1
|
Brambilla E, Brambilla DJF, Tregnago AC, Riva F, Pasqualotto FF, Soldera J. Exploring macrophage polarization as a prognostic indicator for colorectal cancer: Unveiling the impact of metalloproteinase mutations. World J Clin Cases 2025; 13:105011. [DOI: 10.12998/wjcc.v13.i23.105011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/24/2025] [Accepted: 05/07/2025] [Indexed: 06/04/2025] Open
Abstract
BACKGROUND Macrophages play a crucial role in the tumor microenvironment, displaying remarkable plasticity that allows them to either suppress or promote tumor progression. Their polarization into M1 or M2 phenotypes could have significant prognostic implications, and manipulating this polarization may offer a novel approach to controlling colorectal neoplasms.
AIM To evaluate the infiltration rates of M1 and M2 macrophages in colorectal neoplasia, specifically comparing cases with and without metalloproteinase mutations. Additionally, it sought to explore potential prognostic factors associated with the disease.
METHODS The study involved two cohorts of patients diagnosed with colorectal neoplasia: 33 patients with metalloproteinase mutations and 33 without. Macrophage quantity and polarization were assessed using markers indicative of M1 (iNOS) and M2 (CD163, CD206) macrophages. Prognostic factors and survival outcomes related to colorectal cancer (CRC) were also analyzed.
RESULTS Among the 61 patients, 28 (45.9%) exhibited metalloproteinase mutations, while 33 (54.1%) did not. Tumor staging revealed that 16.9% were in stage I, 34.2% in stage II, 42.4% in stage III, and 8.5% in stage IV. The study recorded 12 patient deaths (19.7%), with 21.2% from the control group and 17.9% from the mutation group. M2 macrophages, identified by CD163 and CD206 markers, had mean counts of 23 and 17, respectively, with standard deviations of 21 and 17. In contrast, M1 macrophages, identified by iNOS, had a mean count of five per site, with a standard deviation of 11.
CONCLUSION The study found no statistically significant differences in macrophage density between groups, irrespective of metalloproteinase mutation status, age, gender, tumor region, staging, TILS, tumor recurrence, or clinical outcomes. No association was observed between macrophage polarization and CRC prognosis or survival. However, patients with metalloproteinase mutations demonstrated a better survival rate, suggesting a potential protective role of this mutation in colorectal neoplasia.
Collapse
Affiliation(s)
- Eduardo Brambilla
- Clinical Gastroenterology, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | | | - Aline Caldart Tregnago
- Department of Pathology, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Floriano Riva
- Department of Pathology, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Fabio Firmbach Pasqualotto
- Department of Urology, Universidade de Caxias do Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil
| | - Jonathan Soldera
- Department of Gastroenterology and Acute Medicine, University of South Wales, Cardiff CF37 1DL, United Kingdom
| |
Collapse
|
2
|
Bhattacharyya T, Das P, Ansari A, Mohan AA, Chandra Y, Narayan KP, Banerjee R. Glucocorticoid Receptor-Targeted Nanoliposome for STAT3 Inhibition-Led Myeloid-Derived Suppressor Cell Modulation and Efficient Colon Cancer Treatment. ACS APPLIED BIO MATERIALS 2025; 8:3185-3204. [PMID: 40162961 DOI: 10.1021/acsabm.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
STAT3 is an important protein responsible for cellular proliferation, motility, and immune tolerance and is hyperactive in colorectal cancer, instigating metastasis, cellular proliferation, migration, as well as inhibition. It helps in proliferation of myeloid-derived suppressor cells (MDSCs), which within the tumor microenvironment (TME) suppress T cells to encourage tumor growth, metastasis, and resistance to immunotherapy, besides playing dynamic role in regulating macrophages within the tumor. Thus, MDSC is a potential target to augment immune surveillance within the TME. Herein, we report targeting both colorectal cancer and MDSCs using a glucocorticoid receptor (GR)-targeted nanoliposomal formulation carrying GR-ligand, dexamethasone (Dex), and a STAT3 inhibitor, niclosamide (N). Our main objective was to selectively inhibit STAT3, the key immunomodulatory factor in most TME-associated cells including MDSCs, and also repurpose the use of this antihelminthic, low-cost drug N for cancer treatment. The resultant formulation D1XN exhibited better tumor regression and survivability compared to GR nontargeted formulation. Further, bone marrow cell-derived MDSCs were engineered by D1XN treatment ex vivo and were inoculated back to tumor-bearing mice. Significant tumor growth inhibition with enhanced antiproliferative immune cell signatures, such as T cell infiltration, decrease in Treg cells, and increased M1/M2 macrophage ratio within the TME were observed. This reveals the effectiveness of engineered MDSCs to modulate tumor surveillance besides reversing the aggressiveness of the tumor. Therefore, D1XN and D1XN-mediated engineered MDSCs alone or in combination can be considered as potent selective chemo-immunotherapeutic nanoliposomal agent(s) against colorectal cancer.
Collapse
Affiliation(s)
- Tithi Bhattacharyya
- Division of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pritam Das
- Division of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aasia Ansari
- Division of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Adrij A Mohan
- Department of Biotechnology, Manipal Institute of Technology, Manipal, Karnataka 576104, India
| | - Yogesh Chandra
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Kumar Pranav Narayan
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, India
| | - Rajkumar Banerjee
- Division of Oils, Lipids Science and Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Adamecz DI, Veres É, Papp C, Árva H, Rónavári A, Marton A, Vizler C, Gácser A, Kónya Z, Igaz N, Kiricsi M. Gold and Silver Nanoparticles Efficiently Modulate the Crosstalk Between Macrophages and Cancer Cells. Int J Nanomedicine 2025; 20:4777-4802. [PMID: 40255669 PMCID: PMC12009049 DOI: 10.2147/ijn.s508171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
Background Macrophages, polarized into pro-inflammatory M1 or anti-inflammatory M2 states, are essential cellular elements of innate immunity. In the tumor microenvironment, owing to a paracrine manipulative program by cancerous cells, tumor-associated macrophages (TAMs) evolve, which can shift between M1-like and M2-like phenotypes. Since it is fairly unknown how the promising anticancer agents, silver (AgNPs) and gold nanoparticles (AuNPs) affect the bidirectional communication and reprogramming in the tumor stroma, we examined the behavior, the tumor-supporting functions, and the expression of polarization and functional marker genes of TAMs to reveal how these are modulated upon interaction with nanoparticle-exposed cancer cells. Methods We established co-cultures of murine immortalized J774 or primary bone marrow-derived macrophages with 4T1 breast cancer cells treated with AuNPs or AgNPs or with none of the nanoparticles. We assessed the expression of macrophage polarization and functional markers using RT-qPCR and Proteome Profiler Array and evaluated macrophage migration and matrix metalloproteinase activity by specific assays. Results Protein and mRNA levels of most examined factors - except tumor necrosis factor-alpha - such as C-C-motif chemokine ligands 2 and 22, interleukin-23, inducible nitric oxide synthase, cyclooxygenase-2, the macrophage mannose receptor CD206, transforming growth factor-beta, and chitinase-like-3 protein decreased, and the expression of polarization markers revealed a shift towards M1-like phenotype in macrophages co-cultured with AgNP- or AuNP-treated 4T1 cells. Both nanoparticle treatments reduced the levels and activity of cell migration-related factors, such as C-C motif chemokine ligand 3, matrix metalloproteinases, and suppressed macrophage migration. Conclusion Both AuNPs and AgNPs showed a remarkable ability to influence macrophage-cancer cell communication, suppressed indirectly M2-like TAM polarization, and perturbed the migration behavior of TAMs that is critical for tumor invasion, indicating modulated immunological functions and debilitated cancer-promoting capabilities of TAMs in this microenvironment.
Collapse
Affiliation(s)
- Dóra Izabella Adamecz
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Éva Veres
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
- Department of Biotechnology and Microbiology, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Pathogen Fungi Research Group, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Biotechnology and Microbiology, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Pathogen Fungi Research Group, University of Szeged, Szeged, Hungary
| | - Hédi Árva
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Annamária Marton
- Laboratory of Tumor Immunology and Pharmacology, Centre of Excellence of the European Union, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Csaba Vizler
- Laboratory of Tumor Immunology and Pharmacology, Centre of Excellence of the European Union, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Attila Gácser
- Department of Biotechnology and Microbiology, University of Szeged, Szeged, Hungary
- HCEMM-SZTE Pathogen Fungi Research Group, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Zhang D, Heng Y, Jin QY, Tang D, Zhu XK, Lu LM, Wu CP, Tao L. Prognostic significance of cytotoxic-T-lymphocytes to immunosuppressive lymphocytes ratio (CIL) in laryngeal squamous cell carcinoma. Cancer Immunol Immunother 2025; 74:157. [PMID: 40126590 PMCID: PMC11933541 DOI: 10.1007/s00262-025-04008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Immunoscore (IS), based on CD3/CD8, has been proposed to characterize the immune landscape of the tumor immune microenvironment and has demonstrated an association with the prognosis of laryngeal squamous cell carcinoma (LSCC). However, traditional IS does not include immunosuppressive cells. The purpose of this study is to evaluate the prognostic performance of cytotoxic-T-lymphocytes to immunosuppressive cells ratio (CIL) in laryngeal squamous cell carcinoma (LSCC) patients. Two cohorts were included in this study: The training cohort (N = 75) consisted of tumor tissue microarrays from LSCC patients in our department, and the validation cohort (N = 116) utilized bulk RNA-seq data from the TCGA database. Patients with high IS or CIL showed significantly prolonged overall survival and disease-free survival in both cohorts. Upon analyzing the relative contribution of each parameter, it was found that CIL exhibited the highest significance among the factors examined. It emerged as the strongest predictor of overall survival, emphasizing its crucial influence in determining the outcomes. The prognostic ability of IS-TCGA was similar to the original IS. Additionally, high CILM2-TCGA was associated with prolonged survival of patients with LSCC in the TCGA dataset. CIL, which is easier to construct than IS, proves to be reliable in predicting survival outcomes for patients with LSCC.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Eye & ENT Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Yu Heng
- Department of Eye & ENT Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Qiu-Yan Jin
- Department of Eye & ENT Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Di Tang
- Department of Eye & ENT Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Xiao-Ke Zhu
- Department of Eye & ENT Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People's Republic of China.
| | - Chun-Ping Wu
- Department of Eye & ENT Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.
| | - Lei Tao
- Department of Eye & ENT Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.
| |
Collapse
|
5
|
Zhou X, Tan J, Wang X, Zhang X, Miao S, Liu Y, Wang J, Tan G. Nomogram model based on tumor-infiltrating lymphocytes and clinical characteristics to predict prognosis of patients with laryngeal squamous cell carcinoma. Am J Cancer Res 2025; 15:976-990. [PMID: 40226469 PMCID: PMC11982727 DOI: 10.62347/mkfi3976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Head and neck carcinomas are the sixth most common cancers worldwide, with laryngeal squamous cell carcinoma (LSCC) being the second most prevalent subtype. Improving survival outcomes in LSCC patients remains a critical clinical challenge. This retrospective study aimed to develop a nomogram model integrating tumor-infiltrating lymphocytes (TILs) and clinicopathological characteristics to predict the prognosis of LSCC patients. The nomogram model was constructed using Cox and Lasso regression analyses and was subsequently evaluated through receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were utilized for model validation and to further elucidate the role of TILs and immune responses in LSCC. This study cohort included LSCC patients diagnosed by pathological examination between 2011 and 2014 at Xiangya Hospital and Harbin Medical University Cancer Hospital. A total of 412 patients were assigned to the training cohort and 140 patients to the test cohort for validation. The final nomogram model integrated TNM stage, TILs, PLR, BMI, age, differentiation and NLR. The area under the curve (AUC) was 0.745, indicating strong calibration and clinical utility. Kaplan-Meier survival curves demonstrated significant discrimination. TILs were positively correlated with immune cell abundance and the expression of immune-related genes. In conclusion, the nomogram model based on TILs and clinicopathological features effectively predicts the prognosis of LSCC patients.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Jiaqi Tan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Susheng Miao
- Department of Head and Neck Surgery, Cancer Hospital Affiliated to Harbin Medical UniversityHarbin 150081, Heilongjiang, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Junrong Wang
- Department of Head and Neck Surgery, Cancer Hospital Affiliated to Harbin Medical UniversityHarbin 150081, Heilongjiang, China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
6
|
Liu J, Lu J, Wu L, Zhang T, Wu J, Li L, Tai Z, Chen Z, Zhu Q. Targeting tumor-associated macrophages: Novel insights into immunotherapy of skin cancer. J Adv Res 2025; 67:231-252. [PMID: 38242529 PMCID: PMC11725115 DOI: 10.1016/j.jare.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The incidence of skin cancer is currently increasing, and conventional treatment options inadequately address the demands of disease management. Fortunately, the recent rapid advancement of immunotherapy, particularly immune checkpoint inhibitors (ICIs), has ushered in a new era for numerous cancer patients. However, the efficacy of immunotherapy remains suboptimal due to the impact of the tumor microenvironment (TME). Tumor-associated macrophages (TAMs), a major component of the TME, play crucial roles in tumor invasion, metastasis, angiogenesis, and immune evasion, significantly impacting tumor development. Consequently, TAMs have gained considerable attention in recent years, and their roles have been extensively studied in various tumors. However, the specific roles of TAMs and their regulatory mechanisms in skin cancer remain unclear. AIM OF REVIEW This paper aims to elucidate the origin and classification of TAMs, investigate the interactions between TAMs and various immune cells, comprehensively understand the precise mechanisms by which TAMs contribute to the pathogenesis of different types of skin cancer, and finally discuss current strategies for targeting TAMs in the treatment of skin cancer. KEY SCIENTIFIC CONCEPTS OF OVERVIEW With a specific emphasis on the interrelationship between TAMs and skin cancer, this paper posits that therapeutic modalities centered on TAMs hold promise in augmenting and harmonizing with prevailing clinical interventions for skin cancer, thereby charting a novel trajectory for advancing the landscape of immunotherapeutic approaches for skin cancer.
Collapse
Affiliation(s)
- Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Ling Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; Shanghai Engineering Research Center of Topical Chinese Medicine, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
7
|
Kim MS, Kang H, Baek JH, Cho MG, Chung EJ, Kim SJ, Chung JY, Chun KH. Disrupting Notch signaling related HES1 in myeloid cells reinvigorates antitumor T cell responses. Exp Hematol Oncol 2024; 13:122. [PMID: 39702544 DOI: 10.1186/s40164-024-00588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are immunosuppressive cells within the tumor microenvironment (TME) that hinder anti-tumor immunity. Notch signaling is a pathway crucial for TAM differentiation and function. Here, we investigate the role of HES1, a downstream target of Notch signaling, in TAM-mediated immunosuppression and explore its potential as a target for cancer immunotherapy. METHODS In this work, we constructed conditional Hes1 knockout mice to selectively delete Hes1 in TAMs. We further analyzed the TME composition, T cell infiltration and activation, and anti-tumor effects in these mice, both alone and in combination with PD-1 checkpoint blockade. RESULTS Our study showed that expression levels of Notch target Hes1 were increase in TAMs and mice with conditional knockout of Hes1 gene in TAMs exhibited decreased tumor growth, with increased infiltration and activation of cytotoxic T cells in tumors. Expression of tumor promoting factors was critically altered in Hes1-conditional KO TAMs, leading to the improved tumor microenvironment. Notably, arginase-1 expression was decreased in Hes1-conditional KO mice. Arg1 is known to deplete arginine and deactivate T cells in the TME. Administration of anti-PD-1 monoclonal antibody inhibited tumor growth to a greater extent in Hes1-conditional KO mice than in WT mice. CONCLUSIONS We identified a pivotal role for the Notch signaling pathway in shaping TAM function, suggesting that T-cell dysfunction in the TME is caused when the Notch target, HES1, in TAMs is upregulated by tumor-associated factors (TAFs), which, in turn, increases the expression of arginase-1. Targeting HES1 in TAMs appears to be a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Myung Sup Kim
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyeokgu Kang
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung-Hwan Baek
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Moon-Gyu Cho
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Seok-Jun Kim
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Joon-Yong Chung
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kyung-Hee Chun
- Department of Biochemistry & Molecular Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Institute for Bio-medical Convergence Science and Technology, Yonsei University, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Affiliate Faculty, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
8
|
Zhu X, Heng Y, Ma J, Zhang D, Tang D, Ji Y, He C, Lin H, Ding X, Zhou J, Tao L, Lu L. Prolonged Survival of Neutrophils Induced by Tumor-Derived G-CSF/GM-CSF Promotes Immunosuppression and Progression in Laryngeal Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400836. [PMID: 39447112 PMCID: PMC11633501 DOI: 10.1002/advs.202400836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Indexed: 10/26/2024]
Abstract
Tumor-associated neutrophils (TANs) play a crucial role in tumor progression and exhibit prolonged survival. However, the mechanism underlying their extended lifespan and significance in laryngeal squamous cell carcinoma (LSCC) remains unclear. Herein, it is observed that apoptosis of TANs is significantly delayed owing to induction by tumor-derived G-CSF and GM-CSF through the activation of the PI3K-AKT signaling pathway, upregulation of anti-apoptotic Mcl-1 expression, and downregulation of activated Caspase-3 levels. It is found that prolonged survival of TANs leads to the accumulation of aged CXCR4+ neutrophils that exhibit potent immunosuppressive properties and are associated with poor patient prognosis. Furthermore, extended survival promotes the enhanced immunosuppressive function of CD8+ T cells by TANs, thereby facilitating the in vitro and in vivo progression and growth of human LSCC tumors. Importantly, this effect could be reversed by blocking G-CSF and GM-CSF stimulation of neutrophils. These findings elucidate the pivotal role of pathologically prolonged neutrophil survival in impairing CD8+ T cell immunity and suggest targeting it as a potential therapeutic strategy for tumors.
Collapse
Affiliation(s)
- Xiaoke Zhu
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Yu Heng
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Jingyu Ma
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Duo Zhang
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Di Tang
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Yangyang Ji
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Changding He
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Hanqing Lin
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Xuping Ding
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Jian Zhou
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Lei Tao
- Department of OtolaryngologyShanghai Key Clinical Disciplines of otorhinolaryngologyEye Ear Nose & Throat HospitalFudan UniversityShanghai200025P. R. China
| | - Liming Lu
- Shanghai Institute of ImmunologyDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
9
|
Zhang G, Yao Y, Zhang Z, Xiao J, Yu H, Zhao J, Yao C, Wang Y, Luo H. Regulation of NLRP3 inflammasome and Caspase-3/4/11 by 2',4'-dihydroxychalcone contributes to anti-colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156194. [PMID: 39520954 DOI: 10.1016/j.phymed.2024.156194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Chronic inflammation is closely related to the occurrence and progression of many cancers, especially colorectal cancer (CRC), which can be triggered by repeated and sustained induction of colitis in mice. CRC is a typical type of cancer that can be caused by inflammation and NLRP3 inflammasome dysregulation plays a certain role in the pathogenesis of CRC. PURPOSE As an edible Chinese medicine, Abrus cantoniensis Hance (ACH) has both anti-inflammatory and anti-tumor activities. However, most research has focused on inflammation-related diseases, and less research has been done on its active ingredients and targets and its application in CRC. Here, this study deeply explored the target of 2',4'-DHC and its pharmacological mechanism in anti-colon cancer, and provided a new strategy for its drug development and treatment of colon cancer. METHODS The cytotoxicity of ACH's active ingredient in HT29 and CT26 cells was measured by CCK-8, clone formation, apoptosis, and cell cycle assay. The metastasis inhibition of CRC cells was determined by wound-healing assay. Western blotting was used to detect the NLRP3 inflammasome activation, pyroptosis, and apoptosis activation. Finally, the in vivo efficacy of 2',4'-DHC was verified by establishing CT26 and HT29 tumor transplant models in mice. RESULTS Here, our study firstly demonstrated that 2',4'-DHC inhibited the growth of CRC cells mainly by increasing CRC cell death and ameliorating tumor immunosuppressive environment, which is verified by inducing apoptosis and pyroptosis by regulating caspase-3/4/11, arresting cell cycle in G2/M phase, suppressing the migration of CRC cells, and inhibiting NLRP3 inflammasome activation through inhibiting the NF-κB pathway, enhancing the anticancer immune response by increasing the infiltration of T cells and function of CD8+ cytotoxic T cells but decreasing the infiltration of CD11b+ CD206+ macrophages and function. Importantly, the administration of 2',4'-DHC decreased liver and spleen indexs to mice's normal levels and reduced the burden of CT26 and HT29 tumor-bearing in mice without pathological changes in the major organs. CONCLUSION 2',4'-DHC inhibited CRC growth through various mechanisms, mainly by regulating NLRP3 inflammasome and caspase-3/4/11 activation. Considering the anti-tumor and immunomodulation roles of 2',4'-DHC, it might be a new direction for the development of new strategies to treat colorectal cancer.
Collapse
Affiliation(s)
- Guohui Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Yixin Yao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Zhongyu Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jian Xiao
- Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Hua Yu
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chun Yao
- Guangxi University of Chinese Medicine, Nanning 530001, China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China; College of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
10
|
Kzhyshkowska J, Shen J, Larionova I. Targeting of TAMs: can we be more clever than cancer cells? Cell Mol Immunol 2024; 21:1376-1409. [PMID: 39516356 PMCID: PMC11607358 DOI: 10.1038/s41423-024-01232-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
АBSTRACT: With increasing incidence and geography, cancer is one of the leading causes of death, reduced quality of life and disability worldwide. Principal progress in the development of new anticancer therapies, in improving the efficiency of immunotherapeutic tools, and in the personification of conventional therapies needs to consider cancer-specific and patient-specific programming of innate immunity. Intratumoral TAMs and their precursors, resident macrophages and monocytes, are principal regulators of tumor progression and therapy resistance. Our review summarizes the accumulated evidence for the subpopulations of TAMs and their increasing number of biomarkers, indicating their predictive value for the clinical parameters of carcinogenesis and therapy resistance, with a focus on solid cancers of non-infectious etiology. We present the state-of-the-art knowledge about the tumor-supporting functions of TAMs at all stages of tumor progression and highlight biomarkers, recently identified by single-cell and spatial analytical methods, that discriminate between tumor-promoting and tumor-inhibiting TAMs, where both subtypes express a combination of prototype M1 and M2 genes. Our review focuses on novel mechanisms involved in the crosstalk among epigenetic, signaling, transcriptional and metabolic pathways in TAMs. Particular attention has been given to the recently identified link between cancer cell metabolism and the epigenetic programming of TAMs by histone lactylation, which can be responsible for the unlimited protumoral programming of TAMs. Finally, we explain how TAMs interfere with currently used anticancer therapeutics and summarize the most advanced data from clinical trials, which we divide into four categories: inhibition of TAM survival and differentiation, inhibition of monocyte/TAM recruitment into tumors, functional reprogramming of TAMs, and genetic enhancement of macrophages.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany.
- German Red Cross Blood Service Baden-Württemberg - Hessen, Friedrich-Ebert Str. 107, 68167, Mannheim, Germany.
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia.
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia.
| | - Jiaxin Shen
- Department of Innate Immunity and Tolerance, Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer, 1-3, 68167, Mannheim, Germany
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050, Lenina av.36, Tomsk, Russia
- Bashkir State Medical University of the Ministry of Health of Russia, 450000, Teatralnaya Street, 2a, Ufa, Russia
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Kooperativnyi st, Tomsk, Russia
| |
Collapse
|
11
|
Girolami I, Damiani D, Negro R, Abousiam M, Gazzini L, Calabrese L, Hanspeter E. Prognostic Significance of Tumor-Stroma Ratio (TSR) in Head and Neck Squamous Cell Carcinoma: Systematic Review and Meta-Analysis. Cells 2024; 13:1772. [PMID: 39513879 PMCID: PMC11545263 DOI: 10.3390/cells13211772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The management of head and neck squamous cell carcinoma (HNSCC) relies heavily on TNM staging and WHO histologic grading; however, in recent years, the analysis of prognostic markers expressed in the tumor stroma has gained attention. The tumor-stroma ratio (TSR) quantifies the proportion of tumor tissue relative to the surrounding stromal tissue; it is assessed with the percentage of stromal tissue within the tumor area, with a cutoff point of 50% being widely used to discriminate high-stroma cancer. In this systematic review and meta-analysis, we investigated the potential prognostic role of the TSR in HNSCC. After a literature screening, 24 studies dealing with the TSR and survival outcomes were included. The TSR showed a significant association with overall survival (OS) in both unadjusted and adjusted measures (RR 2.04, CI 1.57-2.65, p < 0.01; HR 2.36 CI 1.89-2.94, p < 0.00001), with an even stronger prognostic potential in oral cavity/oral tongue cancers (RR 2.44 CI 1.84-3.22, p < 0.00001). The TSR also showed prognostic value when dealing with cancer-specific survival and was associated with a reduction in disease-free survival (DFS). In particular, the TSR also retained its prognostic role in terms of DFS when specifically considering early-stage cancers in both unadjusted and adjusted analyses (RR 1.81 CI 1.57-2.10, p < 0.00001; HR 2.09 CI 1.58-2.76, p < 0.00001). Therefore, we conclude that the TSR is a reliable prognostic marker that is easy to assess in routine histological slides and can be effectively implemented in the routine evaluation of HNSCC.
Collapse
Affiliation(s)
- Ilaria Girolami
- Department of Pathology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, via Lorenz Böhler, 5, 39100 Bolzano-Bozen, Italy
| | - Domenico Damiani
- Department of Pathology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, via Lorenz Böhler, 5, 39100 Bolzano-Bozen, Italy
| | - Rosa Negro
- Department of Pathology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, via Lorenz Böhler, 5, 39100 Bolzano-Bozen, Italy
| | - Monir Abousiam
- Department of Otolaryngology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, 39100 Bolzano-Bozen, Italy
| | - Luca Gazzini
- Department of Otolaryngology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, 39100 Bolzano-Bozen, Italy
| | - Luca Calabrese
- Department of Otolaryngology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, 39100 Bolzano-Bozen, Italy
| | - Esther Hanspeter
- Department of Pathology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, via Lorenz Böhler, 5, 39100 Bolzano-Bozen, Italy
| |
Collapse
|
12
|
Theodoraki MN, Huber D, Hofmann L, Werner L, Idel C, Fleckner J, Plötze-Martin K, Schütt L, Brunner C, Depping R, Hoffmann TK, Bruchhage KL, Pries R. Type 2-like polarization and elevated CXCL4 secretion of monocyte derived macrophages upon internalization of plasma-derived exosomes from head and neck cancer patients. BMC Cancer 2024; 24:1173. [PMID: 39304856 PMCID: PMC11414076 DOI: 10.1186/s12885-024-12948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Exosomes are closely associated with different aspects of tumor-progression in patients with head and neck squamous cell carcinoma (HNSCC), such as angiogenesis or immune regulation. As extracellular vesicles they are involved in the intercellular communication by transferring their cargo such as proteins and nucleic acids from one cell to another. However, the influence of tumor related plasma-derived exosomes on the polarization and characteristics of monocyte derived macrophages is not fully understood. METHODS Exosomes were isolated from plasma samples of healthy donors (HD) and HNSCC patients and further evaluated with regard to morphology, size and protein composition via transmission electron microscopy, nanoparticle tracking, western blot analysis and cytokine assays. Differentiation and characteristics of monocyte derived macrophages upon exosome internalization were analyzed using flow cytometry and fluorescence microscopy. Macrophage cytokine secretion patterns were analyzed by human cytokine antibody arrays and ELISA measurements. RESULTS Our data revealed elevated overall plasma levels of CTLA-4, PD-L1, and TIM-3 as well as elevated exosome-associated CTLA-4, PD-L2, TIM-3, and LAG-3 levels in HNSCC patients compared to HD. Furthermore, we observed a significant type 2-like polarization and elevated CXCL4 secretion of monocyte derived macrophages upon internalization of plasma-derived exosomes from HNSCC patients, which could be visualized by fluorescence microcopy of membrane stained exosomes. CONCLUSIONS The study provides new insights regarding exosome driven pro-tumorigenic immune regulation in the circulation of patients with head and neck cancer and could help to better understand the individual immunologic situation.
Collapse
Affiliation(s)
- Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Diana Huber
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany
| | - Linda Hofmann
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany
| | - Lotte Werner
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany
| | - Christian Idel
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany
| | - Jonas Fleckner
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany
| | | | - Lutz Schütt
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany
| | - Reinhard Depping
- Institute of Physiology, Working Group Hypoxia, University of Luebeck, Luebeck, Germany
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany
| | | | - Ralph Pries
- Department of Otorhinolaryngology, University of Luebeck, Luebeck, Germany.
| |
Collapse
|
13
|
Zhu X, Heng Y, Zhang D, Tang D, Zhou J, Lin H, Ma J, Ding X, Tao L, Lu L. Prognostic significance and immune escape implication of tumor-infiltrating neutrophil plasticity in human head and neck squamous cell carcinoma. Hum Cell 2024; 37:714-728. [PMID: 38358636 DOI: 10.1007/s13577-024-01024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
Tumor-infiltrating neutrophils play a crucial role in the progression of head and neck squamous cell carcinoma (HNSCC). Here, we aimed to statistically quantify the plasticity of HNSCC-infiltrating N2/N1 neutrophils and examine its impacts on survival and immune infiltration landscape. A retrospective study of 80 patients who underwent curative surgical resection for HNSCC between 2014 and 2017 was conducted in this study. HNSCC-infiltrating neutrophil phenotypes were classified using immunofluorescence staining, and the N2/N1 neutrophil plasticity was evaluated via the ratio of N2/N1 neutrophils. We then assessed the correlations between N2/N1 neutrophil plasticity, clinicopathological characteristics, and immune infiltration landscape using rigorous statistical methods. Infiltration variations of N1 and N2 neutrophils were observed between the tumor nest (TN) and tumor stroma (TS), with TN exhibiting higher N2 neutrophil infiltration and lower N1 neutrophil infiltration. High ratios of N2/N1 neutrophils were correlated with advanced TNM stage, large tumor size and invasion of adjacent tissue. High infiltration of N2 neutrophils was associated with decreased overall and relapse-free survival, which were opposite for N1 neutrophils. The independent prognostic role of N2/N1 neutrophil plasticity, particularly within the TN region, was confirmed by multivariate analyses. Moreover, the ratio of N2/N1 neutrophils within the TN region showed correlations with high CD8+ T cells infiltration and low FOXP3+ Tregs infiltration. We identify HNSCC-infiltrating N2/N1 neutrophil plasticity as a crucial prognostic indictor which potentially reflects the tumor microenvironment (TME) and immune escape landscape within HNSCC tissues. Further investigations and validations may provide novel therapeutic strategies for personalized immunomodulation in HNSCC patients.
Collapse
Affiliation(s)
- Xiaoke Zhu
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Yu Heng
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Duo Zhang
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Di Tang
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Jian Zhou
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Hanqing Lin
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Jingyu Ma
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Xuping Ding
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Lei Tao
- Department of Otolaryngology, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Eye Ear Nose and Throat Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.
| | - Liming Lu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
14
|
Morimoto M, Till NA, Bertozzi CR. Tumor Immune Cell Targeting Chimeras (TICTACs) For Targeted Depletion of Macrophage-Associated Checkpoint Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570444. [PMID: 38106036 PMCID: PMC10723462 DOI: 10.1101/2023.12.06.570444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Immune cells in the tumor microenvironment are not only powerful regulators of immunosuppression and tumorigenesis, but also represent a dominant cell type, with tumor-associated macrophages (TAMs) comprising up to 50% of total cell mass in solid tumors. Immunotherapies such as immune checkpoint inhibitors (ICIs) derive their efficacy from this cancer-immune cell interface, however, immune-related adverse events resulting from systemic blockade remain a significant challenge. To address this need for potent, yet highly tumor-specific immunotherapies, we developed Tumor-Immune Cell Targeting Chimeras (TICTACs), antibody conjugates that are capable of selectively depleting immune checkpoint receptors such as SIRPa from the surface of TAMs. These chimeric molecules consist of a synthetic glycan ligand that binds the C-type lectin CD206, a well-established TAM marker, conjugated to a non-blocking antibody that binds but does not inhibit the checkpoint receptor. By engaging CD206, which constitutively recycles between the plasma membrane and early endosomes, TICTACs facilitate robust removal of the checkpoint receptors from the surface of CD206high macrophages, while having no effect on CD206low macrophages. By decoupling antibody selectivity from its blocking function, we present a new paradigm for developing highly tumor-specific immunotherapies.
Collapse
Affiliation(s)
- Mariko Morimoto
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford CA, USA
| | - Nicholas A Till
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Sarafan ChEM-H, Stanford University, Stanford CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford CA, USA
| |
Collapse
|