1
|
Hosadurg N, Kramer CM. Magnetic Resonance Imaging Techniques in Peripheral Arterial Disease. Adv Wound Care (New Rochelle) 2023; 12:611-625. [PMID: 37058352 PMCID: PMC10468560 DOI: 10.1089/wound.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/12/2023] [Indexed: 04/15/2023] Open
Abstract
Significance: Peripheral arterial disease (PAD) leads to a significant burden of morbidity and impaired quality of life globally. Diabetes is a significant risk factor accelerating the development of PAD with an associated increase in the risk of chronic wounds, tissue, and limb loss. Various magnetic resonance imaging (MRI) techniques are being increasingly acknowledged as useful methods of accurately assessing PAD. Recent Advances: Conventionally utilized MRI techniques for assessing macrovascular disease have included contrast enhanced magnetic resonance angiography (MRA), noncontrast time of flight MRA, and phase contrast MRI, but have significant limitations. In recent years, novel noncontrast MRI methods assessing skeletal muscle perfusion and metabolism such as arterial spin labeling (ASL), blood-oxygen-level dependent (BOLD) imaging, and chemical exchange saturation transfer (CEST) have emerged. Critical Issues: Conventional non-MRI (such as ankle-brachial index, arterial duplex ultrasonography, and computed tomographic angiography) and MRI based modalities image the macrovasculature. The underlying mechanisms of PAD that result in clinical manifestations are, however, complex, and imaging modalities that can assess the interaction between impaired blood flow, microvascular tissue perfusion, and muscular metabolism are necessary. Future Directions: Further development and clinical validation of noncontrast MRI methods assessing skeletal muscle perfusion and metabolism, such as ASL, BOLD, CEST, intravoxel incoherent motion microperfusion, and techniques that assess plaque composition, are advancing this field. These modalities can provide useful prognostic data and help in reliable surveillance of outcomes after interventions.
Collapse
Affiliation(s)
- Nisha Hosadurg
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher M. Kramer
- Department of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Wang X, Nai YH, Gan J, Lian CPL, Ryan FK, Tan FSL, Chan DYS, Ng JJ, Lo ZJ, Chong TT, Hausenloy DJ. Multi-Modality Imaging of Atheromatous Plaques in Peripheral Arterial Disease: Integrating Molecular and Imaging Markers. Int J Mol Sci 2023; 24:11123. [PMID: 37446302 DOI: 10.3390/ijms241311123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Peripheral artery disease (PAD) is a common and debilitating condition characterized by the narrowing of the limb arteries, primarily due to atherosclerosis. Non-invasive multi-modality imaging approaches using computed tomography (CT), magnetic resonance imaging (MRI), and nuclear imaging have emerged as valuable tools for assessing PAD atheromatous plaques and vessel walls. This review provides an overview of these different imaging techniques, their advantages, limitations, and recent advancements. In addition, this review highlights the importance of molecular markers, including those related to inflammation, endothelial dysfunction, and oxidative stress, in PAD pathophysiology. The potential of integrating molecular and imaging markers for an improved understanding of PAD is also discussed. Despite the promise of this integrative approach, there remain several challenges, including technical limitations in imaging modalities and the need for novel molecular marker discovery and validation. Addressing these challenges and embracing future directions in the field will be essential for maximizing the potential of molecular and imaging markers for improving PAD patient outcomes.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Ying-Hwey Nai
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Julian Gan
- Siemens Healthineers, Singapore 348615, Singapore
| | - Cheryl Pei Ling Lian
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Fraser Kirwan Ryan
- Infocomm Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Forest Su Lim Tan
- Infocomm Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Dexter Yak Seng Chan
- Department of General Surgery, Khoo Teck Puat Hospital, Singapore 768828, Singapore
| | - Jun Jie Ng
- Division of Vascular and Endovascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Zhiwen Joseph Lo
- Vascular Surgery Service, Department of Surgery, Woodlands Health, Singapore 258499, Singapore
- Centre for Population Health Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tze Tec Chong
- Department of Vascular Surgery, Singapore General Hospital, Singapore 168752, Singapore
- Surgical Academic Clinical Programme, Singapore General Hospital, Singapore 169608, Singapore
- Vascular SingHealth Duke-NUS Disease Centre, Singapore 168752, Singapore
| | - Derek John Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 117597, Singapore
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| |
Collapse
|
3
|
Yamaguchi T, Morino K. Perivascular mechanical environment: A narrative review of the role of externally applied mechanical force in the pathogenesis of atherosclerosis. Front Cardiovasc Med 2022; 9:944356. [PMID: 36337892 PMCID: PMC9629355 DOI: 10.3389/fcvm.2022.944356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Atherosclerosis is promoted by systemic factors, such as dyslipidemia, hypertension, diabetes, and smoking, which cause atherosclerosis in blood vessels throughout the body. However, atherosclerotic lesions are characterized by their frequent occurrence in specific vessels and sites. Blood vessels are exposed to various mechanical forces related to blood pressure and flow. Although shear stress promotes the initiation and progression of atherosclerotic lesions, the pathogenesis of site specificity of atherosclerosis is not sufficiently explained by shear stress. We propose the concept of a perivascular mechanical environment (PVME). Compelling evidence suggests that site specificity in atherosclerotic lesions depends on a distinct local PVME. Atheroprone arteries, such as the coronary artery, are markedly affected by externally applied mechanical force (EMF), whereas atheroprotective arteries, such as the internal thoracic artery, are less affected. Recent studies have shown that the coronary artery is affected by cardiac muscle contraction, the carotid artery by the hyoid bone and the thyroid cartilage, and the abdominal aorta and lower extremity arteries by musculoskeletal motion. We speculate that the thoracic cage protects the internal thoracic artery from EMF owing to a favorable PVME. Furthermore, evidence suggests that plaque eccentricity is provided by EMF; plaques are frequently observed on an external force-applied side. In each vascular tree, site-specific characteristics of the PVME differ substantially, inducing individual atherogenicity. From the perspective of the mechanical environment, hemodynamic stress occurs in an inside-out manner, whereas EMF occurs in an outside-in manner. These inward and outward forces apply mechanical load individually, but interact synergistically. The concept of a PVME is a novel pathogenesis of atherosclerosis and also might be a pathogenesis of other arterial diseases.
Collapse
Affiliation(s)
| | - Katsutaro Morino
- Institutional Research Office, Shiga University of Medical Science, Otsu, Japan
- *Correspondence: Katsutaro Morino,
| |
Collapse
|
4
|
Ning Z, Zhang N, Qiao H, Han H, Shen R, Yang D, Chen S, Zhao X. Free-Breathing Three-Dimensional Isotropic-Resolution MR sequence for simultaneous vessel wall imaging of bilateral renal arteries and abdominal aorta: Feasibility and reproducibility. Med Phys 2021; 49:854-864. [PMID: 34967464 DOI: 10.1002/mp.15436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Many diseases can simultaneously involve renal arteries and the adjacent abdominal aorta. The study proposed a free-breathing three-dimensional (3D) isotropic-resolution MR sequence for simultaneous vessel wall imaging of bilateral renal arteries and adjacent abdominal aorta. METHODS A respiratory triggered isotropic-resolution sequence which combined the improved motion-sensitized driven-equilibrium (iMSDE) preparation with the spoiled gradient recalled (SPGR) readout (iMSDE-SPGR) was proposed for simultaneous vessel wall imaging of renal arteries and abdominal aorta. The proposed iMSDE-SPGR sequence was optimized by positioning spatial saturation pulses (i.e. REST slabs) elaborately to further alleviate respiratory and gastrointestinal motion artifacts and selecting appropriate first-order gradient moment (m1 ) of the iMSDE preparation. Thirteen healthy subjects and thirteen patients with renal artery stenosis (RAS) underwent simultaneous vessel wall imaging with the optimized iMSDE-SPGR sequence at 3.0T. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and morphology of renal arterial wall and aortic wall were measured. Reproducibility of intra-observer, inter-observer and scan-rescan (n = 13 healthy subjects) in measuring SNR, CNR and morphology was evaluated. For the reproducibility test, the agreement was determined using intraclass correlation coefficients (ICC) and the differences were compared using paired-t test or non-parametric Wilcoxon test when appropriate. Bland-Altman plots were used to calculate the bias between observers and between scans. RESULTS The proposed iMSDE-SPGR sequence was feasible for simultaneous vessel wall imaging both in the healthy subjects and the patients. The sequence showed good to excellent inter-observer (ICC:0.615-0.999), excellent intra-observer (ICC:0.801-0.998) and scan-rescan (ICC:0.768-0.998) reproducibility in measuring morphology, SNR and CNR. There were no significant differences in SNR, CNR and morphology measurements between observers and between scans (all P>0.05). Bland-Altman plots showed small bias in assessing SNR, CNR and morphology. DATA CONCLUSION The proposed free-breathing 3D isotropic-resolution iMSDE-SPGR technique is feasible and reproducible for simultaneous vessel wall imaging of bilateral renal arteries and adjacent abdominal aorta. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zihan Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing, 100029, China
| | - Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Rui Shen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Dandan Yang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Shuo Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100084, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, 100084, China
| |
Collapse
|
5
|
Characteristics of atherosclerosis in femoropopliteal artery and its clinical relevance. Atherosclerosis 2021; 335:31-40. [PMID: 34547588 DOI: 10.1016/j.atherosclerosis.2021.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/28/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis is a systemic disease with different faces. Despite identical or similar pathogenetic mechanisms, atherosclerotic lesions and their clinical manifestations vary in different parts of the vascular system. Peripheral arterial disease (PAD) represents one of the most frequent clinical manifestations of atherosclerosis with predominant location in the superficial femoral artery (SFA). Morphological characteristics of atherosclerotic plaques in peripheral arteries differ from lesions in the coronary and carotid arteries. Plaques in SFA have more fibrotic components, less lipids and inflammatory cells, which makes them more stable and less prone to rupture. Factors that determine the different structure of plaques in SFA compared to coronary arteries include hemodynamic forces, vasa vasorum and calcification. Low shear stress in SFA in the adductor canal is one of the factors which determines frequent atherosclerotic lesions in this region. Lower lipid content and fewer inflammatory cells explain higher stability of SFA plaques. The specific structure of SFA plaques may require preventive and therapeutic measures, which to some extent differ from prevention of coronary atherosclerosis and may include inhibition of fibrotic proliferation in SFA plaques and calcification. Revascularization of PAD differs from procedures used in coronary arteries and requires specific technical expertise and devices.
Collapse
|
6
|
Canton G, Hippe DS, Chen L, Waterton JC, Liu W, Watase H, Balu N, Sun J, Hatsukami TS, Yuan C. Atherosclerotic Burden and Remodeling Patterns of the Popliteal Artery as Detected in the Magnetic Resonance Imaging Osteoarthritis Initiative Data Set. J Am Heart Assoc 2021; 10:e018408. [PMID: 33998279 PMCID: PMC8483503 DOI: 10.1161/jaha.120.018408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background An artificial intelligence vessel segmentation tool, Fully Automated and Robust Analysis Technique for Popliteal Artery Evaluation (FRAPPE), was used to analyze a large databank of popliteal arteries imaged through the OAI (Osteoarthritis Initiative) to study the impact of atherosclerosis risk factors on vessel dimensions and characterize remodeling patterns. Methods and Results Magnetic resonance images from 4668 subjects contributing 9189 popliteal arteries were analyzed using FRAPPE. Age ranged from 45 to 79 years (median, 61), and 58% were women. Mean lumen diameter, mean outer wall diameter, and mean wall thickness (MWT) were measured per artery. Their median values were 5.8 mm (interquartile range, 5.2–6.5 mm), 7.3 mm (interquartile range, 6.7–8.1 mm), and 0.78 mm (interquartile range, 0.73–0.84 mm) respectively. MWT was associated with multiple cardiovascular risk factors, with age (4.2% increase in MWT per 10‐year increase in age; 95% CI, 3.9%–4.5%) and sex (8.6% higher MWT in men than women; 95% CI, 7.7%–9.3%) being predominant. On average, lumen and outer wall diameters increased with increasing MWT until the thickness was 0.92 mm for men and 0.84 mm for women. After this point, lumen diameter decreased steadily, more rapidly in men than women (−7.9% versus −6.1% per 25% increase in MWT; P<0.001), with little change in outer wall diameter. Conclusions FRAPPE has enabled the analysis of the large OAI knee magnetic resonance imaging data set, successfully showing that popliteal atherosclerosis is predominantly associated with age and sex. The average vessel remodeling pattern consisted of an early phase of compensatory enlargement, followed by a negative remodeling, which is more pronounced in men.
Collapse
Affiliation(s)
- Gador Canton
- Department of RadiologyUniversity of WashingtonSeattleWA
| | | | - Li Chen
- Department of Electrical and Computer EngineeringUniversity of WashingtonSeattleWA
| | - John C. Waterton
- Centre for Imaging SciencesManchester Academic Health Science CentreThe University of ManchesterUnited Kingdom
| | - Wenjin Liu
- Department of RadiologyUniversity of WashingtonSeattleWA
| | - Hiroko Watase
- Department of SurgeryUniversity of WashingtonSeattleWA
| | - Niranjan Balu
- Department of RadiologyUniversity of WashingtonSeattleWA
| | - Jie Sun
- Department of RadiologyUniversity of WashingtonSeattleWA
| | | | - Chun Yuan
- Department of RadiologyUniversity of WashingtonSeattleWA
| |
Collapse
|
7
|
Ning Z, Chen S, Sun H, Shen R, Qiao H, Han H, Yang D, Zhao X. Evaluating renal arterial wall by non-enhanced 2D and 3D free-breathing black-blood techniques: Initial experience. Magn Reson Imaging 2021; 79:5-12. [PMID: 33677024 DOI: 10.1016/j.mri.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To evaluate the feasibility and reproducibility of 2D and 3D black-blood sequences in measuring morphology of renal arterial wall. METHODS The 2D and 3D imaging sequences used variable-refocusing-flip-angle and constant-low-refocusing-flip-angle turbo spin echo (TSE) readout respectively, with delicately selected black-blood scheme and respiratory motion trigger for free-breathing imaging. Fourteen healthy subjects and three patients with Takayasu arteritis underwent renal artery wall imaging with 3D double inversion recovery (DIR) TSE and 2D Variable Flip Angle-TSE (VFA-TSE) black-blood sequences at 3.0 T. Four healthy subjects were randomly selected for scan-rescan reproducibility experiments. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and morphology of arterial wall were measured and compared using paired-t-test or Wilcoxon signed-rank test between 2D and 3D sequences. The inter-observer, intra-observer and scan-rescan agreements of above measurements were determined using intraclass correlation coefficient (ICC). RESULTS The 2D and 3D imaging sequences showed similar morphological measurements (lumen area, wall area, mean wall thickness and maximum wall thickness) of renal arterial wall (all P > 0.05) and excellent agreement (ICC: 0.853-0.954). Compared to 2D imaging, 3D imaging exhibited significantly lower SNRlumen (P < 0.01) and SNRwall (P = 0.037), similar contrast-to-noise ratio (CNR) (P = 0.285), and higher CNR efficiency (CNReff) (P < 0.01). Both 2D and 3D imaging showed good to excellent inter-observer (ICC: 0.723-0.997), intra-observer (ICC: 0.749-0.996) and scan-rescan (ICC: 0.710-0.992) reproducibility in measuring renal arterial wall morphology, SNR and CNR, respectively. CONCLUSIONS Both high-resolution free-breathing 2D VFA-TSE and 3D DIR TSE black-blood sequences are feasible and reproducible in high-resolution renal arterial wall imaging. The 2D imaging has high SNR, whereas 3D imaging has high imaging efficiency.
Collapse
Affiliation(s)
- Zihan Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | - Shuo Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | - Hao Sun
- Department of Radiology, Peking Union Medical College Hospital, Beijing 100005, China
| | - Rui Shen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | - Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | - Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | - Dandan Yang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China.
| |
Collapse
|
8
|
Vos A, de Jong PA, Verdoorn D, Mali WPTM, Bleys RLAW, Vink A. Histopathological characterization of intimal lesions and arterial wall calcification in the arteries of the leg of elderly cadavers. Clin Anat 2020; 34:835-841. [PMID: 33174629 PMCID: PMC8451780 DOI: 10.1002/ca.23701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/06/2022]
Abstract
Introduction Although arteries of the leg have been studied in extensively diseased amputation specimens, little is known about the composition of vascular lesions present in the general population. The aim of this study was to describe the natural development of adaptive intimal thickening, atherosclerotic lesion development and vascular calcification in the leg of a general elderly population. Materials and Methods Two hundred and seventy postmortem samples from the popliteal and posterior tibial arteries of 14 elderly cadavers were studied histologically. Results Atherosclerotic lesions were more frequently observed in the popliteal (60%) than in the posterior tibial artery (34%; p < .0005). These atherosclerotic plaques were most often nonatheromatous (80% and 83% for popliteal and posterior tibial plaques, respectively). The atheroma's that were present were small (most <25% of plaque area). Atherosclerotic plaque calcification was observed more often in the popliteal (39%) than in the posterior tibial samples (17%; p < .0005). Medial arterial calcification was observed more often in the posterior tibial (62%) than in the popliteal samples (46%; p = .008). Plaque calcification and medial arterial calcification were not associated with lumen stenosis. Conclusions In the leg of elderly cadavers, the presence of atherosclerotic plaque and intimal calcification decreases from the proximal popliteal artery to the more distal posterior tibial artery and most atherosclerotic lesions are of the fibrous nonatheromatous type. In contrast, the presence and severity of medial calcification increases from proximal to distal.
Collapse
Affiliation(s)
- Annelotte Vos
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center, Utrecht, The Netherlands
| | - Daphne Verdoorn
- Department of Anatomy, University Medical Center, Utrecht, The Netherlands
| | - Willem P T M Mali
- Department of Radiology, University Medical Center, Utrecht, The Netherlands
| | - Ronald L A W Bleys
- Department of Anatomy, University Medical Center, Utrecht, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Leiner T, Bogaert J, Friedrich MG, Mohiaddin R, Muthurangu V, Myerson S, Powell AJ, Raman SV, Pennell DJ. SCMR Position Paper (2020) on clinical indications for cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22:76. [PMID: 33161900 PMCID: PMC7649060 DOI: 10.1186/s12968-020-00682-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
The Society for Cardiovascular Magnetic Resonance (SCMR) last published its comprehensive expert panel report of clinical indications for CMR in 2004. This new Consensus Panel report brings those indications up to date for 2020 and includes the very substantial increase in scanning techniques, clinical applicability and adoption of CMR worldwide. We have used a nearly identical grading system for indications as in 2004 to ensure comparability with the previous report but have added the presence of randomized controlled trials as evidence for level 1 indications. In addition to the text, tables of the consensus indication levels are included for rapid assimilation and illustrative figures of some key techniques are provided.
Collapse
Affiliation(s)
- Tim Leiner
- Department of Radiology, E.01.132, Utrecht University Medical Center, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands.
| | - Jan Bogaert
- Department of Radiology, University Hospitals Leuven, Leuven, Belgium
- Department of Imaging and Pathology, Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Matthias G Friedrich
- Departments of Medicine and Diagnostic Radiology, McGill University, 1001 Decarie Blvd., Montreal, QC, H4A 3J1, Canada
| | - Raad Mohiaddin
- Department of Radiology, Royal Brompton Hospital, Sydney Street, Chelsea, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Vivek Muthurangu
- Centre for Cardiovascular Imaging, Science & Great Ormond Street Hospital for Children, UCL Institute of Cardiovascular, Great Ormond Street, London, WC1N 3JH, UK
| | - Saul Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Andrew J Powell
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Farley, 2nd Floor, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, 300 Longwood Avenue, Farley, 2nd Floor, Boston, MA, 02115, USA
| | - Subha V Raman
- Krannert Institute of Cardiology, Indiana University School of Medicine, 340 West 10th Street, Fairbanks Hall, Suite 6200, Indianapolis, IN, 46202-3082, USA
| | - Dudley J Pennell
- Royal Brompton Hospital, Sydney Street, Chelsea, London, SW3 6NP, UK
- Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
10
|
Henningsson M, Malik S, Botnar R, Castellanos D, Hussain T, Leiner T. Black-Blood Contrast in Cardiovascular MRI. J Magn Reson Imaging 2020; 55:61-80. [PMID: 33078512 PMCID: PMC9292502 DOI: 10.1002/jmri.27399] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
MRI is a versatile technique that offers many different options for tissue contrast, including suppressing the blood signal, so‐called black‐blood contrast. This contrast mechanism is extremely useful to visualize the vessel wall with high conspicuity or for characterization of tissue adjacent to the blood pool. In this review we cover the physics of black‐blood contrast and different techniques to achieve blood suppression, from methods intrinsic to the imaging readout to magnetization preparation pulses that can be combined with arbitrary readouts, including flow‐dependent and flow‐independent techniques. We emphasize the technical challenges of black‐blood contrast that can depend on flow and motion conditions, additional contrast weighting mechanisms (T1, T2, etc.), magnetic properties of the tissue, and spatial coverage. Finally, we describe specific implementations of black‐blood contrast for different vascular beds.
Collapse
Affiliation(s)
- Markus Henningsson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shaihan Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel Castellanos
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tarique Hussain
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Division of Pediatric Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
11
|
Wang Y, Liu X, Haraldsson H, Zhu C, Ballweber M, Gasper W, Hatsukami T, Saloner D. Quantitative measurement of atheroma burden: reproducibility in serial studies of atherosclerotic femoral arteries. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:855-863. [PMID: 32297164 DOI: 10.1007/s10334-020-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES This study aims to evaluate the reproducibility of measures of plaque morphology in serially acquired black-blood MRI of untreated atherosclerotic femoral arteries. MATERIALS AND METHODS MR studies was obtained from 42 timepoints, on 12 patients with known femoral artery atherosclerosis. Images with a 3D isotropic FLASH with DANTE-prepared black blood contrast (DASH) at a 3-T scanner were acquired at baseline, within 1 week, and at 1 month. Six of the patients were scanned additionally at 6 months. Inter-scan and inter-observer variations of arterial area/volume measurements were evaluated. RESULTS Measurement of vessel area, lumen area, wall area and wall volume showed inter-scan intraclass correlation coefficients (ICC) ranging from 0.92 to 0.97 for 3 scans, 0.91-0.97 for 4 scans, and inter-observer ICCs of 0.89-0.96. Among 3 scans, the coefficients of variance (CV) for the vessel area, lumen area, wall area and wall volume were 4.1%, 6.5%, 7.5%, and 4.4%. CVs among 4 scans ranged from 4.4% to 7.9%, and interobserver CVs ranged from 6.1% to 11.8% for the different area/volume measurements. CONCLUSION DASH MRI is useful for quantifying atherosclerotic vessel area and volume of femoral arteries with low variability among serial repeated scans and between observers.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, Chengdu, 611731, China. .,Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Xinke Liu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.,Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Henrik Haraldsson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Chengcheng Zhu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Megan Ballweber
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Warren Gasper
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, CA, USA
| | - Thomas Hatsukami
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Han Y, Zhu Z, Guan M, Yang D, Wang W, Li C, Chen H, Zhao X. Diabetes-specific characteristics of atherosclerotic plaques in femoral arteries determined by three-dimensional magnetic resonance vessel wall imaging. Diabetes Metab Res Rev 2020; 36:e3201. [PMID: 31278827 DOI: 10.1002/dmrr.3201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVES This study aimed to investigate the characteristics of femoral atherosclerotic plaques in patients with diabetes mellitus (DM) compared with those without DM using three-dimensional magnetic resonance vessel wall imaging. METHODS Lower extremity atherosclerotic disease patients with and without DM (age ≥ 50 year-old) were recruited and underwent three-dimensional magnetic resonance imaging for femoral arteries. The femoral arteries were divided into common femoral artery (CFA), proximal of superficial femoral artery (pSFA), adductor canal (AC), and popliteal artery (PA) segments. The characteristics of femoral artery atherosclerotic plaques were compared between patients with and without DM. RESULTS Forty-eight patients with DM (69.5 ± 8.2 years; 26 males) and 50 patients without DM (71.9 ± 5.7 years; 28 males) were included. Significant differences were found in maximum wall thickness in CFA and AC segments, eccentricity index in AC segment, prevalence of plaque in CFA, pSFA and AC segments, stenosis and prevalence of calcification in pSFA, AC and PA segments, prevalence of lipid-rich necrotic core (LRNC) in all segments, and prevalence of intraplaque haemorrhage in PA segment between patients with and without DM (all P < .05). After adjusted for confounding factors of age, gender, hyperlipidemia, coronary artery disease, and statin use, the differences in eccentricity index, stenosis and prevalence of plaque, calcification and LRNC in pSFA and AC segments, and stenosis and prevalence of LRNC in PA segment remained statistically significant between patients with and without DM (all P < .05). CONCLUSIONS Patients with DM have significantly larger plaque burden, higher prevalence of plaques, and more complex plaque compositions in femoral arteries than those without DM.
Collapse
Affiliation(s)
- Yongjun Han
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Zhu Zhu
- Department of Radiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Maobin Guan
- Department of Radiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Dandan Yang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Wei Wang
- Department of Radiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Cheng Li
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
- Center of Stroke, Beijing Institute of Brain Disorders, Beijing, China
| |
Collapse
|
13
|
Manning WJ. Journal of Cardiovascular Magnetic Resonance: 2017/2018 in review. J Cardiovasc Magn Reson 2019; 21:79. [PMID: 31884956 PMCID: PMC6936125 DOI: 10.1186/s12968-019-0594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
There were 89 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2017, including 76 original research papers, 4 reviews, 5 technical notes, 1 guideline, and 3 corrections. The volume was down slightly from 2017 with a corresponding 15% decrease in manuscript submissions from 405 to 346 and thus reflects a slight increase in the acceptance rate from 25 to 26%. The decrease in submissions for the year followed the initiation of the increased author processing charge (APC) for Society for Cardiovascular Magnetic Resonance (SCMR) members for manuscripts submitted after June 30, 2018. The quality of the submissions continues to be high. The 2018 JCMR Impact Factor (which is published in June 2019) was slightly lower at 5.1 (vs. 5.46 for 2017; as published in June 2018. The 2018 impact factor means that on average, each JCMR published in 2016 and 2017 was cited 5.1 times in 2018. Our 5 year impact factor was 5.82.In accordance with Open-Access publishing guidelines of BMC, the JCMR articles are published on-line in a continuus fashion in the chronologic order of acceptance, with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful for the JCMR audience to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and contemporaneous JCMR publications. In this publication, the manuscripts are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought within the journal. In addition, as in the past two years, I have used this publication to also convey information regarding the editorial process and as a "State of our JCMR."This is the 12th year of JCMR as an open-access publication with BMC (formerly known as Biomed Central). The timing of the JCMR transition to the open access platform was "ahead of the curve" and a tribute to the vision of Dr. Matthias Friedrich, the SCMR Publications Committee Chair and Dr. Dudley Pennell, the JCMR editor-in-chief at the time. The open-access system has dramatically increased the reading and citation of JCMR publications and I hope that you, our authors, will continue to send your very best, high quality manuscripts to JCMR for consideration. It takes a village to run a journal and I thank our very dedicated Associate Editors, Guest Editors, Reviewers for their efforts to ensure that the review process occurs in a timely and responsible manner. These efforts have allowed the JCMR to continue as the premier journal of our field. This entire process would also not be possible without the dedication and efforts of our managing editor, Diana Gethers. Finally, I thank you for entrusting me with the editorship of the JCMR as I begin my 4th year as your editor-in-chief. It has been a tremendous experience for me and the opportunity to review manuscripts that reflect the best in our field remains a great joy and highlight of my week!
Collapse
Affiliation(s)
- Warren J Manning
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
14
|
Chen L, Sun J, Hippe DS, Balu N, Yuan Q, Yuan I, Zhao X, Li R, He L, Hatsukami TS, Hwang JN, Yuan C. Quantitative assessment of the intracranial vasculature in an older adult population using iCafe. Neurobiol Aging 2019; 79:59-65. [PMID: 31026623 PMCID: PMC6591051 DOI: 10.1016/j.neurobiolaging.2019.02.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 01/11/2023]
Abstract
Comprehensive quantification of intracranial artery features may help us assess and understand variations of blood supply during brain development and aging. We analyzed vasculature features of 163 participants (age 56-85 years, mean of 71) from a community study to investigate if any of the features varied with age. Three-dimensional time-of-flight magnetic resonance angiography images of these participants were processed in IntraCranial artery feature extraction technique (a recently developed technique to obtain quantitative features of arteries) to divide intracranial vasculatures into anatomical segments and generate 8 morphometry and intensity features for each segment. Overall, increase in age was found negatively associated with number of branches and average order of intracranial arteries while positively associated with tortuosity, which remained after adjusting for cardiovascular risk factors. The associations with number of branches and average order were consistently found between 3 main intracranial artery regions, whereas the association with tortuosity appeared to be present only in middle cerebral artery/distal arteries. The combination of time-of-flight magnetic resonance angiography and IntraCranial artery feature extraction technique may provide an effective way to study vascular conditions and changes in the aging brain.
Collapse
Affiliation(s)
- Li Chen
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Jie Sun
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Daniel S Hippe
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Niranjan Balu
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Quan Yuan
- Department of Neurology, Xuanwu hospital, Capital Medical University, Beijing, China
| | | | - Xihai Zhao
- Biomedical Engineering, Tsinghua University, Beijing, China
| | - Rui Li
- Biomedical Engineering, Tsinghua University, Beijing, China
| | - Le He
- Biomedical Engineering, Tsinghua University, Beijing, China
| | | | - Jenq-Neng Hwang
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|