1
|
Šerý O, Dziedzinska R. Risk impact of SARS-CoV-2 coronavirus and spike protein on cardiac tissue: a comprehensive review. Physiol Res 2024; 73:S655-S669. [PMID: 39808169 PMCID: PMC11827061 DOI: 10.33549/physiolres.935476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 01/18/2025] Open
Abstract
The global COVID-19 pandemic, caused by SARS-CoV-2, has led to significant morbidity and mortality, with a profound impact on cardiovascular health. This review investigates the mechanisms of SARS-CoV-2's interaction with cardiac tissue, particularly emphasizing the role of the Spike protein and ACE2 receptor in facilitating viral entry and subsequent cardiac complications. We dissect the structural features of the virus, its interactions with host cell receptors, and the resulting pathophysiological changes in the heart. Highlighting SARS-CoV-2's broad organ tropism, especially its effects on cardiomyocytes via ACE2 and TMPRSS2, the review addresses how these interactions exacerbate cardiovascular issues in patients with pre-existing conditions such as diabetes and hypertension. Additionally, we assess both direct and indirect mechanisms of virus-induced cardiac damage, including myocarditis, arrhythmias, and long-term complications such as 'long COVID'. This review underscores the complexity of SARS-CoV-2's impact on the heart, emphasizing the need for ongoing research to fully understand its long-term effects on cardiovascular health. Key words: COVID-19, Heart, ACE2, Spike protein, Cardiomyocytes, Myocarditis, Long COVID.
Collapse
Affiliation(s)
- O Šerý
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
2
|
Liu X, Li H, Wang Y, Li S, Ren W, Yuan J, Pang Y. Discovering common pathogenetic processes between tuberculosis and COVID-19 by bioinformatics and system biology approach. Heliyon 2024; 10:e28664. [PMID: 38596062 PMCID: PMC11002586 DOI: 10.1016/j.heliyon.2024.e28664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Background SARS-CoV-2, the cause of the COVID-19 pandemic, poses a significant threat to humanity. Individuals with pulmonary tuberculosis (PTB) are at increased risk of developing severe COVID-19, due to long-term lung damage that heightens their susceptibility to full-blown disease. Methods Three COVID-19 datasets (GSE157103, GSE166253, and GSE171110) and one PTB dataset (GSE83456) were obtained from the Gene Expression Omnibus databases. Subsequently, data were subjected to weighted gene co-expression network analysis(WGCNA)followed by functional enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases. These analyses revealed two overlapping disease-specific modules, each comprising co-regulated genes with potentially related biological functions. Using Cytoscape, we visualised the interaction network containing common disease-related genes found within the intersection between modules and predicted transcription factors (TFs). Real-time qPCR was conducted to quantify expression levels of these genes in blood samples from COVID-19 and PTB patients. Finally, DisGeNET and the Drug Signatures database were employed to analyze these common genes, unveiling their connections to clinical disease features and potential drug treatments. Results Examination of the overlap between COVID-19 and PTB gene modules unveiled 11 common genes. Functional enrichment analyses using KEGG and GO shed light on potential functional relationships among these genes, providing insights into their potential roles in the heightened mortality of PTB patients due to SARS-CoV-2 infection. Furthermore, results of various bioinformatics-based analyses of common TFs and target genes led to identification of shared pathways and therapeutic targets for PTB patients with COVID-19, along with potential drug treatments for these patients. Conclusion Our results unveiled a potential biological connection between COVID-19 and PTB, as supported by results of functional enrichment analysis that highlighted potential biological processes and signaling pathways shared by both diseases. Building on these findings, we propose potential drug treatments for PTB patients with COVID-19, pending verification of drug safety and efficacy through laboratory and multicentre studies before clinical use.
Collapse
Affiliation(s)
| | | | | | - Shanshan Li
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weicong Ren
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinfeng Yuan
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
3
|
Nisa A, Kumar R, Ramasamy S, Kolloli A, Olejnik J, Jalloh S, Gummuluru S, Subbian S, Bushkin Y. Modulations of Homeostatic ACE2, CD147, GRP78 Pathways Correlate with Vascular and Endothelial Performance Markers during Pulmonary SARS-CoV-2 Infection. Cells 2024; 13:432. [PMID: 38474396 PMCID: PMC10930588 DOI: 10.3390/cells13050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The pathologic consequences of Coronavirus Disease-2019 (COVID-19) include elevated inflammation and dysregulated vascular functions associated with thrombosis. In general, disruption of vascular homeostasis and ensuing prothrombotic events are driven by activated platelets, monocytes, and macrophages, which form aggregates (thrombi) attached to the endothelium lining of vessel walls. However, molecular pathways underpinning the pathological interactions between myeloid cells and endothelium during COVID-19 remain undefined. Here, we tested the hypothesis that modulations in the expression of cellular receptors angiotensin-converting enzyme 2 (ACE2), CD147, and glucose-regulated protein 78 (GRP78), which are involved in homeostasis and endothelial performance, are the hallmark responses induced by SARS-CoV-2 infection. Cultured macrophages and lungs of hamster model systems were used to test this hypothesis. The results indicate that while macrophages and endothelial cells are less likely to support SARS-CoV-2 proliferation, these cells may readily respond to inflammatory stimuli generated by the infected lung epithelium. SARS-CoV-2 induced modulations of tested cellular receptors correlated with corresponding changes in the mRNA expression of coagulation cascade regulators and endothelial integrity components in infected hamster lungs. Among these markers, tissue factor (TF) had the best correlation for prothrombotic events during SARS-CoV-2 infection. Furthermore, the single-molecule fluorescence in situ hybridization (smFISH) method alone was sufficient to determine the peak and resolution phases of SARS-CoV-2 infection and enabled screening for cellular markers co-expressed with the virus. These findings suggest possible molecular pathways for exploration of novel drugs capable of blocking the prothrombotic shift events that exacerbate COVID-19 pathophysiology and control the disease.
Collapse
Affiliation(s)
- Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Ranjeet Kumar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Santhamani Ramasamy
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Afsal Kolloli
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Judith Olejnik
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA 02218, USA
| | - Sallieu Jalloh
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
| | - Suryaram Gummuluru
- Department of Virology, Immunology & Microbiology, Boston University School of Medicine, Boston, MA 02130, USA; (J.O.); (S.J.); (S.G.)
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.N.); (R.K.); (S.R.); (A.K.)
| |
Collapse
|
4
|
Kellum CL, Kirkland LG, Nelson TK, Jewett SM, Rytkin E, Efimov IR, Hoover DB, Benson PV, Wagener BM. Sympathetic remodeling and altered angiotensin-converting enzyme 2 localization occur in patients with cardiac disease but are not exacerbated by severe COVID-19. Auton Neurosci 2024; 251:103134. [PMID: 38101169 PMCID: PMC10872860 DOI: 10.1016/j.autneu.2023.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Remodeling of sympathetic nerves and ACE2 has been implicated in cardiac pathology, and ACE2 also serves as a receptor for SARS-CoV-2. However, there is limited histological knowledge about the transmural distribution of sympathetic nerves and the cellular localization and distribution of ACE2 in human left ventricles from normal or diseased hearts. Goals of this study were to establish the normal pattern for these parameters and determine changes that occurred in decedents with cardiovascular disease alone compared to those with cardiac pathology and severe COVID-19. METHODS We performed immunohistochemical analysis on sections of left ventricular wall from twenty autopsied human hearts consisting of a control group, a cardiovascular disease group, and COVID-19 ARDS, and COVID-19 non-ARDS groups. RESULTS Using tyrosine hydroxylase as a noradrenergic marker, we found substantial sympathetic nerve loss in cardiovascular disease samples compared to controls. Additionally, we found heterogeneous nerve loss in both COVID-19 groups. Using an ACE2 antibody, we observed robust transmural staining localized to pericytes in the control group. The cardiovascular disease hearts displayed regional loss of ACE2 in pericytes and regional increases in staining of cardiomyocytes for ACE2. Similar changes were observed in both COVID-19 groups. CONCLUSIONS Heterogeneity of sympathetic innervation, which occurs in cardiac disease and is not increased by severe COVID-19, could contribute to arrhythmogenesis. The dominant localization of ACE2 to pericytes suggests that these cells would be the primary target for potential cardiac infection by SARS-CoV-2. Regional changes in ACE2 staining by myocytes and pericytes could have complex effects on cardiac pathophysiology.
Collapse
Affiliation(s)
- Creighton L Kellum
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Logan G Kirkland
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tasha K Nelson
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Seth M Jewett
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Eric Rytkin
- Department of Biomedical Engineering and Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Igor R Efimov
- Department of Biomedical Engineering and Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Paul V Benson
- Department of Pathology, The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL 35294, USA.
| |
Collapse
|
5
|
Dai S, Cao T, Shen H, Zong X, Gu W, Li H, Wei L, Huang H, Yu Y, Chen Y, Ye W, Hua F, Fan H, Shen Z. Landscape of molecular crosstalk between SARS-CoV-2 infection and cardiovascular diseases: emphasis on mitochondrial dysfunction and immune-inflammation. J Transl Med 2023; 21:915. [PMID: 38104081 PMCID: PMC10725609 DOI: 10.1186/s12967-023-04787-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND SARS-CoV-2, the pathogen of COVID-19, is a worldwide threat to human health and causes a long-term burden on the cardiovascular system. Individuals with pre-existing cardiovascular diseases are at higher risk for SARS-CoV-2 infection and tend to have a worse prognosis. However, the relevance and pathogenic mechanisms between COVID-19 and cardiovascular diseases are not yet completely comprehended. METHODS Common differentially expressed genes (DEGs) were obtained in datasets of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2 and myocardial tissues from heart failure patients. Further GO and KEGG pathway analysis, protein-protein interaction (PPI) network construction, hub genes identification, immune microenvironment analysis, and drug candidate predication were performed. Then, an isoproterenol-stimulated myocardial hypertrophy cell model and a transverse aortic constriction-induced mouse heart failure model were employed to validate the expression of hub genes. RESULTS A total of 315 up-regulated and 78 down-regulated common DEGs were identified. Functional enrichment analysis revealed mitochondrial metabolic disorders and extensive immune inflammation as the most prominent shared features of COVID-19 and cardiovascular diseases. Then, hub DEGs, as well as hub immune-related and mitochondria-related DEGs, were screened. Additionally, nine potential therapeutic agents for COVID-19-related cardiovascular diseases were proposed. Furthermore, the expression patterns of most of the hub genes related to cardiovascular diseases in the validation dataset along with cellular and mouse myocardial damage models, were consistent with the findings of bioinformatics analysis. CONCLUSIONS The study unveiled the molecular networks and signaling pathways connecting COVID-19 and cardiovascular diseases, which may provide novel targets for intervention of COVID-19-related cardiovascular diseases.
Collapse
Affiliation(s)
- Shiyu Dai
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Ting Cao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Han Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Xuejing Zong
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Wenyu Gu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Hanghang Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Lei Wei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Haoyue Huang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Wenxue Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Hongyou Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College, Soochow University, Suzhou, 215006, China.
| |
Collapse
|