ligands that align with its roles. The development of multiple anti-CD99 antibodies has shed light on its functions, particularly regarding interactions between tumor cells that overexpress CD99 and immune cells expressing the same protein within the microenvironment. Anti-CD99 antibodies effectively eliminate tumors and attract immune cells to the tumor area. Additionally, CD99 influences the expression of specific immune checkpoint molecules, such as CD47, paving the way for potential combinations of anti-CD99 with immune checkpoint inhibitors. This review explores CD99's role in normal physiology and cancer biology, focusing on how monoclonal antibodies affect CD99 expression and activity, thereby influencing cancer cells' interactions with their microenvironment. It summarizes key findings about how these changes impact cancer cell behavior and the effectiveness of treatments.
Collapse
Affiliation(s)
- Maria Cristina Manara
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | | | - Angelo Sparti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
4
|
Zhou Y, Zhao Z, Jiang C, Nie C, Xiao D, Wu Z, Yu H, Zheng J, Wang X, Jiang X. LINC01088 prevents ferroptosis in glioblastoma by enhancing SLC7A11 via HLTF/USP7 axis. Clin Transl Med 2025; 15:e70257. [PMID: 40000422 PMCID: PMC11859122 DOI: 10.1002/ctm2.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM)is a highly aggressive malignancy of the central nervous system characterized by poor survival rates. Ferroptosis, an iron-dependent cell death pathway, is a promising therapeutic target for GBM. However, current treatments targeting cell death pathways have not yielded expected results. Long noncoding RNAs (lncRNAs) have been implicated in tumour proliferation, however, their role in ferroptosis in GBM remains underexplored. This study investigated the interplay between the lncRNA LINC01088 and ferroptosis in GBM to identify novel therapeutic strategies. METHODS We conducted gain- and loss-of-function studies to assess the impact of LINC01088 on GBM tumourigenesis and ferroptosis both in vitro and in vivo. Bioinformatics, dual-luciferase reporter assays, chromatin immunoprecipitation, RNA pulldown, mass spectrometry, RNA immunoprecipitation (RIP), and transcriptome sequencing were utilized to elucidate the mechanisms underlying LINC01088 expression and its downstream effects on ferroptosis. RESULTS The transcription factor specificity protein 1 (SP1) was identified as the promoter of LINC01088 transcription, which facilitated GBM progression. LINC01088 was found to inhibit ferroptosis and promote malignancy. Mechanistically, LINC01088 stabilized HLTF by enhancing its interaction with USP7 and preventing ubiquitin-mediated degradation. The stabilization of HLTF led to the upregulation of SLC7A11, which inhibits ferroptosis in GBM. Rescue experiments confirmed that altering HLTF levels reversed the ferroptotic phenotypes associated with LINC01088 modulation. CONCLUSION This study revealed a novel SP1/LINC01088/HLTF/USP7/SLC7A11 axis that regulates ferroptosis in GBM, highlighting LINC01088 as a potential therapeutic target for ferroptosis-dependent GBM treatment. KEY POINTS LINC01088 is transcriptionally upregulated by SP1. LINC01088 acts as a scaffold platform to bind USP7 and HLTF. USP7, as a deubiquitinating enzyme of HLTF, participates in inhibiting the ubiquitin-proteasome degradation of HLTF. HLTF transcriptionally upregates the expression of downstream SLC7A11, and ferroptosis of GBM cells was inhibited.
Collapse
Affiliation(s)
- Yujie Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cheng Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chuansheng Nie
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhipeng Wu
- Department of NeurosurgeryWeifang People's HospitalWeifangShandongChina
| | - Hao Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
5
|
Mo Y, Fan D, Wang W, Wang S, Yan Y, Zhao Z. Identification of inflammation-related genes signature to establish a prognostic model in MGMT unmethylated glioblastoma patients. Discov Oncol 2025; 16:154. [PMID: 39932605 DOI: 10.1007/s12672-025-01894-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Patients with unmethylated O6-methylguanine-DNA methyltransferase promoter (uMGMT) glioblastoma (GBM) have a poor prognosis. Inflammatory response can affect the prognosis, for it may have a significant impact on the tumor microenvironment (TME). This study aims to identify a prognostic signature of inflammation-related genes, which can predict the prognosis of uMGMT GBM patients. METHODS We examined the gene expression, somatic mutations, and overall survival of 159 GBM patients with uMGMT using the TCGA and CGGA databases. We identified molecular subtypes of uMGMT GBM patients based on the expression of inflammation-related genes. Furthermore, we determined principal component analysis (PCA), gene ontology (GO) analysis, pathway analysis and immune infiltration analysis between high and low-inflammation subtypes. We also examined the spatial and longitudinal heterogeneity of these two subtypes. The LASSO-Cox analyses were used to develop an inflammation-related prognostic model. RESULTS Our findings indicate that patients with uMGMT GBM can be divided into high-inflammation and low-inflammation subtypes. Patients with high levels of inflammation are more likely to develop an immunosuppressive microenvironment, which stimulates the production of immunosuppressive cytokines, immune checkpoints, and immunosuppressive cells. Nine inflammation-related genes (EREG, BDKRB1, DCBLD2, CD14, AHR, CLEC5A, LTA, SLC4A4, and LY6E) were found to have excellent predictive potential for patient survival in the prognostic model. CONCLUSIONS In conclusion, we created a new prognostic model including 9 inflammation-related genes. This model has produced meaningful results in evaluating patient prognosis, which may help with future therapeutic strategies for patients with uMGMT GBM.
Collapse
Affiliation(s)
- Yunzhao Mo
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Dandan Fan
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Wei Wang
- Department of Pathology, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Shenchuan Wang
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China
| | - Yingyu Yan
- Quality Management Department, The 921st Hospital of the Joint Logistics Support Force, Changsha, 410008, China
| | - Zhenyu Zhao
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, 510010, China.
| |
Collapse
|
6
|
Chen Y, Zhang J, Zheng W, Xu H. Cuproptosis-related lncRNAs and genes: Potential markers for glioblastoma prognosis and treatment. PLoS One 2025; 20:e0315927. [PMID: 39913607 PMCID: PMC11801720 DOI: 10.1371/journal.pone.0315927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/03/2024] [Indexed: 02/11/2025] Open
Abstract
Despite the availability of various treatment options, glioblastoma (GBM) remains an extremely aggressive form of glioma with a poor prognosis. In recent studies, regulatory cell death (RCD) has been identified as an effective mechanism to suppress glioma. Cuproptosis, caused by intracellular copper, is a novel RCD process that affects chemotherapy efficacy and glioma progression; however, the precise function of cuproptosis-related lncRNAs (CRLs) and cuproptosis-related genes (CRGs) in GBM remains uncertain. To determine whether CRLs and CRGs have prognostic significance, a GBM cohort in TCGA to build a novel cuproptosis-related risk model. Two high-risk CRLs (AC091182.2, AC005229.4) and their co-expression CRGs (LIPT2, GLS) were identified and verified to constitute an independent prognostic indicator of GBM. RT-qPCR analysis confirmed that the high-risk CRLs and CRGs were highly expressed in GBM cells compared to normal astrocytes. By constructing a mouse GBM model, high-risk CRLs and CRGs were found to be expressed at higher levels in tumor tissues. Furthermore, to verify whether these CRLs and CRGs are associated with GBM cuproptosis, cuproptosis cell models were constucted in GBM cell lines and astrocyte by using Elesclomol and CuCl2. It was found that the expression of high-risk CRLs and CRGs was decreased upon cuproptosis-induced in GBM cells. Interestingly, normal astrocytes were less sensitive than GBM cells to cuproptosis-inducing drugs, and the effects of the drugs on the expression of the CRLs and CRGs in normal astrocytes were opposite to that of in GBM cells. In conclusion, by constructing a novel cuproptosis-related risk model, two high-risk CRLs and CRGs were identified. Their specific pointing to GBM has been demonstrated through a variety of experiments. These CRLs and CRGs might serve as prognostic markers and indicators for GBM and provide theoretical support for future GBM treatment.
Collapse
Affiliation(s)
- Yajia Chen
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jingxian Zhang
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqian Zheng
- Shantou University Medical College, Shantou, Guangdong, China
| | - Hongwu Xu
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
7
|
Zhang S, Huang Q, Ji T, Li Q, Hu C. Copper homeostasis and copper-induced cell death in tumor immunity: implications for therapeutic strategies in cancer immunotherapy. Biomark Res 2024; 12:130. [PMID: 39482784 PMCID: PMC11529036 DOI: 10.1186/s40364-024-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Copper is an important trace element for maintaining key biological functions such as cellular respiration, nerve conduction, and antioxidant defense. Maintaining copper homeostasis is critical for human health, and its imbalance has been linked to various diseases, especially cancer. Cuproptosis, a novel mechanism of copper-induced cell death, provides new therapeutic opportunities for metal ion regulation to interact with cell fate. This review provides insights into the complex mechanisms of copper metabolism, the molecular basis of cuproptosis, and its association with cancer development. We assess the role of cuproptosis-related genes (CRGs) associated with tumorigenesis, their importance as prognostic indicators and therapeutic targets, and the impact of copper homeostasis on the tumor microenvironment (TME) and immune response. Ultimately, this review highlights the complex interplay between copper, cuproptosis, and cancer immunotherapy.
Collapse
Affiliation(s)
- Suhang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China
| | - Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tuo Ji
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| |
Collapse
|
8
|
Sun L, Shao W, Lin Z, Lin J, Zhao F, Yu J. Single-cell RNA sequencing explored potential therapeutic targets by revealing the tumor microenvironment of neuroblastoma and its expression in cell death. Discov Oncol 2024; 15:409. [PMID: 39235657 PMCID: PMC11377405 DOI: 10.1007/s12672-024-01286-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and is closely related to the early development and differentiation of neuroendocrine (NE) cells. The disease is mainly represented by high-risk NB, which has the characteristics of high mortality and difficult treatment. The survival rate of high-risk NB patients is not ideal. In this article, we not only conducted a comprehensive study of NB through single-cell RNA sequencing (scRNA-seq) but also further analyzed cuproptosis, a new cell death pathway, in order to find clinical treatment targets from a new perspective. MATERIALS AND METHODS The Seurat software was employed to process the scRNA-seq data. This was followed by the utilization of GO enrichment analysis and GSEA to unveil pertinent enriched pathways. The inferCNV software package was harnessed to investigate chromosomal copy number variations. pseudotime analyses involved the use of Monocle 2, CytoTRACE, and Slingshot software. CellChat was employed to analyze the intercellular communication network for NB. Furthermore, PySCENIC was deployed to review the profile of transcription factors. RESULT Using scRNA-seq, we studied cells from patients with NB. NE cells exhibited superior specificity in contrast to other cell types. Among NE cells, C1 PCLAF + NE cells showed a close correlation with the genesis and advancement of NB. The key marker genes, cognate receptor pairing, developmental trajectories, metabolic pathways, transcription factors, and enrichment pathways in C1 PCLAF + NE cells, as well as the expression of cuproptosis in C1 PCLAF + NE cells, provided new ideas for exploring new therapeutic targets for NB. CONCLUSION The results revealed the specificity of malignant NE cells in NB, especially the key subset of C1 PCLAF + NE cells, which enhanced our understanding of the key role of the tumor microenvironment in the complexity of cancer progression. Of course, cell death played an important role in the progression of NB, which also promoted our research on new targets. The scrutiny of these findings proved advantageous in uncovering innovative therapeutic targets, thereby bolstering clinical interventions.
Collapse
Affiliation(s)
- Lei Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Wenwen Shao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Jingheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Fu Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Juan Yu
- Pediatric Tuina Health Care Clinic, Shandong University of Traditional Chinese Medicine Affiliated Hospital, No. 16369, Jingshi Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
9
|
Zhao Z, Zhou Y, Lv P, Zhou T, Liu H, Xie Y, Wu Z, Wang X, Zhao H, Zheng J, Jiang X. NSUN4 mediated RNA 5-methylcytosine promotes the malignant progression of glioma through improving the CDC42 mRNA stabilization. Cancer Lett 2024; 597:217059. [PMID: 38876383 DOI: 10.1016/j.canlet.2024.217059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
5-Methylcytosine (m5C) methylation is a significant post-transcriptional modification that play a crucial role in the development and progression of numerous cancers. Whereas the functions and molecular mechanisms underlying m5C methylation in gliomas remain unclear. This study dedicated to explore changes of m5C levels and the clinical significance of the m5C writer NSUN4 in gliomas. We found that high m5C levels were negatively related to prognosis of patients with glioma. Moreover, gain- and loss-of-function experiments revealed the role of NSUN4 in enhancing m5C modification of mRNA to promote the malignant progression of glioma. Mechanistically speaking, NSUN4-mediated m5C alterations regulated ALYREF binding to CDC42 mRNA, thereby impacting the mRNA stability of CDC42. We also demonstrated that CDC42 promoted glioma proliferation, migration, and invasion by activating the PI3K-AKT pathway. Additionally, rescue experiments proved that CDC42 overexpression weaken the inhibitory effect of NSUN4 knockdown on the malignant progression of gliomas in vitro and in vivo. Our findings elucidated that NSUN4-mediated high m5C levels promote ALYREF binding to CDC42 mRNA and regulate its stability, thereby driving the malignant progression of glioma. This provides theoretical support for targeted the treatment of gliomas.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujie Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Zhou
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hanyuan Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Youxi Xie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhipeng Wu
- Department of Neurosurgery, Weifang People's Hospital, Weifang, China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
10
|
Mutlucan UO, Bedel C, Selvi F, Zortuk Ö, Türk CÇ, Korkut M. The effect of indicators of CALLY index on survival in glioblastoma. Ir J Med Sci 2024; 193:2029-2033. [PMID: 38561591 DOI: 10.1007/s11845-024-03666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Glioblastoma is the most common primary brain tumor in adults. Recently, research has been published on the potential prognostic indicators associated with different types of cancer. Due to the limited availability of data investigating the relationship between the CALLY index and glioblastoma patients, we aimed to conduct this study. MATERIALS AND METHODS Between January 2017 and December 2023, we conducted a study on patients diagnosed with glioblastoma. We collected demographic data and routine laboratory tests at the time of admission. To calculate the CALLY index, we used the formula (albumin value × lymphocyte count) / CRP value × 104. Parameters were compared for in-hospital mortality across different groups. RESULTS The study analyzed 202 patients who met the inclusion criteria. Of these, 165 (81.7%) were classified as "survivors" and 37 (18.3%) as "deceased." A comparison of hematologic parameters between the two groups showed a significantly lower CALLY index in the "deceased" group (3.05 (4.92)) compared to the "survivor" group (10.13 (13.69)) (p < 0.001). The study compared the parameters between groups with regard to in-hospital mortality. CONCLUSIONS Based on the results of the study, we conclude that the CALLY index can be considered an easily applicable indicator for the mortality of glioblastoma patients.
Collapse
Affiliation(s)
- Umut Ogün Mutlucan
- Department of Neurosurgery, Health Science University Antalya Training and Research Hospital, Antalya, Turkey
| | - Cihan Bedel
- Department of Emergency Medicine, Health Science University Antalya Training and Research Hospital, Muratpaşa, Antalya, Turkey.
| | - Fatih Selvi
- Department of Emergency Medicine, Health Science University Antalya Training and Research Hospital, Muratpaşa, Antalya, Turkey
| | - Ökkeş Zortuk
- Department of Emergency Medicine, Health Science University Antalya Training and Research Hospital, Muratpaşa, Antalya, Turkey
| | - Cezmi Çağrı Türk
- Department of Neurosurgery, Health Science University Antalya Training and Research Hospital, Antalya, Turkey
| | - Mustafa Korkut
- Department of Emergency Medicine, Health Science University Antalya Training and Research Hospital, Muratpaşa, Antalya, Turkey
| |
Collapse
|
11
|
Nafe R, Hattingen E. Forms of Non-Apoptotic Cell Death and Their Role in Gliomas-Presentation of the Current State of Knowledge. Biomedicines 2024; 12:1546. [PMID: 39062119 PMCID: PMC11274595 DOI: 10.3390/biomedicines12071546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In addition to necrosis and apoptosis, the two forms of cell death that have been known for many decades, other non-apoptotic forms of cell death have been discovered, many of which also play a role in tumors. Starting with the description of autophagy more than 60 years ago, newer forms of cell death have become important for the biology of tumors, such as ferroptosis, pyroptosis, necroptosis, and paraptosis. In this review, all non-apoptotic and oncologically relevant forms of programmed cell death are presented, starting with their first descriptions, their molecular characteristics, and their role and their interactions in cell physiology and pathophysiology. Based on these descriptions, the current state of knowledge about their alterations and their role in gliomas will be presented. In addition, current efforts to therapeutically influence the molecular components of these forms of cell death will be discussed. Although research into their exact role in gliomas is still at a rather early stage, our review clarifies that all these non-apoptotic forms of cell death show significant alterations in gliomas and that important insight into understanding them has already been gained.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang Goethe-University, Schleusenweg 2-16, D-60528 Frankfurt am Main, Germany;
| | | |
Collapse
|
12
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Liu H, Bao X, Zeng Z, Liu W, Li M. Analysis of cuproptosis-related genes in prognosis and immune infiltration in grade 4 diffuse gliomas. Heliyon 2024; 10:e29212. [PMID: 38633656 PMCID: PMC11021980 DOI: 10.1016/j.heliyon.2024.e29212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Background Grade 4 diffuse gliomas are highly malignant tumours with poor prognosis. Cuproptosis is a novel form of cell death. Cuproptosis genes are associated with various tumours and affect the prognosis of patients with these tumours. However, the relationship between cuproptosis and grade 4 diffuse gliomas remains unclear. Methods Differentially expressed genes associated with cuproptosis in grade 4 diffuse gliomas were identified. Second, the prognostic model was established by univariate and multivariate COX regression analyses, and the genes (p < 0.05) were selected for subsequent analysis. The endpoint of the study was death. Single-gene analysis was performed in accordance with the expression levels of SLC31A1. Third, based on the expression levels of SLC31A1, gene function enrichment, drug sensitivity, and immune cell infiltration analyses were performed. Finally, the expression and biological functions of SLC31A1 in grade 4 diffuse gliomas were identified using immunohistochemical staining, qRT-PCR, and related biological experiments. Results We identified six coproptosis genes in the grade 4 diffuse gliomas dataset (SLC31A1, PDHA1, GLS, FDX1, LIPT1, and ATP7B). The six key cuproptosis genes of grade 4 diffuse gliomas were analysed using univariate COX analysis. Basic patient data, including age, race, year of diagnosis, sex, and treatment, were included in the univariate COX analysis. Then, multivariate COX analysis was performed for the factors with p < 0.2 in the univariate COX analysis. Age, year of diagnosis, and SLC31A1, PDHA1, and FDX1 levels were found to be independent prognostic factors. A nomogram was constructed using these 5 factors. Through experiments, we found that SLC31A1 had a higher expression level in cancer tissue than that near cancer among the three genes, SLC31A1, PDHA1, and FDX1; therefore, we focused on SLC31A1. According on the expression level of SLC31A1, we performed gene function enrichment, drug sensitivity, and immune cell infiltration analyses. Navitoclax was the most sensitive drug. Differential gene function enrichment was observed for metalloendopeptidase activity. SLC31A1 is expressed in dendritic cells, macrophages, neutrophils, and CD8+T cells. SLC31A1 is highly expressed in grade 4 diffuse gliomas, whereas SLC31A1 knockdown significantly reduces cell proliferation and mobility. Conclusions Age, year of diagnosis, and SLC31A1, PDHA1, and FDX1 expression were independent prognostic factors. A nomogram was constructed based on age, year of diagnosis, and SLC31A1, PDHA1, and FDX1 levels. Through analysis and experimental verification, SLC31A1 was found to affect the prognosis and progression of patients with grade 4 diffuse gliomas and was associated with immune cell infiltration.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Bao
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhirui Zeng
- School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Liu
- Department of Oncology, Changle County People's Hospital, Weifang, China
| | - Meifang Li
- Department of Oncology, Changle County People's Hospital, Weifang, China
| |
Collapse
|
14
|
Rocca A, Giudici F, Donofrio CA, Bottin C, Pinamonti M, Ferrari B, Schettini F, Pineda E, Panni S, Cominetti M, D’Auria P, Bianchini S, Varotti E, Ungari M, Ciccarelli S, Filippini M, Brenna S, Fiori V, Di Mambro T, Sparti A, Magnani M, Zanconati F, Generali D, Fioravanti A. CD99 Expression and Prognostic Impact in Glioblastoma: A Single-Center Cohort Study. Cells 2024; 13:597. [PMID: 38607036 PMCID: PMC11012029 DOI: 10.3390/cells13070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma is the most frequent and aggressive brain tumor in adults. This study aims to evaluate the expression and prognostic impact of CD99, a membrane glycoprotein involved in cellular migration and invasion. In a cohort of patients with glioblastoma treated with surgery, radiotherapy and temozolomide, we retrospectively analyzed tumor expression of CD99 by immunohistochemistry (IHC) and by quantitative real-time polymerase chain reaction (qRT-PCR) for both the wild type (CD99wt) and the truncated (CD99sh) isoforms. The impact on overall survival (OS) was assessed with the Kaplan-Meier method and log-rank test and by multivariable Cox regression. Forty-six patients with glioblastoma entered this study. Immunohistochemical expression of CD99 was present in 83%. Only the CD99wt isoform was detected by qRT-PCR and was significantly correlated with CD99 expression evaluated by IHC (rho = 0.309, p = 0.037). CD99 expression was not associated with OS, regardless of the assessment methodology used (p = 0.61 for qRT-PCR and p = 0.73 for IHC). In an exploratory analysis of The Cancer Genome Atlas, casuistry of glioblastomas CD99 expression was not associated with OS nor with progression-free survival. This study confirms a high expression of CD99 in glioblastoma but does not show any significant impact on survival. Further preclinical studies are needed to define its role as a therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Andrea Rocca
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Fabiola Giudici
- Cancer Epidemiology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Carmine Antonio Donofrio
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Maurizio Pinamonti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Benvenuto Ferrari
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), C. Villaroel 170, 08036 Barcelona, Spain
- Medical Oncology Department, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Estela Pineda
- Medical Oncology Department, Hospital Clínic of Barcelona, 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Stefano Panni
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marika Cominetti
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Patrizia D’Auria
- Neurosurgery, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | | - Elena Varotti
- Pathology Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marco Ungari
- Pathology Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Stefano Ciccarelli
- Radiotherapy Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Marzia Filippini
- Radiotherapy Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | - Sarah Brenna
- Radiotherapy Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | | | | - Angelo Sparti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
| | - Daniele Generali
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34147 Trieste, Italy
- Breast and Brain Unit, ASST Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | |
Collapse
|
15
|
Qin Z, Yang B, Jin X, Zhao H, Liu N. Cuproptosis in glioblastoma: unveiling a novel prognostic model and therapeutic potential. Front Oncol 2024; 14:1359778. [PMID: 38606090 PMCID: PMC11007140 DOI: 10.3389/fonc.2024.1359778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma, a notably aggressive brain tumor, is characterized by a brief survival period and resistance to conventional therapeutic approaches. With the recent identification of "Cuproptosis," a copper-dependent apoptosis mechanism, this study aimed to explore its role in glioblastoma prognosis and potential therapeutic implications. A comprehensive methodology was employed, starting with the identification and analysis of 65 cuproptosis-related genes. These genes were subjected to differential expression analyses between glioblastoma tissues and normal counterparts. A novel metric, the "CP-score," was devised to quantify the cuproptosis response in glioblastoma patients. Building on this, a prognostic model, the CP-model, was developed using Cox regression techniques, designed to operate on both bulk and single-cell data. The differential expression analysis revealed 31 genes with distinct expression patterns in glioblastoma. The CP-score was markedly elevated in glioblastoma patients, suggesting an intensified cuproptosis response. The CP-model adeptly stratified patients into distinct risk categories, unveiling intricate associations between glioblastoma prognosis, immune response pathways, and the tumor's immunological environment. Further analyses indicated that high-risk patients, as per the CP-model, exhibited heightened expression of certain immune checkpoints, suggesting potential therapeutic targets. Additionally, the model hinted at the possibility of personalized therapeutic strategies, with certain drugs showing increased efficacy in high-risk patients. The CP-model offers a promising tool for glioblastoma prognosis and therapeutic strategy development, emphasizing the potential of Cuproptosis in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Naijie Liu
- Neurosurgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Sunaga N, Miura Y, Masuda T, Sakurai R. Role of Epiregulin in Lung Tumorigenesis and Therapeutic Resistance. Cancers (Basel) 2024; 16:710. [PMID: 38398101 PMCID: PMC10886815 DOI: 10.3390/cancers16040710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Epidermal growth factor (EGF) signaling regulates multiple cellular processes and plays an essential role in tumorigenesis. Epiregulin (EREG), a member of the EGF family, binds to the epidermal growth factor receptor (EGFR) and ErbB4, and it stimulates EGFR-related downstream pathways. Increasing evidence indicates that both the aberrant expression and oncogenic function of EREG play pivotal roles in tumor development in many human cancers, including non-small cell lung cancer (NSCLC). EREG overexpression is induced by activating mutations in the EGFR, KRAS, and BRAF and contributes to the aggressive phenotypes of NSCLC with oncogenic drivers. Recent studies have elucidated the roles of EREG in a tumor microenvironment, including the epithelial-mesenchymal transition, angiogenesis, immune evasion, and resistance to anticancer therapy. In this review, we summarized the current understanding of EREG as an oncogene and discussed its oncogenic role in lung tumorigenesis and therapeutic resistance.
Collapse
Affiliation(s)
- Noriaki Sunaga
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Yosuke Miura
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Tomomi Masuda
- Department of Respiratory Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan; (Y.M.); (T.M.)
| | - Reiko Sakurai
- Oncology Center, Gunma University Hospital, 3-39-15 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
17
|
Ban XX, Wan H, Wan XX, Tan YT, Hu XM, Ban HX, Chen XY, Huang K, Zhang Q, Xiong K. Copper Metabolism and Cuproptosis: Molecular Mechanisms and Therapeutic Perspectives in Neurodegenerative Diseases. Curr Med Sci 2024; 44:28-50. [PMID: 38336987 DOI: 10.1007/s11596-024-2832-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/17/2023] [Indexed: 02/12/2024]
Abstract
Copper is an essential trace element, and plays a vital role in numerous physiological processes within the human body. During normal metabolism, the human body maintains copper homeostasis. Copper deficiency or excess can adversely affect cellular function. Therefore, copper homeostasis is stringently regulated. Recent studies suggest that copper can trigger a specific form of cell death, namely, cuproptosis, which is triggered by excessive levels of intracellular copper. Cuproptosis induces the aggregation of mitochondrial lipoylated proteins, and the loss of iron-sulfur cluster proteins. In neurodegenerative diseases, the pathogenesis and progression of neurological disorders are linked to copper homeostasis. This review summarizes the advances in copper homeostasis and cuproptosis in the nervous system and neurodegenerative diseases. This offers research perspectives that provide new insights into the targeted treatment of neurodegenerative diseases based on cuproptosis.
Collapse
Affiliation(s)
- Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Ya-Ting Tan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 430013, China
| | - Hong-Xia Ban
- Affiliated Hospital, Inner Mongolia Medical University, Hohhot, 010050, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 430013, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
- Hunan Key Laboratory of Ophthalmology, Changsha, 430013, China.
| |
Collapse
|
18
|
Cheng M, Liu L, Zeng Y, Li Z, Zhang T, Xu R, Wang Q, Wu Y. An inflammatory gene-related prognostic risk score model for prognosis and immune infiltration in glioblastoma. Mol Carcinog 2024; 63:326-338. [PMID: 37947182 DOI: 10.1002/mc.23655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/25/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
This study aimed to screen for key genes related to the prognosis of patients with glioblastoma (GBM). First, bioinformatics analysis was performed based on databases such as TCGA and MSigDB. Inflammatory-related genes were obtained from the MSigDB database. The TCGA-tumor samples were divided into cluster A and B groups based on consensus clustering. Multivariate Cox regression was applied to construct the risk score model of inflammatory-related genes based on the TCGA database. Second, to understand the effects of model characteristic genes on GBM cells, U-87 MG cells were used for knockdown experiments, which are important means for studying gene function. PLAUR is an unfavorable prognostic biomarker for patients with glioma. Therefore, the model characteristic gene PLAUR was selected for knockdown experiments. The prognosis of cluster A was significantly better than that of cluster B. The verification results also demonstrate that the risk score could predict overall survival. Although the immune cells in cluster B and high-risk groups increased, no matching survival advantage was observed. It may be that stromal activation inhibits the antitumor effect of immune cells. PLAUR knockdown inhibits tumor cell proliferation, migration, and invasion, and promoted tumor cell apoptosis. In conclusion, a prognostic prediction model for GBM composed of inflammatory-related genes was successfully constructed. Increased immune cell expression may be linked to a poor prognosis for GBM, as stromal activation decreased the antitumor activity of immune cells in cluster B and high-risk groups. PLAUR may play an important role in tumor cell proliferation, migration, invasion, and apoptosis.
Collapse
Affiliation(s)
- Meixiong Cheng
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Zeng
- Department of Neurosurgery Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhili Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tian Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yaqiu Wu
- Department of Neurosurgery Intensive Care Unit, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Ghimire P, Kinnersley B, Karami G, Arumugam P, Houlston R, Ashkan K, Modat M, Booth TC. Radiogenomic biomarkers for immunotherapy in glioblastoma: A systematic review of magnetic resonance imaging studies. Neurooncol Adv 2024; 6:vdae055. [PMID: 38680991 PMCID: PMC11046988 DOI: 10.1093/noajnl/vdae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background Immunotherapy is an effective "precision medicine" treatment for several cancers. Imaging signatures of the underlying genome (radiogenomics) in glioblastoma patients may serve as preoperative biomarkers of the tumor-host immune apparatus. Validated biomarkers would have the potential to stratify patients during immunotherapy clinical trials, and if trials are beneficial, facilitate personalized neo-adjuvant treatment. The increased use of whole genome sequencing data, and the advances in bioinformatics and machine learning make such developments plausible. We performed a systematic review to determine the extent of development and validation of immune-related radiogenomic biomarkers for glioblastoma. Methods A systematic review was performed following PRISMA guidelines using the PubMed, Medline, and Embase databases. Qualitative analysis was performed by incorporating the QUADAS 2 tool and CLAIM checklist. PROSPERO registered: CRD42022340968. Extracted data were insufficiently homogenous to perform a meta-analysis. Results Nine studies, all retrospective, were included. Biomarkers extracted from magnetic resonance imaging volumes of interest included apparent diffusion coefficient values, relative cerebral blood volume values, and image-derived features. These biomarkers correlated with genomic markers from tumor cells or immune cells or with patient survival. The majority of studies had a high risk of bias and applicability concerns regarding the index test performed. Conclusions Radiogenomic immune biomarkers have the potential to provide early treatment options to patients with glioblastoma. Targeted immunotherapy, stratified by these biomarkers, has the potential to allow individualized neo-adjuvant precision treatment options in clinical trials. However, there are no prospective studies validating these biomarkers, and interpretation is limited due to study bias with little evidence of generalizability.
Collapse
Affiliation(s)
- Prajwal Ghimire
- Department of Neurosurgery, Kings College Hospital NHS Foundation Trust, London, UK
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Ben Kinnersley
- Department of Oncology, University College London, London, UK
| | | | | | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, Kings College Hospital NHS Foundation Trust, London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
20
|
Shen Z, Cai J, Tao L, Zheng J, Ye Z, Liu Y, Pan H, Wang Y, Xu J, Liang X. Exploration of a screening model for intrahepatic cholangiocarcinoma patients prone to cuproptosis and mechanisms of the susceptibility of CD274-knockdown intrahepatic cholangiocarcinoma cells to cuproptosis. Cancer Gene Ther 2023; 30:1663-1678. [PMID: 37828105 DOI: 10.1038/s41417-023-00673-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/02/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a form of liver cancer with poor long-term survival rates that requires novel therapeutic methods. Our team's previous research found that ICC patients prone to cuproptosis possessed a more satisfactory long-term prognosis and a more sensitive response to copper carrier Elesclomol. Thus, we aimed to identify new diagnostic and treatment strategies for ICC patients prone to cuproptosis and further explore the associated intracellular and extracellular mechanisms of ICC cells prone to cuproptosis. We employed FU-ICC (n = 255) as the training dataset, and validated our findings using SRRSH-ICC (from our center, n = 65), GSE26566 (n = 104), E-MTAB-6389 (n = 78), and scRNA-seq (n = 14) datasets. Single sample gene set enrichment analysis and subsequent unsupervised cluster analysis was conducted on the training dataset for the pan-programmed cell death gene set (including apoptosis, autophagy, ferroptosis, pyroptosis, necroptosis, and cuproptosis) to define and screen ICC patients prone to cuproptosis. We constructed a nomogram model using weighted gene co-expression network analysis and machine learning algorithms to predict ICC patients prone to cuproptosis, then explored its clinical value with multi-center transcriptome profiling. Furthermore, we validated the hub genes with in vitro and animal experiments to define ICC cells prone to cuproptosis. Ultimately, bulk and single-cell transcriptome profiling were utilized to explore the immune microenvironment of ICC cells prone to cuproptosis. Our nomogram model could help predict ICC patients prone to cuproptosis and possessed excellent prediction efficiency and clinical significance via internal and external verification. In vitro experiments demonstrated that ICC cells with siRNA-mediated knockdown of CD274 (PD-L1) and stimulation with elescomol-CuCl2 were prone to cuproptosis, and CD274-negative ICC cells could be defined as ICC cells prone to cuproptosis. The safety and feasibility of lenti-sh CD274+Elesclomol-CuCl2 as a therapeutic approach for ICC were verified using bioinformatics analysis and animal experiments. Bulk and single-cell transcriptome profiling indicated that the interactions between ICC cells prone to cuproptosis and monocytes/macrophages were particularly relevant. In conclusion, this study systematically and comprehensively explored cuproptosis in ICC for the first time. We constructed precise diagnostic and treatment strategies for ICC patients prone to cuproptosis and further explored the intracellular and extracellular mechanisms of ICC cells prone to cuproptosis. Further work with large prospective cohorts will help verify these conclusions.
Collapse
Affiliation(s)
- Zefeng Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jingwei Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liye Tao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Junhao Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhengtao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yang Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Haoyu Pan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yali Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Junjie Xu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
21
|
Shang E, Sun S, Zhang R, Cao Z, Chen Q, Shi L, Wu J, Wu S, Liu Y, Zheng Y. Overexpression of CD99 is associated with tumor adaptiveness and indicates the tumor recurrence and therapeutic responses in gliomas. Transl Oncol 2023; 37:101759. [PMID: 37579711 PMCID: PMC10440586 DOI: 10.1016/j.tranon.2023.101759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
Glioma undergoes adaptive changes, leading to poor prognosis and resistance to treatment. CD99 influences the migration and invasion of glioma cells and plays an oncogene role. However, whether CD99 can affect the adaptiveness of gliomas is still lacking in research, making its clinical value underestimated. Here, we enrolled our in-house and public multiomics datasets for bioinformatic analysis and conducted immunohistochemistry staining to investigate the role of CD99 in glioma adaptive response and its clinical implications. CD99 is expressed in more adaptative glioma subtypes and cell states. Under hypoxic conditions, CD99 is upregulated in glioma cells and is associated with angiogenesis and metabolic adaptations. Gliomas with over-expressed CD99 also increased the immunosuppressive tumor-associated macrophages. The relevance with tumor adaptiveness of CD99 presented clinical significance. We discovered that CD99 overexpression is associated with short-time recurrence and validated its prognostic value. Additionally, Glioma patients with high expression of CD99 were resistant to chemotherapy and radiotherapy. The CD99 expression was also related to anti-angiogenic and immune checkpoint inhibitor therapy response. Inhibitors of the PI3K-AKT pathway have therapeutic potential against CD99-overexpressing gliomas. Our study identified CD99 as a biomarker characterizing the adaptive response in glioma. Gliomas with high CD99 expression are highly tolerant to stress conditions such as hypoxia and antitumor immunity, making treatment responses dimmer and tumor progression. Therefore, for patients with CD99-overexpressing gliomas, tumor adaptiveness should be fully considered during treatment to avoid drug resistance, and closer clinical monitoring should be carried out to improve the prognosis.
Collapse
Affiliation(s)
- Erfei Shang
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Shanyue Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruolan Zhang
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Zehui Cao
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Qingwang Chen
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - Leming Shi
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China; Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department of Huashan Hospital, Fudan University, Shanghai, China
| | - Shuai Wu
- Glioma Surgery Division, Neurologic Surgery Department of Huashan Hospital, Fudan University, Shanghai, China.
| | - Yingchao Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yuanting Zheng
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Zhang Y, Chen K, Wang L, Chen J, Lin Z, Chen Y, Chen J, Lin Y, Xu Y, Peng H. Identification and validation of a prognostic signature of cuproptosis-related genes for esophageal squamous cell carcinoma. Aging (Albany NY) 2023; 15:8993-9021. [PMID: 37665670 PMCID: PMC10522377 DOI: 10.18632/aging.205012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a highly lethal form of cancer. Cuproptosis is a recently discovered form of regulated cell death. However, its significance in ESCC remains largely unknown. In this study, we observed significant expression differences in most of the 12 cuproptosis-related genes (CRGs) in the TCGA-ESCC dataset, which was validated using GSE20347, GSE38129, and individual ESCC datasets. We were able to divide patients in the TCGA-ESCC cohort into two subgroups based on disease, and found significant differences in survivor outcomes and biological functions between these subgroups. Additionally, we identified 11 prognosis-related genes from the 12 CRGs using LASSO COX regression analysis and constructed a CRGs signature for ESCC. Patients were categorized into high- and low-risk subgroups based on their median risk score, with those in the high-risk subgroup having significantly worse overall survival than those in the low-risk subgroup. The CRGs signature was also highly accurate in predicting prognosis and survival outcomes. Univariate and multivariate Cox regression analyses revealed that 8 of the 11 CRGs were independent prognostic factors for predicting survival in ESCC patients. Furthermore, our nomogram performed well and could serve as a useful tool for predicting prognosis. Finally, our risk model was found to be relevant to the sensitivity of targeted agents and immune infiltration. Functional enrichment analysis demonstrated that the risk model was associated with biological pathways of tumor migration and invasion. In summary, our study may provide a promising prognostic signature based on CRGs and offers potential targets for personalized therapy.
Collapse
Affiliation(s)
- Yiping Zhang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Kebing Chen
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China
| | - Liyan Wang
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Juhui Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Zhizhong Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yuanmei Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Junqiang Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yu Lin
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Yuanji Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Haiyan Peng
- Department of Clinical Laboratory, The School of Clinical Medicine, Fujian Medical University, The First Hospital of Putian, Putian 351199, China
| |
Collapse
|