1
|
Connecting macroscopic diffusion metrics of cardiac diffusion tensor imaging and microscopic myocardial structures based on simulation. Med Image Anal 2022; 77:102325. [DOI: 10.1016/j.media.2021.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022]
|
2
|
Moulin K, Croisille P, Viallon M, Verzhbinsky IA, Perotti LE, Ennis DB. Myofiber strain in healthy humans using DENSE and cDTI. Magn Reson Med 2021; 86:277-292. [PMID: 33619807 DOI: 10.1002/mrm.28724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Myofiber strain, Eff , is a mechanistically relevant metric of cardiac cell shortening and is expected to be spatially uniform in healthy populations, making it a prime candidate for the evaluation of local cardiomyocyte contractility. In this study, a new, efficient pipeline was proposed to combine microstructural cDTI and functional DENSE data in order to estimate Eff in vivo. METHODS Thirty healthy volunteers were scanned with three long-axis (LA) and three short-axis (SA) DENSE slices using 2D displacement encoding and one SA slice of cDTI. The total acquisition time was 11 minutes ± 3 minutes across volunteers. The pipeline first generates 3D SA displacements from all DENSE slices which are then combined with cDTI data to generate a cine of myofiber orientations and compute Eff . The precision of the post-processing pipeline was assessed using a computational phantom study. Transmural myofiber strain was compared to circumferential strain, Ecc , in healthy volunteers using a Wilcoxon sign rank test. RESULTS In vivo, computed Eff was found uniform transmurally compared to Ecc (-0.14[-0.15, -0.12] vs -0.18 [-0.20, -0.16], P < .001, -0.14 [-0.16, -0.12] vs -0.16 [-0.17, -0.13], P < .001 and -0.14 [-0.16, -0.12] vs Ecc_C = -0.14 [-0.15, -0.11], P = .002, Eff_C vs Ecc_C in the endo, mid, and epi layers, respectively). CONCLUSION We demonstrate that it is possible to measure in vivo myofiber strain in a healthy human population in 10 minutes per subject. Myofiber strain was observed to be spatially uniform in healthy volunteers making it a potential biomarker for the evaluation of local cardiomyocyte contractility in assessing cardiovascular dysfunction.
Collapse
Affiliation(s)
- Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France.,Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France.,Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Ilya A Verzhbinsky
- Medical Scientist Training Program, University of California - San Diego, La Jolla, CA, USA
| | - Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. PLoS One 2020; 15:e0241996. [PMID: 33180823 PMCID: PMC7660468 DOI: 10.1371/journal.pone.0241996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/24/2020] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Cardiomyocyte organization and performance underlie cardiac function, but the in vivo mobility of these cells during contraction and filling remains difficult to probe. Herein, a novel trigger delay (TD) scout sequence was used to acquire high in-plane resolution (1.6 mm) Spin-Echo (SE) cardiac diffusion tensor imaging (cDTI) at three distinct cardiac phases. The objective was to characterize cardiomyocyte organization and mobility throughout the cardiac cycle in healthy volunteers. MATERIALS AND METHODS Nine healthy volunteers were imaged with cDTI at three distinct cardiac phases (early systole, late systole, and diastasis). The sequence used a free-breathing Spin-Echo (SE) cDTI protocol (b-values = 350s/mm2, twelve diffusion encoding directions, eight repetitions) to acquire high-resolution images (1.6x1.6x8mm3) at 3T in ~7 minutes/cardiac phase. Helix Angle (HA), Helix Angle Range (HAR), E2 angle (E2A), Transverse Angle (TA), Mean Diffusivity (MD), diffusion tensor eigenvalues (λ1-2-3), and Fractional Anisotropy (FA) in the left ventricle (LV) were characterized. RESULTS Images from the patient-specific TD scout sequence demonstrated that SE cDTI acquisition was possible at early systole, late systole, and diastasis in 78%, 100% and 67% of the cases, respectively. At the mid-ventricular level, mobility (reported as median [IQR]) was observed in HAR between early systole and late systole (76.9 [72.6, 80.5]° vs 96.6 [85.9, 100.3]°, p<0.001). E2A also changed significantly between early systole, late systole, and diastasis (27.7 [20.8, 35.1]° vs 45.2 [42.1, 49]° vs 20.7 [16.6, 26.4]°, p<0.001). CONCLUSION We demonstrate that it is possible to probe cardiomyocyte mobility using multi-phase and high resolution cDTI. In healthy volunteers, aggregate cardiomyocytes re-orient themselves more longitudinally during contraction, while cardiomyocyte sheetlets tilt radially during wall thickening. These observations provide new insights into the three-dimensional mobility of myocardial microstructure during systolic contraction.
Collapse
|
4
|
Abstract
Advances in technology have made it possible to image the microstructure of the heart with diffusion-weighted magnetic resonance. The technique provides unique insights into the cellular architecture of the myocardium and how this is perturbed in a range of disease contexts. In this review, the physical basis of diffusion MRI and the challenges of implementing it in the beating heart are discussed. Cutting edge acquisition and analysis techniques, as well as the results of initial clinical studies, are reported.
Collapse
Affiliation(s)
- David E Sosnovik
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Le B, Ferreira P, Merchant S, Zheng G, Sutherland MR, Dahl MJ, Albertine KH, Black MJ. Microarchitecture of the hearts in term and former-preterm lambs using diffusion tensor imaging. Anat Rec (Hoboken) 2020; 304:803-817. [PMID: 33015923 DOI: 10.1002/ar.24516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Diffusion tensor imaging (DTI) is an MRI technique that can be used to map cardiomyocyte tracts and estimate local cardiomyocyte and sheetlet orientation within the heart. DTI measures diffusion distances of water molecules within the myocardium, where water diffusion generally occurs more freely along the long axis of cardiomyocytes and within the extracellular matrix, but is restricted by cell membranes such that transverse diffusion is limited. DTI can be undertaken in fixed hearts and it allows the three-dimensional mapping of the cardiac microarchitecture, including cardiomyocyte organization, within the whole heart. The objective of this study was to use DTI to compare the cardiac microarchitecture and cardiomyocyte organization in archived fixed left ventricles of lambs that were born either preterm (n = 5) or at term (n = 7), at a postnatal timepoint equivalent to about 6 years of age in children. Although the findings support the feasibility of retrospective DTI scanning of fixed hearts, several hearts were excluded from DTI analysis because of poor scan quality, such as ghosting artifacts. The preliminary findings from viable DTI scans (n = 3/group) suggest that the extracellular compartment is altered and that there is an immature microstructural phenotype early in postnatal life in the LV of lambs born preterm. Our findings support a potential time-efficient imaging role for DTI in detecting abnormal changes in the microstructure of fixed hearts of former-preterm neonates, although further investigation into factors that affect scan quality is required.
Collapse
Affiliation(s)
- Bianca Le
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | | | - Samer Merchant
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Victoria, Australia
| | - Megan R Sutherland
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Victoria, Australia
| | - Mar Janna Dahl
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Kurt H Albertine
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Victoria, Australia
| |
Collapse
|
6
|
Lee JM, Suen SKQ, Ng WL, Ma WC, Yeong WY. Bioprinting of Collagen: Considerations, Potentials, and Applications. Macromol Biosci 2020; 21:e2000280. [PMID: 33073537 DOI: 10.1002/mabi.202000280] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Collagen is the most abundant extracellular matrix protein that is widely used in tissue engineering (TE). There is little research done on printing pure collagen. To understand the bottlenecks in printing pure collagen, it is imperative to understand collagen from a bottom-up approach. Here it is aimed to provide a comprehensive overview of collagen printing, where collagen assembly in vivo and the various sources of collagen available for TE application are first understood. Next, the current printing technologies and strategy for printing collagen-based materials are highlighted. Considerations and key challenges faced in collagen printing are identified. Finally, the key research areas that would enhance the functionality of printed collagen are presented.
Collapse
Affiliation(s)
- Jia Min Lee
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sean Kang Qiang Suen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wei Long Ng
- HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wai Cheung Ma
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.,HP-NTU Digital Manufacturing Corporate Lab, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
7
|
Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Firmin DN, Pennell DJ. Diffusion Tensor Cardiovascular Magnetic Resonance Imaging. JACC Cardiovasc Imaging 2020; 13:1235-1255. [DOI: 10.1016/j.jcmg.2019.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
8
|
Sjöberg P, Ostenfeld E, Hedström E, Arheden H, Gustafsson R, Nozohoor S, Carlsson M. Changes in left and right ventricular longitudinal function after pulmonary valve replacement in patients with Tetralogy of Fallot. Am J Physiol Heart Circ Physiol 2020; 318:H345-H353. [PMID: 31886724 DOI: 10.1152/ajpheart.00417.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Timing and indication for pulmonary valve replacement (PVR) in patients with repaired Tetralogy of Fallot (rToF) and pulmonary regurgitation (PR) are uncertain. To improve understanding of pumping mechanics, we investigated atrioventricular coupling before and after surgical PVR. Cardiovascular magnetic resonance was performed in patients (n = 12) with rToF and PR > 35% before and after PVR and in healthy controls (n = 15). Atrioventricular plane displacement (AVPD), global longitudinal peak systolic strain (GLS), atrial and ventricular volumes, and caval blood flows were analyzed. Right ventricular (RV) AVPD and RV free wall GLS were lower in patients before PVR compared with controls (P < 0.0001; P < 0.01) and decreased after PVR (P < 0.0001 for both). Left ventricular AVPD was lower in patients before PVR compared with controls (P < 0.05) and decreased after PVR (P < 0.01). Left ventricular GLS did not differ between patients and controls (P > 0.05). Right atrial reservoir volume and RV stroke volume generated by AVPD correlated in controls (r = 0.93; P < 0.0001) and patients before PVR (r = 0.88; P < 0.001) but not after PVR. In conclusion, there is a clear atrioventricular coupling in patients before PVR that is lost after PVR, possibly because of loss of pericardial integrity. Impaired atrioventricular coupling complicates assessment of ventricular function after surgery using measurements of longitudinal function. Changes in atrioventricular coupling seen in patients with rToF may be energetically unfavorable, and long-term effects of surgery on atrioventricular coupling is therefore of interest. Also, AVPD and GLS cannot be used interchangeably to assess longitudinal function in rToF.NEW & NOTEWORTHY There is a clear atrioventricular coupling in patients with Tetralogy of Fallot (ToF) and pulmonary regurgitation before surgical pulmonary valve replacement (PVR) that is lost after operation, possibly because of loss of pericardial integrity. The impaired atrioventricular coupling complicates assessment of ventricular function after surgery when using measurements of longitudinal function. Left ventricular atrioventricular plane displacement (AVPD) found differences between patients and controls and changes after PVR that longitudinal strain could not detect. This indicates that AVPD and strain cannot be used interchangeably to assess longitudinal function in repaired ToF.
Collapse
Affiliation(s)
- Pia Sjöberg
- Clinical Physiology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Ellen Ostenfeld
- Clinical Physiology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Ronny Gustafsson
- Cardiothoracic Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Shahab Nozohoor
- Cardiothoracic Surgery, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Marcus Carlsson
- Clinical Physiology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Nielles-Vallespin S, Scott A, Ferreira P, Khalique Z, Pennell D, Firmin D. Cardiac Diffusion: Technique and Practical Applications. J Magn Reson Imaging 2019; 52:348-368. [PMID: 31482620 DOI: 10.1002/jmri.26912] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The 3D microarchitecture of the cardiac muscle underlies the mechanical and electrical properties of the heart. Cardiomyocytes are arranged helically through the depth of the wall, and their shortening leads to macroscopic torsion, twist, and shortening during cardiac contraction. Furthermore, cardiomyocytes are organized in sheetlets separated by shear layers, which reorientate, slip, and shear during macroscopic left ventricle (LV) wall thickening. Cardiac diffusion provides a means for noninvasive interrogation of the 3D microarchitecture of the myocardium. The fundamental principle of MR diffusion is that an MRI signal is attenuated by the self-diffusion of water in the presence of large diffusion-encoding gradients. Since water molecules are constrained by the boundaries in biological tissue (cell membranes, collagen layers, etc.), depicting their diffusion behavior elucidates the shape of the myocardial microarchitecture they are embedded in. Cardiac diffusion therefore provides a noninvasive means to understand not only the dynamic changes in cardiac microstructure of healthy myocardium during cardiac contraction but also the pathophysiological changes in the presence of disease. This unique and innovative technology offers tremendous potential to enable improved clinical diagnosis through novel microstructural and functional assessment. in vivo cardiac diffusion methods are immediately translatable to patients, opening new avenues for diagnostic investigation and treatment evaluation in a range of clinically important cardiac pathologies. This review article describes the 3D microstructure of the LV, explains in vivo and ex vivo cardiac MR diffusion acquisition and postprocessing techniques, as well as clinical applications to date. Level of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:348-368.
Collapse
Affiliation(s)
- Sonia Nielles-Vallespin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Andrew Scott
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Pedro Ferreira
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Zohya Khalique
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Dudley Pennell
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - David Firmin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
10
|
Fan Y, Ronan W, Teh I, Schneider JE, Varela CE, Whyte W, McHugh P, Leen S, Roche E. A comparison of two quasi-static computational models for assessment of intra-myocardial injection as a therapeutic strategy for heart failure. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3213. [PMID: 31062508 DOI: 10.1002/cnm.3213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Myocardial infarction, or heart attack, is the leading cause of mortality globally. Although the treatment of myocardial infarct has improved significantly, scar tissue that persists can often lead to increased stress and adverse remodeling of surrounding tissue and ultimately to heart failure. Intra-myocardial injection of biomaterials represents a potential treatment to attenuate remodeling, mitigate degeneration, and reverse the disease process in the tissue. In vivo experiments on animal models have shown functional benefits of this therapeutic strategy. However, a poor understanding of the optimal injection pattern, volume, and material properties has acted as a barrier to its widespread clinical adoption. In this study, we developed two quasistatic finite element simulations of the left ventricle to investigate the mechanical effect of intra-myocardial injection. The first model employed an idealized left ventricular geometry with rule-based cardiomyocyte orientation. The second model employed a subject-specific left ventricular geometry with cardiomyocyte orientation from diffusion tensor magnetic resonance imaging. Both models predicted cardiac parameters including ejection fraction, systolic wall thickening, and ventricular twist that matched experimentally reported values. All injection simulations showed cardiomyocyte stress attenuation, offering an explanation for the mechanical reinforcement benefit associated with injection. The study also enabled a comparison of injection location and the corresponding effect on cardiac performance at different stages of the cardiac cycle. While the idealized model has lower fidelity, it predicts cardiac function and differentiates the effects of injection location. Both models represent versatile in silico tools to guide optimal strategy in terms of injection number, volume, site, and material properties.
Collapse
Affiliation(s)
- Yiling Fan
- Mechanical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - William Ronan
- Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jurgen E Schneider
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Claudia E Varela
- Institute for Medical Engineering Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, Massachusetts
| | - William Whyte
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), Dublin, 2, Ireland
- Trinity Centre for Bioengineering, Trinity College Dublin (TCD), College Green, Dublin, 2, Ireland
- Advanced Materials and BioEngineering Research (AMBER) Centre, RCSI, NUIG & TCD, Dublin, 2, Ireland
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts
| | - Peter McHugh
- Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Sean Leen
- Mechanical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Ellen Roche
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Institute for Medical Engineering Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
11
|
Resolving the True Ventricular Mural Architecture. J Cardiovasc Dev Dis 2018; 5:jcdd5020034. [PMID: 29925810 PMCID: PMC6023305 DOI: 10.3390/jcdd5020034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/10/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
The precise nature of packing together of the cardiomyocytes within the ventricular walls has still to be determined. The spiraling nature of the chains of interconnected cardiomyocytes has long been recognized. As long ago as the end of the nineteenth century, Pettigrew had emphasized that the ventricular cone was not arranged on the basis of skeletal muscle. Despite this guidance, subsequent anatomists described entities such as “bulbo-spiral muscles”, with this notion of subunits culminating in the suggestion that the ventricular cone could be unwrapped so as to produce a “ventricular myocardial band”. Others, in contrast, had suggested that the ventricular walls were arranged on the basis of “sheets”, or more recently “sheetlets”, with investigators seeking to establishing the angulation of these entities using techniques such as magnetic resonance imaging. Our own investigations, in contrast, have shown that the cardiomyocytes are aggregated together within the supporting fibrous matrix so as to produce a three-dimensional myocardial mesh. In this review, we summarize the previous accounts, and provide the anatomical evidence we have thus far accumulated to support the model of the myocardial mesh. We show how these anatomic findings underscore the concept of the myocardial mesh functioning in antagonistic fashion. They lend evidence to support the notion that the ventricular myocardium works as a muscular hydrostat.
Collapse
|
12
|
Ferreira PF, Nielles-Vallespin S, Scott AD, de Silva R, Kilner PJ, Ennis DB, Auger DA, Suever JD, Zhong X, Spottiswoode BS, Pennell DJ, Arai AE, Firmin DN. Evaluation of the impact of strain correction on the orientation of cardiac diffusion tensors with in vivo and ex vivo porcine hearts. Magn Reson Med 2017; 79:2205-2215. [PMID: 28734017 DOI: 10.1002/mrm.26850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/07/2017] [Accepted: 07/02/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE To evaluate the importance of strain-correcting stimulated echo acquisition mode echo-planar imaging cardiac diffusion tensor imaging. METHODS Healthy pigs (n = 11) were successfully scanned with a 3D cine displacement-encoded imaging with stimulated echoes and a monopolar-stimulated echo-planar imaging diffusion tensor imaging sequence at 3 T during diastasis, peak systole, and strain sweet spots in a midventricular short-axis slice. The same diffusion tensor imaging sequence was repeated ex vivo after arresting the hearts in either a relaxed (KCl-induced) or contracted (BaCl2 -induced) state. The displacement-encoded imaging with stimulated echoes data were used to strain-correct the in vivo cardiac diffusion tensor imaging in diastole and systole. The orientation of the primary (helix angles) and secondary (E2A) diffusion eigenvectors was compared with and without strain correction and to the strain-free ex vivo data. RESULTS Strain correction reduces systolic E2A significantly when compared without strain correction and ex vivo (median absolute E2A = 34.3° versus E2A = 57.1° (P = 0.01), E2A = 60.5° (P = 0.006), respectively). The systolic distribution of E2A without strain correction is closer to the contracted ex vivo distribution than with strain correction, root mean square deviation of 0.027 versus 0.038. CONCLUSIONS The current strain-correction model amplifies the contribution of microscopic strain to diffusion resulting in an overcorrection of E2A. Results show that a new model that considers cellular rearrangement is required. Magn Reson Med 79:2205-2215, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Pedro F Ferreira
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Andrew D Scott
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ranil de Silva
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Philip J Kilner
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Daniel B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, California, USA
| | - Daniel A Auger
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | - Dudley J Pennell
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Andrew E Arai
- NHLBI, National Institutes of Health, Bethesda, Maryland, USA
| | - David N Firmin
- Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
13
|
Nielles-Vallespin S, Khalique Z, Ferreira PF, de Silva R, Scott AD, Kilner P, McGill LA, Giannakidis A, Gatehouse PD, Ennis D, Aliotta E, Al-Khalil M, Kellman P, Mazilu D, Balaban RS, Firmin DN, Arai AE, Pennell DJ. Assessment of Myocardial Microstructural Dynamics by In Vivo Diffusion Tensor Cardiac Magnetic Resonance. J Am Coll Cardiol 2017; 69:661-676. [PMID: 28183509 PMCID: PMC8672367 DOI: 10.1016/j.jacc.2016.11.051] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/29/2016] [Accepted: 11/07/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Cardiomyocytes are organized in microstructures termed sheetlets that reorientate during left ventricular thickening. Diffusion tensor cardiac magnetic resonance (DT-CMR) may enable noninvasive interrogation of in vivo cardiac microstructural dynamics. Dilated cardiomyopathy (DCM) is a condition of abnormal myocardium with unknown sheetlet function. OBJECTIVES This study sought to validate in vivo DT-CMR measures of cardiac microstructure against histology, characterize microstructural dynamics during left ventricular wall thickening, and apply the technique in hypertrophic cardiomyopathy (HCM) and DCM. METHODS In vivo DT-CMR was acquired throughout the cardiac cycle in healthy swine, followed by in situ and ex vivo DT-CMR, then validated against histology. In vivo DT-CMR was performed in 19 control subjects, 19 DCM, and 13 HCM patients. RESULTS In swine, a DT-CMR index of sheetlet reorientation (E2A) changed substantially (E2A mobility ~46°). E2A changes correlated with wall thickness changes (in vivo r2 = 0.75; in situ r2 = 0.89), were consistently observed under all experimental conditions, and accorded closely with histological analyses in both relaxed and contracted states. The potential contribution of cyclical strain effects to in vivo E2A was ~17%. In healthy human control subjects, E2A increased from diastole (18°) to systole (65°; p < 0.001; E2A mobility = 45°). HCM patients showed significantly greater E2A in diastole than control subjects did (48 ; p < 0.001) with impaired E2A mobility (23°; p < 0.001). In DCM, E2A was similar to control subjects in diastole, but systolic values were markedly lower (40° ; p < 0.001) with impaired E2A mobility (20°; p < 0.001). CONCLUSIONS Myocardial microstructure dynamics can be characterized by in vivo DT-CMR. Sheetlet function was abnormal in DCM with altered systolic conformation and reduced mobility, contrasting with HCM, which showed reduced mobility with altered diastolic conformation. These novel insights significantly improve understanding of contractile dysfunction at a level of noninvasive interrogation not previously available in humans. (J Am Coll Cardiol 2017;69:661–76) Published by Elsevier on behalf of the American College of Cardiology Foundation.
Collapse
Affiliation(s)
- Sonia Nielles-Vallespin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland; Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Institute for Health Research Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield National Health Service Foundation Trust, and Imperial College London, London, United Kingdom
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Institute for Health Research Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield National Health Service Foundation Trust, and Imperial College London, London, United Kingdom
| | - Ranil de Silva
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Institute for Health Research Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield National Health Service Foundation Trust, and Imperial College London, London, United Kingdom
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Institute for Health Research Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield National Health Service Foundation Trust, and Imperial College London, London, United Kingdom
| | - Philip Kilner
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Institute for Health Research Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield National Health Service Foundation Trust, and Imperial College London, London, United Kingdom
| | - Laura-Ann McGill
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Archontis Giannakidis
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter D Gatehouse
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Daniel Ennis
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Eric Aliotta
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Majid Al-Khalil
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Dumitru Mazilu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Robert S Balaban
- National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Institute for Health Research Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield National Health Service Foundation Trust, and Imperial College London, London, United Kingdom
| | - Andrew E Arai
- National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Institute for Health Research Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield National Health Service Foundation Trust, and Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Mekkaoui C, Reese TG, Jackowski MP, Bhat H, Sosnovik DE. Diffusion MRI in the heart. NMR IN BIOMEDICINE 2017; 30:e3426. [PMID: 26484848 PMCID: PMC5333463 DOI: 10.1002/nbm.3426] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/01/2015] [Accepted: 09/10/2015] [Indexed: 05/25/2023]
Abstract
Diffusion MRI provides unique information on the structure, organization, and integrity of the myocardium without the need for exogenous contrast agents. Diffusion MRI in the heart, however, has proven technically challenging because of the intrinsic non-rigid deformation during the cardiac cycle, displacement of the myocardium due to respiratory motion, signal inhomogeneity within the thorax, and short transverse relaxation times. Recently developed accelerated diffusion-weighted MR acquisition sequences combined with advanced post-processing techniques have improved the accuracy and efficiency of diffusion MRI in the myocardium. In this review, we describe the solutions and approaches that have been developed to enable diffusion MRI of the heart in vivo, including a dual-gated stimulated echo approach, a velocity- (M1 ) or an acceleration- (M2 ) compensated pulsed gradient spin echo approach, and the use of principal component analysis filtering. The structure of the myocardium and the application of these techniques in ischemic heart disease are also briefly reviewed. The advent of clinical MR systems with stronger gradients will likely facilitate the translation of cardiac diffusion MRI into clinical use. The addition of diffusion MRI to the well-established set of cardiovascular imaging techniques should lead to new and complementary approaches for the diagnosis and evaluation of patients with heart disease. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcel P Jackowski
- Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | | | - David E Sosnovik
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Extraction of the 3D local orientation of myocytes in human cardiac tissue using X-ray phase-contrast micro-tomography and multi-scale analysis. Med Image Anal 2017; 38:117-132. [PMID: 28334658 DOI: 10.1016/j.media.2017.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 11/23/2022]
Abstract
This paper presents a methodology to access the 3D local myocyte arrangements in fresh human post-mortem heart samples. We investigated the cardiac micro-structure at a high and isotropic resolution of 3.5 µm in three dimensions using X-ray phase micro-tomography at the European Synchrotron Radiation Facility. We then processed the reconstructed volumes to extract the 3D local orientation of the myocytes using a multi-scale approach with no segmentation. We created a simplified 3D model of tissue sample made of simulated myocytes with known size and orientations, to evaluate our orientation extraction method. Afterwards, we applied it to 2D histological cuts and to eight 3D left ventricular (LV) cardiac tissue samples. Then, the variation of the helix angles, from the endocardium to the epicardium, was computed at several spatial resolutions ranging from 3.63 mm3 to 1123 µm3. We measure an increased range of 20° to 30° from the coarsest resolution level to the finest level in the experimental samples. This result is in line with the higher values measured from histology. The displayed tractography demonstrates a rather smooth evolution of the transmural helix angle in six LV samples and a sudden discontinuity of the helix angle in two septum samples. These measurements bring a new vision of the human heart architecture from macro- to micro-scale.
Collapse
|
16
|
Pennell DJ, Baksi AJ, Prasad SK, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider JE, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2015. J Cardiovasc Magn Reson 2016; 18:86. [PMID: 27846914 PMCID: PMC5111217 DOI: 10.1186/s12968-016-0305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
There were 116 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2015, which is a 14 % increase on the 102 articles published in 2014. The quality of the submissions continues to increase. The 2015 JCMR Impact Factor (which is published in June 2016) rose to 5.75 from 4.72 for 2014 (as published in June 2015), which is the highest impact factor ever recorded for JCMR. The 2015 impact factor means that the JCMR papers that were published in 2013 and 2014 were cited on average 5.75 times in 2015. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25 % and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D. J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - A. J. Baksi
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. K. Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - R. H. Mohiaddin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - F. Alpendurada
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. V. Babu-Narayan
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - J. E. Schneider
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - D. N. Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| |
Collapse
|
17
|
Abdullah OM, Seidel T, Dahl M, Gomez AD, Yiep G, Cortino J, Sachse FB, Albertine KH, Hsu EW. Diffusion tensor imaging and histology of developing hearts. NMR IN BIOMEDICINE 2016; 29:1338-1349. [PMID: 27485033 PMCID: PMC5160010 DOI: 10.1002/nbm.3576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/24/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
Diffusion tensor imaging (DTI) has emerged as a promising method for noninvasive quantification of myocardial microstructure. However, the origin and behavior of DTI measurements during myocardial normal development and remodeling remain poorly understood. In this work, conventional and bicompartmental DTI in addition to three-dimensional histological correlation were performed in a sheep model of myocardial development from third trimester to postnatal 5 months of age. Comparing the earliest time points in the third trimester with the postnatal 5 month group, the scalar transverse diffusivities preferentially increased in both left ventricle (LV) and right ventricle (RV): secondary eigenvalues D2 increased by 54% (LV) and 36% (RV), whereas tertiary eigenvalues D3 increased by 85% (LV) and 67% (RV). The longitudinal diffusivity D1 changes were small, which led to a decrease in fractional anisotropy by 41% (LV) and 33% (RV) in 5 month versus fetal hearts. Histological analysis suggested that myocardial development is associated with hyperplasia in the early stages of the third trimester followed by myocyte growth in the later stages up to 5 months of age (increased average myocyte width by 198%, myocyte length by 128%, and decreased nucleus density by 70% between preterm and postnatal 5 month hearts.) In a few histological samples (N = 6), correlations were observed between DTI longitudinal diffusivity and myocyte length (r = 0.86, P < 0.05), and transverse diffusivity and myocyte width (r = 0.96, P < 0.01). Linear regression analysis showed that transverse diffusivities are more affected by changes in myocyte size and nucleus density changes than longitudinal diffusivities, which is consistent with predictions of classical models of diffusion in porous media. Furthermore, primary and secondary DTI eigenvectors during development changed significantly. Collectively, the findings demonstrate a role for DTI to monitor and quantify myocardial development, and potentially cardiac disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Osama M Abdullah
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA.
| | - Thomas Seidel
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - MarJanna Dahl
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Arnold David Gomez
- Department of Electrical Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Gavin Yiep
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Julia Cortino
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Frank B Sachse
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Kurt H Albertine
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Edward W Hsu
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Teh I, Burton RAB, McClymont D, Capel RA, Aston D, Kohl P, Schneider JE. Mapping cardiac microstructure of rabbit heart in different mechanical states by high resolution diffusion tensor imaging: A proof-of-principle study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:85-96. [PMID: 27320383 PMCID: PMC4959513 DOI: 10.1016/j.pbiomolbio.2016.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/13/2016] [Indexed: 01/27/2023]
Abstract
Myocardial microstructure and its macroscopic materialisation are fundamental to the function of the heart. Despite this importance, characterisation of cellular features at the organ level remains challenging, and a unifying description of the structure of the heart is still outstanding. Here, we optimised diffusion tensor imaging data to acquire high quality data in ex vivo rabbit hearts in slack and contractured states, approximating diastolic and systolic conditions. The data were analysed with a suite of methods that focused on different aspects of the myocardium. In the slack heart, we observed a similar transmural gradient in helix angle of the primary eigenvector of up to 23.6°/mm in the left ventricle and 24.2°/mm in the right ventricle. In the contractured heart, the same transmural gradient remained largely linear, but was offset by up to +49.9° in the left ventricle. In the right ventricle, there was an increase in the transmural gradient to 31.2°/mm and an offset of up to +39.0°. The application of tractography based on each eigenvector enabled visualisation of streamlines that depict cardiomyocyte and sheetlet organisation over large distances. We observed multiple V- and N-shaped sheetlet arrangements throughout the myocardium, and insertion of sheetlets at the intersection of the left and right ventricle. This study integrates several complementary techniques to visualise and quantify the heart's microstructure, projecting parameter representations across different length scales. This represents a step towards a more comprehensive characterisation of myocardial microstructure at the whole organ level.
Collapse
Affiliation(s)
- Irvin Teh
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca A B Burton
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Darryl McClymont
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca A Capel
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Daniel Aston
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen, Medical School of the University of Freiburg, Germany
| | - Jürgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
19
|
Bajd F, Mattea C, Stapf S, Sersa I. Diffusion tensor MR microscopy of tissues with low diffusional anisotropy. Radiol Oncol 2016; 50:175-87. [PMID: 27247550 PMCID: PMC4852972 DOI: 10.1515/raon-2016-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/08/2016] [Indexed: 11/22/2022] Open
Abstract
Background Diffusion tensor imaging exploits preferential diffusional motion of water molecules residing within tissue compartments for assessment of tissue structural anisotropy. However, instrumentation and post-processing errors play an important role in determination of diffusion tensor elements. In the study, several experimental factors affecting accuracy of diffusion tensor determination were analyzed. Materials and methods Effects of signal-to-noise ratio and configuration of the applied diffusion-sensitizing gradients on fractional anisotropy bias were analyzed by means of numerical simulations. In addition, diffusion tensor magnetic resonance microscopy experiments were performed on a tap water phantom and bovine articular cartilage-on-bone samples to verify the simulation results. Results In both, the simulations and the experiments, the multivariate linear regression of the diffusion-tensor analysis yielded overestimated fractional anisotropy with low SNRs and with low numbers of applied diffusion-sensitizing gradients. Conclusions An increase of the apparent fractional anisotropy due to unfavorable experimental conditions can be overcome by applying a larger number of diffusion sensitizing gradients with small values of the condition number of the transformation matrix. This is in particular relevant in magnetic resonance microscopy, where imaging gradients are high and the signal-to-noise ratio is low.
Collapse
Affiliation(s)
| | - Carlos Mattea
- TU Ilmenau, Institute of Physics, Fachgebiet Technische Physik II, Ilmenau, Germany
| | - Siegfried Stapf
- TU Ilmenau, Institute of Physics, Fachgebiet Technische Physik II, Ilmenau, Germany
| | - Igor Sersa
- Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
20
|
Teh I, Zhou FL, Hubbard Cristinacce PL, Parker GJM, Schneider JE. Biomimetic phantom for cardiac diffusion MRI. J Magn Reson Imaging 2016; 43:594-600. [PMID: 26213152 PMCID: PMC4762200 DOI: 10.1002/jmri.25014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/06/2015] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Diffusion magnetic resonance imaging (MRI) is increasingly used to characterize cardiac tissue microstructure, necessitating the use of physiologically relevant phantoms for methods development. Existing phantoms are generally simplistic and mostly simulate diffusion in the brain. Thus, there is a need for phantoms mimicking diffusion in cardiac tissue. MATERIALS AND METHODS A biomimetic phantom composed of hollow microfibers generated using co-electrospinning was developed to mimic myocardial diffusion properties and fiber and sheet orientations. Diffusion tensor imaging was carried out at monthly intervals over 4 months at 9.4T. 3D fiber tracking was performed using the phantom and compared with fiber tracking in an ex vivo rat heart. RESULTS The mean apparent diffusion coefficient and fractional anisotropy of the phantom remained stable over the 4-month period, with mean values of 7.53 ± 0.16 × 10(-4) mm(2) /s and 0.388 ± 0.007, respectively. Fiber tracking of the 1st and 3rd eigenvectors generated analogous results to the fiber and sheet-normal direction respectively, found in the left ventricular myocardium. CONCLUSION A biomimetic phantom simulating diffusion in the heart was designed and built. This could aid development and validation of novel diffusion MRI methods for investigating cardiac microstructure, decrease the number of animals and patients needed for methods development, and improve quality control in longitudinal and multicenter cardiac diffusion MRI studies.
Collapse
Affiliation(s)
- Irvin Teh
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Feng-Lei Zhou
- Centre for Imaging Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- The School of Materials, University of Manchester, Manchester, UK
| | - Penny L Hubbard Cristinacce
- Centre for Imaging Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Biomedical Imaging Institute, University of Manchester, Manchester, UK
| | - Geoffrey J M Parker
- Centre for Imaging Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
- Biomedical Imaging Institute, University of Manchester, Manchester, UK
| | - Jürgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
McGill LA, Ferreira PF, Scott AD, Nielles-Vallespin S, Giannakidis A, Kilner PJ, Gatehouse PD, de Silva R, Firmin DN, Pennell DJ. Relationship between cardiac diffusion tensor imaging parameters and anthropometrics in healthy volunteers. J Cardiovasc Magn Reson 2016; 18:2. [PMID: 26738482 PMCID: PMC4704390 DOI: 10.1186/s12968-015-0215-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In vivo cardiac diffusion tensor imaging (cDTI) is uniquely capable of interrogating laminar myocardial dynamics non-invasively. A comprehensive dataset of quantative parameters and comparison with subject anthropometrics is required. METHODS cDTI was performed at 3T with a diffusion weighted STEAM sequence. Data was acquired from the mid left ventricle in 43 subjects during the systolic and diastolic pauses. Global and regional values were determined for fractional anisotropy (FA), mean diffusivity (MD), helix angle gradient (HAg, degrees/%depth) and the secondary eigenvector angulation (E2A). Regression analysis was performed between global values and subject anthropometrics. RESULTS All cDTI parameters displayed regional heterogeneity. The RR interval had a significant, but clinically small effect on systolic values for FA, HAg and E2A. Male sex and increasing left ventricular end diastolic volume were associated with increased systolic HAg. Diastolic HAg and systolic E2A were both directly related to left ventricular mass and body surface area. There was an inverse relationship between E2A mobility and both age and ejection fraction. CONCLUSIONS Future interpretations of quantitative cDTI data should take into account anthropometric variations observed with patient age, body surface area and left ventricular measurements. Further work determining the impact of technical factors such as strain and SNR is required.
Collapse
Affiliation(s)
- L A McGill
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - P F Ferreira
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - A D Scott
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - S Nielles-Vallespin
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - A Giannakidis
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - P J Kilner
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - P D Gatehouse
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - R de Silva
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - D N Firmin
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| | - D J Pennell
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
22
|
Pennell DJ, Baksi AJ, Prasad SK, Raphael CE, Kilner PJ, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider J, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2014. J Cardiovasc Magn Reson 2015; 17:99. [PMID: 26589839 PMCID: PMC4654908 DOI: 10.1186/s12968-015-0203-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/19/2023] Open
Abstract
There were 102 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2014, which is a 6% decrease on the 109 articles published in 2013. The quality of the submissions continues to increase. The 2013 JCMR Impact Factor (which is published in June 2014) fell to 4.72 from 5.11 for 2012 (as published in June 2013). The 2013 impact factor means that the JCMR papers that were published in 2011 and 2012 were cited on average 4.72 times in 2013. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25% and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D J Pennell
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - A J Baksi
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - S K Prasad
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - C E Raphael
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - P J Kilner
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - R H Mohiaddin
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - F Alpendurada
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - S V Babu-Narayan
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - J Schneider
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| | - D N Firmin
- Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust & Imperial College, Sydney Street, London, SW 3 6NP, UK.
| |
Collapse
|
23
|
David Gomez A, Bull DA, Hsu EW. Finite-Element Extrapolation of Myocardial Structure Alterations Across the Cardiac Cycle in Rats. J Biomech Eng 2015; 137:101010. [PMID: 26299478 DOI: 10.1115/1.4031419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 11/08/2022]
Abstract
Myocardial microstructures are responsible for key aspects of cardiac mechanical function. Natural myocardial deformation across the cardiac cycle induces measurable structural alteration, which varies across disease states. Diffusion tensor magnetic resonance imaging (DT-MRI) has become the tool of choice for myocardial structural analysis. Yet, obtaining the comprehensive structural information of the whole organ, in 3D and time, for subject-specific examination is fundamentally limited by scan time. Therefore, subject-specific finite-element (FE) analysis of a group of rat hearts was implemented for extrapolating a set of initial DT-MRI to the rest of the cardiac cycle. The effect of material symmetry (isotropy, transverse isotropy, and orthotropy), structural input, and warping approach was observed by comparing simulated predictions against in vivo MRI displacement measurements and DT-MRI of an isolated heart preparation at relaxed, inflated, and contracture states. Overall, the results indicate that, while ventricular volume and circumferential strain are largely independent of the simulation strategy, structural alteration predictions are generally improved with the sophistication of the material model, which also enhances torsion and radial strain predictions. Moreover, whereas subject-specific transversely isotropic models produced the most accurate descriptions of fiber structural alterations, the orthotropic models best captured changes in sheet structure. These findings underscore the need for subject-specific input data, including structure, to extrapolate DT-MRI measurements across the cardiac cycle.
Collapse
|
24
|
Heterogeneity of Fractional Anisotropy and Mean Diffusivity Measurements by In Vivo Diffusion Tensor Imaging in Normal Human Hearts. PLoS One 2015; 10:e0132360. [PMID: 26177211 PMCID: PMC4503691 DOI: 10.1371/journal.pone.0132360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/14/2015] [Indexed: 11/19/2022] Open
Abstract
Background Cardiac diffusion tensor imaging (cDTI) by cardiovascular magnetic resonance has the potential to assess microstructural changes through measures of fractional anisotropy (FA) and mean diffusivity (MD). However, normal variation in regional and transmural FA and MD is not well described. Methods Twenty normal subjects were scanned using an optimised cDTI sequence at 3T in systole. FA and MD were quantified in 3 transmural layers and 4 regional myocardial walls. Results FA was higher in the mesocardium (0.46 ±0.04) than the endocardium (0.40 ±0.04, p≤0.001) and epicardium (0.39 ±0.04, p≤0.001). On regional analysis, the FA in the septum was greater than the lateral wall (0.44 ±0.03 vs 0.40 ±0.05 p = 0.04). There was a transmural gradient in MD increasing towards the endocardium (epicardium 0.87 ±0.07 vs endocardium 0.91 ±0.08×10-3 mm2/s, p = 0.04). With the lateral wall (0.87 ± 0.08×10-3 mm2/s) as the reference, the MD was higher in the anterior wall (0.92 ±0.08×10-3 mm2/s, p = 0.016) and septum (0.92 ±0.07×10-3 mm2/s, p = 0.028). Transmurally the signal to noise ratio (SNR) was greatest in the mesocardium (14.5 ±2.5 vs endocardium 13.1 ±2.2, p<0.001; vs epicardium 12.0 ± 2.4, p<0.001) and regionally in the septum (16.0 ±3.4 vs lateral wall 11.5 ± 1.5, p<0.001). Transmural analysis suggested a relative reduction in the rate of change in helical angle (HA) within the mesocardium. Conclusions In vivo FA and MD measurements in normal human heart are heterogeneous, varying significantly transmurally and regionally. Contributors to this heterogeneity are many, complex and interactive, but include SNR, variations in cardiac microstructure, partial volume effects and strain. These data indicate that the potential clinical use of FA and MD would require measurement standardisation by myocardial region and layer, unless pathological changes substantially exceed the normal variation identified.
Collapse
|