1
|
Liu P, Sun Z. Chemokines and their receptors in the esophageal carcinoma tumor microenvironment: key factors for metastasis and progression. Front Oncol 2025; 15:1523751. [PMID: 40134607 PMCID: PMC11933060 DOI: 10.3389/fonc.2025.1523751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Esophageal carcinoma (ESCA) is a highly malignant tumor with the highest incidence in Eastern Asia. Although treatment modalities for ESCA have advanced in recent years, the overall prognosis remains poor, as most patients are diagnosed at an advanced stage of the disease. There is an urgent need to promote early screening for ESCA to increase survival rates and improve patient outcomes. The development of ESCA is closely linked to the complex tumor microenvironment (TME), where chemokines and their receptors play pivotal roles. Chemokines are a class of small-molecule, secreted proteins and constitute the largest family of cytokines. They not only directly regulate tumor growth and proliferation but also influence cell migration and localization through specific receptor interactions. Consequently, chemokines and their receptors affect tumor invasion and metastatic spread. Furthermore, chemokines regulate immune cells, including macrophages and regulatory T cells, within the TME. The recruitment of these immune cells further leads to immunosuppression, creating favorable conditions for tumor growth and metastasis. This review examines the impact of ESCA-associated chemokines and their receptors on ESCA, emphasizing their critical involvement in the ESCA TME.
Collapse
Affiliation(s)
| | - Zhiqiang Sun
- Department of Radiation Oncology, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
2
|
Zhang C, Chen L, Xiu Y, Zhang H, Zhang Y, Ying W. Burden of esophageal cancer in global, regional and national regions from 1990 to 2021 and its projection until 2050: results from the GBD study 2021. Front Oncol 2025; 14:1518567. [PMID: 39902130 PMCID: PMC11788179 DOI: 10.3389/fonc.2024.1518567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025] Open
Abstract
Background Esophageal cancer (EC) is a major global health issue characterized by high morbidity and mortality rates, with a notably low five-year survival rate. Comprehensive analyses of the global burden of EC remain limited and outdated, despite its global significance. This study aimed to systematically assess the global burden and trends of esophageal cancer across diverse populations. Methods Data on the burden of EC were collected from the Global Burden of Disease (GBD) 2021 study, including estimates of incidence, mortality, and disability-adjusted life years (DALYs), as well as risk factors, spanning 204 countries and territories. Age-standardized rates (ASRs) were calculated to allow comparisons across populations. The study further explored the relationship between EC burden and socioeconomic development by utilizing the Socio-demographic Index (SDI), aggregating data by regions. The Bayesian age-period-cohort model was applied to project future trends until 2050. Results In 2021, there were 576,529 new esophageal cancer cases, with an age-standardized incidence rate (ASIR) of 6.65 per 100,000, reflecting a 24.87% decrease since 1990. The global number of deaths reached 538,602, with an age-standardized death rate (ASDR) of 6.25 per 100,000, representing a 30.67% decline. DALYs totaled 12,999,264, corresponding to an estimated annual percentage change (EAPC) of a 1.73% decrease in the age-standardized DALYs rate. East Asia accounted for nearly two-thirds of global EC cases and deaths, while Central Sub-Saharan Africa recorded the highest ASIR and ASDR. Central Asia experienced the largest reductions, whereas Western Sub-Saharan Africa showed increasing trends. Middle-SDI countries, such as Malawi and Lesotho, had disproportionately high burdens, while high-SDI countries, including Tunisia and Kuwait, had lower burdens. Males had higher incidence and mortality rates across all age groups. By 2050, the ASIR is projected to decrease to 6.17 per 100,000, and the ASDR to 5.23 per 100,000, though the absolute number of cases and deaths is expected to rise. Conclusions The global burden of EC remains significant, with ongoing challenges in regions such as Africa and East Asia. These findings highlight the need for sustained and targeted prevention efforts, particularly in high-risk populations, to address the increasing absolute number of cases and deaths.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Institute of Nursing Research, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Linzhi Chen
- Department of Nursing, Shantou University Medical College, Shantou, Guangdong, China
| | - Yuqi Xiu
- Department of Nursing, Shantou University Medical College, Shantou, Guangdong, China
| | - Hongling Zhang
- Department of Nursing, Shantou University Medical College, Shantou, Guangdong, China
| | - Yuejuan Zhang
- Nursing Research Office, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenjuan Ying
- Department of Nursing, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
3
|
Zhou Z, Qu C, Zhou P, Zhou Q, Li D, Wu X, Yang L. Extracellular vesicles activated cancer-associated fibroblasts promote lung cancer metastasis through mitophagy and mtDNA transfer. J Exp Clin Cancer Res 2024; 43:158. [PMID: 38825680 PMCID: PMC11145873 DOI: 10.1186/s13046-024-03077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Studies have shown that oxidative stress and its resistance plays important roles in the process of tumor metastasis, and mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage is an important molecular event in oxidative stress. In lung cancer, the normal fibroblasts (NFs) are activated as cancer-associated fibroblasts (CAFs), and act in the realms of the tumor microenvironment (TME) with consequences for tumor growth and metastasis. However, its activation mechanism and whether it participates in tumor metastasis through antioxidative stress remain unclear. METHODS The role and signaling pathways of tumor cell derived extracellular vesicles (EVs) activating NFs and the characteristic of induced CAFs (iCAFs) were measured by the transmission electron microscopy, nanoparticle tracking analysis, immunofluorescence, collagen contraction assay, quantitative PCR, immunoblotting, luciferase reporter assay and mitochondrial membrane potential detection. Mitochondrial genome and single nucleotide polymorphism sequencing were used to investigate the transport of mtDNA from iCAFs to ρ0 cells, which were tumor cells with mitochondrial dysfunction caused by depletion of mtDNA. Further, the effects of iCAFs on mitochondrial function, growth and metastasis of tumor cells were analysed in co-culture models both in vitro and in vivo, using succinate dehydrogenase, glutathione and oxygen consumption rate measurements, CCK-8 assay, transwell assay, xenotransplantation and metastasis experiments as well as in situ hybridization and immunohistochemistry. RESULTS Our findings revealed that EVs derived from high-metastatic lung cancer cells packaged miR-1290 that directly targets MT1G, leading to activation of AKT signaling in NFs and inducing NFs conversion to CAFs. The iCAFs exhibit higher levels of autophagy and mitophagy and more mtDNA release, and reactive oxygen species (ROS) could further promote this process. After cocultured with the conditioned medium (CM) of iCAFs, the ρ0 cells may restore its mitochondrial function by acquisition of mtDNA from CAFs, and further promotes tumor metastasis. CONCLUSIONS These results elucidate a novel mechanism that CAFs activated by tumor-derived EVs can promote metastasis by transferring mtDNA and restoring mitochondrial function of tumor cells which result in resistance of oxidative stress, and provide a new therapeutic target for lung cancer metastasis.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Xiangya Road 110, Changsha, 410078, China
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Chunhui Qu
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Xiangya Road 110, Changsha, 410078, China
| | - Peijun Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Xiangya Road 110, Changsha, 410078, China
| | - Qin Zhou
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Dan Li
- Department of Life Science, College of Biology, Hunan University, Changsha, 410012, China
| | - Xia Wu
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Xiangya Road 110, Changsha, 410078, China.
- Department of Pathology, The Second Xiangya Hospital, Central South University, Renmin Middle Road 139, Changsha, 410011, China.
| | - Lifang Yang
- Department of Oncology, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Cancer Research Institute, School of Basic Medicine Science, Central South University, Xiangya Road 110, Changsha, 410078, China.
| |
Collapse
|
4
|
Kong L, Yin H, Zhou D, Li X, Zhou J. Optimizing anesthesia strategies to NSCLC patients in VATS procedures: Insights from drug requirements and patient recovery patterns. Open Med (Wars) 2024; 19:20240961. [PMID: 38841176 PMCID: PMC11151396 DOI: 10.1515/med-2024-0961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the intricate relationship between cancer clinicopathological features and anesthetics dosage is crucial for optimizing patient outcomes and safety during surgery. This retrospective study investigates this relationship in patients with non-small cell lung cancer (NSCLC) undergoing video-assisted thoracic surgery (VATS). A comprehensive analysis of medical records was undertaken for NSCLC patients who underwent VATS with intravenous compound inhalation general anesthesia. Patients were categorized based on histological, chemotherapy, radiotherapy, and epidural anesthesia factors. Statistical analysis was performed to compare the differences between the groups. The results revealed compelling insights. Specifically, patients with lung adenocarcinoma (LUAD) undergoing VATS exhibited higher dosages of rocuronium bromide and midazolam during general anesthesia, coupled with a shorter post-anesthesia care unit (PACU) stay compared to those with squamous cell carcinoma (sqCL). Furthermore, chemotherapy patients undergoing VATS demonstrated diminished requirements for phenylephrine and remifentanil in contrast to their non-chemotherapy counterparts. Similarly, radiotherapy patients undergoing VATS demonstrated a decreased necessity for rocuronium bromide compared to non-radiotherapy patients. Notably, patients who received epidural anesthesia in combination with general anesthesia manifested reduced hydromorphone requirements and prolonged hospital stays compared to those subjected to general anesthesia alone. In conclusion, the findings from this study indicate several important observations in diverse patient groups undergoing VATS. The higher dosages of rocuronium bromide and midazolam in LUAD patients point to potential differences in drug requirements among varying lung cancer types. Additionally, the observed shorter PACU stay in LUAD patients suggests a potentially expedited recovery process. The reduced anesthetic requirements of phenylephrine and remifentanilin chemotherapy patients indicate distinct responses to anesthesia and pain management. Radiotherapy patients requiring lower doses of rocuronium bromide imply a potential impact of prior radiotherapy on muscle relaxation. Finally, the combination of epidural anesthesia with general anesthesia resulted in reduced hydromorphone requirements and longer hospital stays, suggesting the potential benefits of this combined approach in terms of pain management and postoperative recovery. These findings highlight the importance of tailoring anesthesia strategies for specific patient populations to optimize outcomes in VATS procedures.
Collapse
Affiliation(s)
- Linghui Kong
- Department of Pathology, Peking University Cancer Hospital (Inner Mongolia Campus) & Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong Yin
- Department of Anesthesiology, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Danran Zhou
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Xin Li
- Department of Anesthesiology, Hubei Cancer Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zhou
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| |
Collapse
|
5
|
Huang CG, Liu Q, Zheng ST, Liu T, Tan YY, Peng TY, Chen J, Lu XM. Chemokines and Their Receptors: Predictors of Therapeutic Potential in Tumor Microenvironment on Esophageal Cancer. Dig Dis Sci 2024; 69:1562-1570. [PMID: 38580886 PMCID: PMC11098888 DOI: 10.1007/s10620-024-08392-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Esophageal carcinoma (ESCA) is an aggressive solid tumor. The 5-year survival rate for patients with ESCA is estimated to be less than 20%, mainly due to tumor invasion and metastasis. Therefore, it is urgent to improve early diagnostic tools and effective treatments for ESCA patients. Tumor microenvironment (TME) enhances the ability of tumor cells to proliferate, migrate, and escape from the immune system, thus promoting the occurrence and development of tumor. TME contains chemokines. Chemokines consist of four major families, which are mainly composed of CC and CXC families. The main purpose of this review is to understand the CC and CXC chemokines and their receptors in ESCA, to improve the understanding of tumorigenesis of ESCA and determine new biomarkers for the diagnosis and prognosis of ESCA. We reviewed the literature on CC and CXC chemokines and their receptors in ESCA identified by PubMed database. This article introduces the general structures and functions of CC, CXC chemokines and their receptors in TME, as well as their roles in the progress of ESCA. Chemokines are involved in the development of ESCA, such as cancer cell invasion, metastasis, angiogenesis, and radioresistance, and are key determinants of disease progression, which have a great impact on patient prognosis and treatment response. In addition, a full understanding of their mechanism of action is essential to further verify that these chemokines and their receptors may serve as biomarkers or therapeutic targets of ESCA.
Collapse
Affiliation(s)
- Cong-Gai Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of Luzhou, Luzhou, People's Republic of China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shu-Tao Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tao Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yi-Yi Tan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tian-Yuan Peng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiao Chen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Mei Lu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|