1
|
Hu LW, Zhao X, Leng S, Ouyang R, Wang Q, Sun AM, Liu YM, Dong W, Zhong L, Zhong YM. Assessment of hemodynamic disturbances and impaired ventricular filling in asymptomatic fontan patients: A 4D flow CMR study. Eur J Radiol Open 2025; 14:100631. [PMID: 39868414 PMCID: PMC11762912 DOI: 10.1016/j.ejro.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025] Open
Abstract
Background The Fontan procedure is a surgical intervention designed for patients with single ventricle physiology, wherein the systemic venous return is redirected into the pulmonary circulation, thereby facilitating passive pulmonary blood flow without the assistance of ventricular propulsion. Consequently, long-term follow-up of individuals who have undergone the asymptomatic Fontan procedure is essential. Objectives The aims of this investigation were to: 1) examine the impact of flow components and kinetic energy (KE) parameters on hemodynamic disturbances in asymptomatic Fontan patients and control group; 2) Assess left ventricular diastolic dysfunction through the analysis of 4D flow parameters across different Fontan sub-groups; 3) Compare intracardiac flow parameters among Fontan sub-groups based on morphological features of the left ventricle (LV) and right ventricle (RV). Methods Twenty-five Fontan patients (mean age: 10 ± 3 years, male/female: 15/10) and fourteen control subjects (mean age: 10 ± 2 years, male/female: 8/6) were recruited retrospectively for the study. The Fontan patients were further categorized into three groups based on their ventricular function: left ventricular (LV), right ventricular (RV), and biventricular (BiV). Each participant underwent cardiovascular magnetic resonance (CMR) imaging, including cine and 4D flow sequences on a 3.0 T scanner. Ventricular flow components and KE were assessed using 4D flow. The study utilized cine images to analyze cardiac function and inter-ventricular mechanical dyssynchrony. Echocardiography evaluated functional ventricular diastolic dysfunction. Results Fontan patients had a higher median functional single ventricle (FSV) residual volume compared to controls (28 % vs. 23 %, P = 0.034), with lower median FSV direct flow (32 % vs. 40 %, P = 0.005) and delayed ejection flow (17 % vs. 24 %, P = 0.024). The parameters of FSV normalized to the ventricular end-diastolic volume (KEiEDV) were found to be significantly lower in Fontan patients (all P < 0.05). In both left ventricle (LV) and biventricular (BiV) Fontan subgroups, direct flow was identified as an independent predictor of LV diastolic dysfunction (AUC=0.76, Sensitivity=86 %, Specificity=70 %). Furthermore, residual volume and E-wave KEiEDV were observed to be significantly different between LV and right ventricle (RV) Fontan subgroups. Conclusions The altered flow pattern and reduced kinetic energy observed in Fontan patients may indicate hemodynamic disturbances and compromised ventricular filling. Reduced direct flow is associated with LV diastolic dysfunction in LV and BiV Fontan subgroups. Systemic LV exhibited a more efficient intracardiac flow pattern compare with systemic RV in Fontan patients.
Collapse
Affiliation(s)
- Li-Wei Hu
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
- Duke-NUS Medical School, Singapore, National University of Singapore, 8 College Road, Singapore 169857, Singapore
| | - RongZhen Ouyang
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Qian Wang
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Ai-Min Sun
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Yi-Man Liu
- Department of Pediatric Cardiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Wei Dong
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, PR China
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
- Duke-NUS Medical School, Singapore, National University of Singapore, 8 College Road, Singapore 169857, Singapore
| | - Yu-Min Zhong
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, PR China
| |
Collapse
|
2
|
Marcilhacy G, Craiem D, Casciaro ME, Gencer U, Malekzadeh Milani S, Legendre A, Iserin L, Mousseaux E, Soulat G. Right and left ventricular filling in adult patients with repaired tetralogy of fallot: a 4D flow MRI study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025:10.1007/s10554-025-03422-w. [PMID: 40397348 DOI: 10.1007/s10554-025-03422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
In repaired Tetralogy of Fallot (TOF), RV replacement fibrosis is a predictor of hard events, but diastolic dysfunction, which should be related to ventricular fibrosis, is not part of the management process. 4D flow MRI may provide new insights about ventricular filling in repaired TOF. This study evaluates the relationship between RV and LV diastolic function and indicators of hemodynamic, exercise function and late gadolinium enhancement (LGE) in adults with repaired TOF. 41 TOF patients (22 male, mean age 38 ± 11 y) were retrospectively studied and compared with 21 controls. Early peak filling rate (PFR), atrial peak filling rate (PAFR) and filling volume (FV) were extracted from 4D flow for right (RV) and left (LV) ventricles. For the RV both tricuspid inflow and the whole RV filling (summing tricuspid inflow, and pulmonary regurgitation) were considered. Mitral and RV PFR/PAFR were significantly higher in TOF than in controls (2.59 [1.62-3.86] vs. 1.52 [1.20-2.07]; p < 0,001 and 2.06 [1.38-3.53] vs. 1.2 [0.88-1.53]; p < 0.001). Mitral PFR/PAFR ratio was decreased in patient with VO2 peak < 23 mL.kg.min (3.28[2.40-3.88] vs. 1.75 [1.18-3.07,p = 0.027). RV PFR/PAFR was decreased in patient with severe junctional LGE (PFR/PAFR of 2.61 [2.11-3.75 vs. 2.19 [1.62-3.7] vs. 1.33 [1.02-1.67], in none to minimal, mild to moderate and severe LGE groups respectively, p = 0.011). LV diastolic function was impaired in case of decreased exercise performance and RV impaired relaxation was more prevalent in case of junctional LGE.
Collapse
Affiliation(s)
- Gabrielle Marcilhacy
- Université Paris Cité, Inserm, PARCC, Paris, F-75015, France
- Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue leblanc, Paris, 75015, France
| | - Damian Craiem
- Trasplante y Bioingeniería (IMeTTyB), Instituto de Medicina Traslacional, Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Mariano E Casciaro
- Trasplante y Bioingeniería (IMeTTyB), Instituto de Medicina Traslacional, Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Umit Gencer
- Université Paris Cité, Inserm, PARCC, Paris, F-75015, France
- Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue leblanc, Paris, 75015, France
| | - Sophie Malekzadeh Milani
- Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue leblanc, Paris, 75015, France
| | - Antoine Legendre
- Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue leblanc, Paris, 75015, France
| | - Laurence Iserin
- Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue leblanc, Paris, 75015, France
| | - Elie Mousseaux
- Université Paris Cité, Inserm, PARCC, Paris, F-75015, France
- Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue leblanc, Paris, 75015, France
| | - Gilles Soulat
- Université Paris Cité, Inserm, PARCC, Paris, F-75015, France.
- Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 20 rue leblanc, Paris, 75015, France.
| |
Collapse
|
3
|
Zhang H, Jiang M, Yang W, Zhou D, Wang Y, Zhu L, Zhang Q, Sirajuddin A, Arai AE, Zhao S, Li X, Zhao X, Liu H, Hu H, Liu M, He Y, Yang Q, Wang Y, Guo Y, Zheng M, Yan F, Lu M. Status of cardiovascular magnetic resonance in clinical application and scientific research: a national survey in China. J Cardiovasc Magn Reson 2025; 27:101877. [PMID: 40081819 DOI: 10.1016/j.jocmr.2025.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) is rapidly expanding in China, yet comprehensive national data on its clinical application and research status are limited. This study aims to evaluate the current landscape of CMR across the country. METHODS An electronic survey was conducted targeting the following two groups: physicians trained at the Fuwai Fellowship Program and members of the Chinese Society of Radiology. The survey encompassed details on CMR equipment, clinical practices, and research activities. RESULTS Of 248 hospitals responded to the survey, 98.0% (243/248) were tertiary centers. The number of scanners distributed unevenly across geographic regions, with Central South China leading with 5.9/center. Siemens, Philips and GE were top three scanner vendors. Most centers initiated CMR program post-2015. Coronary artery disease was the primary indication for CMR. The median annual volume was 120/center. High-volume centers unevenly concentrated most CMR cases. The weighted average waiting period was 14.2 days, while scan durations ranged from 40 to 60 min. Two thirds of hospitals used post-processing software to analyze imaging. Half of responding centers included T1 and T2 mapping in clinical routine, but stress perfusion was underutilized in both clinic and research. Approximately one-third of centers had published CMR-related research. The majority of physicians were confident about the development of CMR. Major barriers to CMR development included long scan times, high costs, insufficient equipment, and limited training. CONCLUSION CMR is experiencing rapid growth in China but faces significant regional disparities in access to technology and expertise. Efforts to reduce costs, improve training, and expand access to advanced techniques are crucial for balanced development.
Collapse
Affiliation(s)
- Huaying Zhang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengdi Jiang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjing Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhou
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yining Wang
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leyi Zhu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Zhang
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, National Institute for Health Research Oxford Biomedical Research Centre, Oxford British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Arlene Sirajuddin
- Radiology and Imaging Sciences Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Andrew E Arai
- Andrew Arai Division of Cardiovascular Medicine and Department of Radiology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xinxiang Zhao
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital (SRRSH) of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yi He
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yining Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Minwen Zheng
- Department of Radiology, Xijing Hospital, Fourth Military University, Xi'an, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhang J, Tang X, Xiong Z, Tian D, Hu S, He Y, Song Q, Fang M, Li Z. Evaluation of Left Ventricular Flow Kinetic Energy by Four-Dimensional Blood Flow MRI in Nondialysis Chronic Kidney Disease Patients. J Magn Reson Imaging 2025; 61:865-879. [PMID: 38708838 DOI: 10.1002/jmri.29435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is associated with increased, and early cardiovascular disease risk. Changes in hemodynamics within the left ventricle (LV) respond to cardiac remodeling. The LV hemodynamics in nondialysis CKD patients are not clearly understood. PURPOSE To use four-dimensional blood flow MRI (4D flow MRI) to explore changes in LV kinetic energy (KE) and the relationship between LV KE and LV remodeling in CKD patients. STUDY TYPE Retrospective. POPULATION 98 predialysis CKD patients (Stage 3: n = 21, stage 4: n = 21, and stage 5: n = 56) and 16 age- and sex-matched healthy controls. FIELD STRENGTH/SEQUENCE 3.0 T/balanced steady-state free precession (SSFP) cine sequence, 4D flow MRI with a fast field echo sequence, T1 mapping with a modified Look-Locker SSFP sequence, and T2 mapping with a gradient recalled and spin echo sequence. ASSESSMENT Demographic characteristics (age, sex, height, weight, blood pressure, heart rate, aortic regurgitation, and mitral regurgitation) and laboratory data (eGFR, Creatinine, hemoglobin, ferritin, transferrin saturation, potassium, and carbon dioxide bonding capacity) were extracted from patient records. Myocardial T1, T2, LV ejection fraction, end diastolic volume (EDV), end systolic volume, LV flow components (direct flow, delayed ejection, retained inflow, and residual volume) and KE parameters (peak systolic, systolic, diastolic, peak E-wave, peak A-wave, E/A ratio, and global) were assessed. The KE parameters were normalized to EDV (KEiEDV). Parameters were compared between disease stage in CKD patients, and between CKD patients and healthy controls. STATISTICAL TESTS Differences in clinical and imaging parameters between groups were compared using one-way ANOVA, Kruskal Walls and Mann-Whitney U tests, chi-square test, and Fisher's exact test. Pearson or Spearman's correlation coefficients and multiple linear regression analysis were used to compare the correlation between LV KE and other clinical and functional parameters. A P-value of <0.05 was considered significant. RESULTS Compared with healthy controls, peak systolic (24.76 ± 5.40 μJ/mL vs. 31.86 ± 13.18 μJ/mL), systolic (11.62 ± 2.29 μJ/mL vs. 15.27 ± 5.10 μJ/mL), diastolic (7.95 ± 1.92 μJ/mL vs. 13.33 ± 5.15 μJ/mL), peak A-wave (15.95 ± 4.86 μJ/mL vs. 31.98 ± 14.51 μJ/mL), and global KEiEDV (9.40 ± 1.64 μJ/mL vs. 14.02 ± 4.14 μJ/mL) were significantly increased and the KEiEDV E/A ratio (1.16 ± 0.67 vs. 0.69 ± 0.53) was significantly decreased in CKD patients. As the CKD stage progressed, both diastolic KEiEDV (10.45 ± 4.30 μJ/mL vs. 12.28 ± 4.85 μJ/mL vs. 14.80 ± 5.06 μJ/mL) and peak E-wave KEiEDV (15.30 ± 7.06 μJ/mL vs. 14.69 ± 8.20 μJ/mL vs. 19.33 ± 8.29 μJ/mL) increased significantly. In multiple regression analysis, global KEiEDV (β* = 0.505; β* = 0.328), and proportion of direct flow (β* = -0.376; β* = -0.410) demonstrated an independent association with T1 and T2 times. DATA CONCLUSION 4D flow MRI-derived LV KE parameters show altered LV adaptations in CKD patients and correlate independently with T1 and T2 mapping that may represent myocardial fibrosis and edema. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Tang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ziqi Xiong
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Di Tian
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuai Hu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yifan He
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ming Fang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhiyong Li
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Zhong L, Tan RS, Garg P. Editorial for "Evaluation of Left Ventricular Flow Kinetic Energy by Four-Dimensional Blood Flow MRI in Non-Dialysis Chronic Kidney Disease Patients". J Magn Reson Imaging 2025; 61:880-881. [PMID: 38970399 DOI: 10.1002/jmri.29505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024] Open
Affiliation(s)
- Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ru San Tan
- Duke-NUS Medical School, Singapore, Singapore
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Cardiology, Norfolk and Norwich University NHS Foundation Trust, Norwich, UK
| |
Collapse
|
6
|
Leo I, Cersosimo A, Ielapi J, Sabatino J, Sicilia F, Strangio A, Figliozzi S, Torella D, De Rosa S. Intracardiac fluid dynamic analysis: available techniques and novel clinical applications. BMC Cardiovasc Disord 2024; 24:716. [PMID: 39702022 DOI: 10.1186/s12872-024-04371-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
There is a growing interest in the potential use of intracardiac fluid dynamic analysis to better understand cardiac mechanics and identify novel imaging biomarkers of cardiovascular disease. Abnormalities of vortex formation and shape may in fact play a critical role in cardiac function, affecting both efficiency and myocardial workload. Recent advances in imaging technologies have significantly improved our ability to analyze these dynamic flow patterns in vivo, offering new insights into both normal and pathological cardiac conditions. This review will provide a comprehensive overview of the available imaging techniques for intracardiac fluid dynamics analysis, highlighting their strengths and limitations. By synthesizing the current knowledge in this evolving field, the paper aims to underscore the importance of advanced fluid dynamic analysis in contemporary cardiology and to identify future directions for research and clinical practice.
Collapse
Affiliation(s)
- Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy, Viale Europa, 1, 88100
| | - Angelica Cersosimo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy, Viale Europa, 1, 88100
| | - Jessica Ielapi
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy, Viale Europa, 1, 88100
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy, Viale Europa, 1, 88100
| | - Federico Sicilia
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy, Viale Europa, 1, 88100
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy, Viale Europa, 1, 88100
| | - Stefano Figliozzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
- University of Naples Federico II, Via Pansini, 80131, Napoli, Italy
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy, Viale Europa, 1, 88100
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 1, 88100, Catanzaro, Italy.
| |
Collapse
|
7
|
Zhao X, Lee PT, Hu L, Tan RS, Chai P, Yeo TJ, Leng S, Ouyang R, Bryant JA, Teo LL, van der Geest RJ, Yip JW, Tan JL, Zhong Y, Zhong L. Right Ventricular Restrictive Physiology Is Associated With Right Ventricular Direct Flow From 4D Flow CMR. JACC. ASIA 2024; 4:912-924. [PMID: 39802994 PMCID: PMC11712013 DOI: 10.1016/j.jacasi.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 01/16/2025]
Abstract
Background Right ventricular restrictive physiology (RVRP) is a common occurrence in repaired tetralogy of Fallot (rTOF). The relationship of RVRP with biventricular blood flow components and kinetic energy (KE) from 4-dimensional (4D) flow cardiovascular magnetic resonance (CMR) is unclear. Objectives The purpose of this study was to investigate the association of 4D flow CMR parameters with RVRP in rTOF patients. Methods A total of 103 rTOF patients and 62 age and sex-matched healthy control subjects were prospectively recruited. All participants underwent CMR (cine, 2-dimensional phase-contrast, and 4D flow sequences), and cardiopulmonary exercise test in adult populations. RVRP was identified from pulmonary artery flow curve using 2-dimensional phase-contrast images. Biventricular flow components (direct flow, retained inflow, delayed ejection flow, and residual volume) and KE parameters normalized to end-diastolic volume (KEiEDV) were analyzed encompassing global, peak systolic, average systolic, average diastolic, peak E-wave, and peak A-wave. Results Compared with control subjects, rTOF patients had significantly lower RV direct flow and higher RV residual volume (both P < 0.001). All RV KEiEDV parameters, except peak A-wave, were higher in rTOF patients. In rTOF patients, 70 of 103 (68%) had RVRP, with increasing RV direct flow (27% vs 20%; P = 0.002) and RV peak E-wave KEiEDV (28.4 vs 20.7μJ/mL; P = 0.015) and decreasing RV residual volume (37% vs 42%; P = 0.039) than rTOF without RVRP. Exercise capacity was impaired in rTOF, although comparable between RVRP subgroups. Multivariable analysis revealed RV direct flow was an independent predictor of RVRP (OR: 1.158; 95% CI: 1.074-1.249; P < 0.001). Conclusions RVRP is associated with dilated RV, higher pulmonary regurgitation, and higher RV direct flow. (Integrated Computational modeling of Right Heart Mechanics and Blood Flow Dynamics in Congenital Heart Disease; NCT03217240).
Collapse
Affiliation(s)
- Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Phong Teck Lee
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Liwei Hu
- Duke-NUS Medical School, Singapore
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Chai
- National University Hospital Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tee Joo Yeo
- National University Hospital Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Jennifer Ann Bryant
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lynette L.S. Teo
- National University Hospital Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rob J. van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - James W. Yip
- National University Hospital Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ju Le Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biomedical Engineering, National University of Singapore, Singapore
| |
Collapse
|
8
|
Ait Ali L, Celi S, Festa P. Diastolic Right Ventricle Dysfunction in Repaired Tetralogy of Fallot: Is it Time for 4D-Flow-MRI Parameters? JACC. ASIA 2024; 4:925-927. [PMID: 39803002 PMCID: PMC11712012 DOI: 10.1016/j.jacasi.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Affiliation(s)
- Lamia Ait Ali
- Institute of Clinical Physiology CNR, Massa-Pisa, Italy
- Pediatric Cardiology and Adult CHD Unit, Fondazione G. Monasterio, CNR-Regione Toscana, Italy
| | - Simona Celi
- BioCardioLab, Bioengineering Unit, Fondazione G. Monasterio, CNR-Regione Toscana, Italy
| | - Pierluigi Festa
- Pediatric Cardiology and Adult CHD Unit, Fondazione G. Monasterio, CNR-Regione Toscana, Italy
| |
Collapse
|
9
|
Hu LW, Liu XR, Ouyang RZ, Chen LJ, Sun AM, Guo C, Yao XF, Ma YY, Feng L, Wu TF, Wang Q, Zhong YM. Characteristics of altered biventricular hemodynamics after arterial switch operation for patients with d-transposition of the great arteries with preserved ejection fraction: a four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) study. Quant Imaging Med Surg 2024; 14:7200-7217. [PMID: 39429599 PMCID: PMC11485381 DOI: 10.21037/qims-24-840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024]
Abstract
Background The long-term monitoring of biventricular function is essential to identify potential functional decline in patients following the arterial switch operation (ASO). The underlying pathophysiological mechanisms responsible for altered biventricular hemodynamics in ASO patients are not yet well understood. This study sought to: (I) compare the biventricular kinetic energy (KE) and vorticity of ASO patients and age- and sex-matched controls; (II) investigate the associations of four-dimensional (4D) flow biventricular hemodynamics parameters and neo-aortic root dilation, supravalvular pulmonary stenosis, and pulmonary artery transvalvular pressure difference. Methods A total of 34 patients with dextro-transposition of the great arteries (D-TGA) who underwent ASO, and 17 age- and gender-matched healthy controls were prospectively recruited for this study. All the subjects underwent cine and 4D flow and late gadolinium enhancement scans, and all the patients underwent echocardiography within two weeks of cardiovascular magnetic resonance (CMR) imaging. The following four flow components were analyzed: direct flow, retained inflow, delayed ejection flow, and residual volume. In addition, the following six phasic blood flow KE parameters, normalized to the end-diastolic volume (EDV) and vorticity, were analyzed for both the left ventricle (LV) and right ventricle (RV): peak systolic phase, average systolic phase, peak diastolic phase, average diastolic phase, peak E-wave phase, and peak A-wave phase. The independent sample Student's t-test, Mann-Whitney U-test, univariable and multivariable stepwise regression analyses, intra and inter-observer variability analyses were used to compare patients and controls. Results In relation to the LV, the D-TGA patients had significantly decreased average vorticity, peak systolic vorticity, systolic vorticity, diastolic vorticity, and peak A-wave vorticity compared to the controls (all P<0.01). In relation to the RV, the pulmonary stenosis group had significantly increased peak E- and A-wave kinetic energy normalized to the end-diastolic volume (KEiEDV), and peak and average vorticity compared to the non-pulmonary stenosis group (all P<0.05). in the multivariable logistic regression model analysis, diastolic KEiEDV, peak E-wave KEiEDV peak A-wave KEiEDV, and average vorticity were associated a with transvalvular pressure difference (β=13.54, P<0.001 for diastolic KEiEDV; β=105.26, P<0.001 for peak E-wave KEiEDV; β=-49.36, P=0.027 for peak A-wave KEiEDV; and β=-56.37, P<0.001 for average vorticity). Conclusions We found that 4D flow biventricular hemodynamics were more sensitive markers than the ejection fraction in the postoperative D-TGA patients. The RV diastolic KEiEDV parameters and average vorticity were risk factors for pulmonary artery obstruction in the multivariable model.
Collapse
Affiliation(s)
- Li-Wei Hu
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- PEDiatric Imaging Advanced Technology Research Center, Shanghai, China
| | - Xin-Rong Liu
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong-Zhen Ouyang
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Jun Chen
- Department of Pediatric Cardiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ai-Min Sun
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Guo
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Fen Yao
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Yan Ma
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le Feng
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting-Fan Wu
- PEDiatric Imaging Advanced Technology Research Center, Shanghai, China
| | - Qian Wang
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Min Zhong
- Department of Radiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- PEDiatric Imaging Advanced Technology Research Center, Shanghai, China
| |
Collapse
|
10
|
Singh AAV, Yoo SJ, Seed M, Lam CZ, Valverde I. Recent advances in multimodal imaging in tetralogy of fallot and double outlet right ventricle. Curr Opin Cardiol 2024; 39:323-330. [PMID: 38652290 DOI: 10.1097/hco.0000000000001154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW In the ever-evolving field of medical imaging, this review highlights significant advancements in preoperative and postoperative imaging for Tetralogy of Fallot (TOF) and double outlet right ventricle (DORV) over the past 18 months. RECENT FINDINGS This review showcases innovations in echocardiography such as 3D speckle tracking echocardiography (3DSTE) for assessing right ventricle-pulmonary artery coupling (RVPAC) and Doppler velocity reconstruction (DoVeR) for intracardiac flow fields evaluation. Furthermore, advances in assessment of cardiovascular anatomy using computed tomography (CT) improve the integration of imaging in ablation procedures. Additionally, the inclusion of cardiac magnetic resonance (CMR) parameters as risk score predictors for morbidity, and mortality and for timing of pulmonary valve replacement (PVR) indicates its significance in clinical management. The utilization of 4D flow techniques for postoperative hemodynamic assessment promises new insights into pressure mapping. Lastly, emerging technologies such as 3D printing and 3D virtual reality are expected to improve image quality and surgical confidence in preoperative planning. SUMMARY Developments in multimodality imaging in TOF and DORV are poised to shape the future of clinical practice in this field.
Collapse
Affiliation(s)
| | - Shi-Joon Yoo
- Division of Cardiac Imaging, Department of Diagnostic Imaging, The Hospital for Professor of Medical Imaging and Paediatrics at the University of Toronto
| | - Mike Seed
- Division of Cardiology, The Hospital for Sick Children, Professor of Paediatrics at the University of Toronto
| | - Christopher Z Lam
- General Radiology, Department of Diagnostic Imaging, Assistant Professor of Medical Imaging at the University of Toronto
| | - Israel Valverde
- The Hospital for Sick Children, Director of 3D Modeling & Printing Program- Cardiology, Associate Professor of Paediatrics at the University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Loke YH, Yildiran IN, Capuano F, Balaras E, Olivieri L. Tetralogy of Fallot regurgitation energetics and kinetics: an intracardiac flow analysis of the right ventricle using computational fluid dynamics. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024; 40:1135-1147. [PMID: 38668927 DOI: 10.1007/s10554-024-03084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 06/05/2024]
Abstract
Repaired Tetralogy of Fallot (rTOF) patients suffer from pulmonary regurgitation and may require pulmonary valve replacement (PVR). Cardiac magnetic resonance imaging (cMRI) guides therapy, but conventional measurements do not quantify the intracardiac flow effects from pulmonary regurgitation or PVR. This study investigates intracardiac flow parameters of the right ventricle (RV) of rTOF by computational fluid dynamics (CFD). cMRI of rTOF patients and controls were retrospectively included. Feature-tracking captured RV endocardial contours from long-axis/short-axis cine. Ventricular motion was reconstructed via diffeomorphic mapping, serving as domain boundary for CFD simulations. Vorticity (1/s), viscous energy loss (ELoss, mJ/L) and turbulent kinetic energy (TKE, mJ/L) were quantified in RV outflow tract (RVOT) and RV inflow. These parameters were normalized against total RV kinetic energy (KE) and RV inflow vorticity to derive dimensionless metrics. Vorticity contours by Q-criterion were qualitatively compared. rTOF patients (n = 15) had mean regurgitant fraction 38 ± 12% and RV size 162 ± 35 mL/m2. Compared to controls (n = 12), rTOF had increased RVOT vorticity (142.6 ± 75.6/s vs. 40.4 ± 11.8/s, p < 0.0001), Eloss (55.6 ± 42.5 vs. 5.2 ± 4.4 mJ/L, p = 0.0004), and TKE (5.7 ± 5.9 vs. 0.84 ± 0.46 mJ/L, p = 0.0003). After PVR, there was decrease in normalized RVOT Eloss/TKE (p = 0.0009, p = 0.029) and increase in normalized tricuspid inflow vorticity/KE (p = 0.0136, p = 0.043), corresponding to reorganization of the "donut"-shaped tricuspid ring-vortex. The intracardiac flow in rTOF patients can be simulated to determine the impact of PVR and improve the clinical indications guided by cardiac imaging.
Collapse
Affiliation(s)
- Yue-Hin Loke
- Department of Cardiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Ibrahim N Yildiran
- Laboratory for Computational Physics and Fluid Mechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, DC, USA
| | - Francesco Capuano
- Department of Fluid Mechanics, Universitat Politècnica de Catalunya . BarcelonaTech (UPC), Barcelona, Spain
| | - Elias Balaras
- Laboratory for Computational Physics and Fluid Mechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, DC, USA
| | - Laura Olivieri
- The Heart and Vascular Institute, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Meyers BA, Zhang J, Nyce J, Loke YH, Vlachos PP. Enhanced echocardiographic assessment of intracardiac flow in congenital heart disease. PLoS One 2024; 19:e0300709. [PMID: 38498562 PMCID: PMC10947680 DOI: 10.1371/journal.pone.0300709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND 4D flow magnetic resonance imaging (4D flow MRI) can assess and measure the complex flow patterns of the right ventricle (RV) in congenital heart diseases, but its limited availability makes the broad application of intracardiac flow assessment challenging. Color Doppler imaging velocity reconstruction from conventional echocardiography is an emerging alternative, but its validity against 4D flow MRI needs to be established. OBJECTIVE To compare intracardiac flow parameters measured by color Doppler velocity reconstruction (DoVeR) against parameters measured from 4D flow MRI. METHODS We analyzed 20 subjects, including 7 normal RVs and 13 abnormal RVs (10 with repaired Tetralogy of Fallot, and 3 with atrial-level shunts). Intracardiac flow parameters such as relative pressure difference, vortex strength, total kinetic energy, and viscous energy loss were quantified using DoVeR and 4D flow MRI. The agreement between the two methods was determined by comparing the spatial fields and quantifying the cross-correlation and normalized difference between time-series measurements. RESULTS The hemodynamic parameters obtained from DoVeR and 4D flow MRI showed similar flow characteristics and spatial distributions. The time evolutions of the parameters were also in good agreement between the two methods. The median correlation coefficient between the time-series of any parameter was between 0.87 and 0.92, and the median L2-norm deviation was between 10% to 14%. CONCLUSIONS Our study shows that DoVeR is a reliable alternative to 4D flow MRI for quantifying intracardiac hemodynamic parameters in the RV.
Collapse
Affiliation(s)
- Brett A. Meyers
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Jonathan Nyce
- Division of Cardiology, Children’s National Hospital, Washington, DC, United States of America
| | - Yue-Hin Loke
- Division of Cardiology, Children’s National Hospital, Washington, DC, United States of America
| | - Pavlos P. Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
13
|
Johnson JN, Pouraliakbar H, Mahdavi M, Ranjbar A, Pfirman K, Mehra V, Ahmed S, Ba-Atiyah W, Galal MO, Zahr RA, Hussain N, Tadikamalla RR, Farah V, Dzelebdzic S, Muniz JC, Lee M, Williams J, Lee S, Aggarwal SK, Clark DE, Hughes SG, Ganigara M, Nagiub M, Hussain T, Kwok C, Lim HS, Nolan M, Kikuchi DS, Goulbourne CA, Sahu A, Sievers B, Sievers B, Sievers B, Garg R, Armas CR, Paleru V, Agarwal R, Rajagopal R, Bhagirath P, Kozor R, Aneja A, Tunks R, Chen SSM. Society for Cardiovascular Magnetic Resonance 2022 Cases of SCMR case series. J Cardiovasc Magn Reson 2023; 26:100007. [PMID: 38211509 PMCID: PMC11211240 DOI: 10.1016/j.jocmr.2023.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 01/13/2024] Open
Abstract
"Cases of SCMR" is a case series on the SCMR website (https://www.scmr.org) for the purpose of education. The cases reflect the clinical presentation, and the use of cardiovascular magnetic resonance (CMR) in the diagnosis and management of cardiovascular disease. The 2022 digital collection of cases are presented in this manuscript.
Collapse
Affiliation(s)
- Jason N Johnson
- Division of Pediatric Cardiology and Pediatric Radiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hamidreza Pouraliakbar
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolmohammad Ranjbar
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kristopher Pfirman
- Department of Cardiovascular Medicine, Geisinger Medical Center, Danville, PA, USA
| | - Vishal Mehra
- Department of Cardiovascular Medicine, Geisinger Medical Center, Danville, PA, USA
| | - Shahzad Ahmed
- Department of Cardiovascular Medicine, Geisinger Medical Center, Danville, PA, USA
| | - Wejdan Ba-Atiyah
- Pediatric Cardiology Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammed Omar Galal
- Pediatric Cardiology Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Riad Abou Zahr
- Pediatric Cardiology Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nasir Hussain
- Department of Advanced Cardiac Imaging, Allegheny General Hospital, Pittsburgh, PA, USA
| | | | - Victor Farah
- Department of Advanced Cardiac Imaging, Allegheny General Hospital, Pittsburgh, PA, USA
| | | | | | - Marc Lee
- Division of Pediatric Cardiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jason Williams
- Division of Pediatric Cardiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Simon Lee
- Division of Pediatric Cardiology, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Daniel E Clark
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sean G Hughes
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Madhusudan Ganigara
- Division of Pediatric Cardiology, The University of Chicago & Biological Sciences, Chicago, IL, USA
| | - Mohamed Nagiub
- Division of Pediatric Cardiology, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Tarique Hussain
- Division of Pediatric Cardiology, Children's Medical Center Dallas, Dallas, TX, USA
| | - Cecilia Kwok
- Cardiology Department, Western Health, St Albans, Victoria, Australia
| | - Han S Lim
- Cardiology Department, Austin and Northern Health, University of Melbourne, Victoria, Australia
| | - Mark Nolan
- Cardiology Department, Western Health, St Albans, Victoria, Australia; Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Daniel S Kikuchi
- Osler Medical Residency, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Clive A Goulbourne
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Anurag Sahu
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Berge Sievers
- International School Düsseldorf, Düsseldorf, Germany
| | - Berk Sievers
- International School Düsseldorf, Düsseldorf, Germany
| | - Burkhard Sievers
- Department of Internal Medicine, Divisions of Cardiology, Pulmonology, Vascular Medicine, Nephrology and Intensive Care Medicine, Sana Klinikum Remscheid, Germany
| | - Rimmy Garg
- University of Illinois College of Medicine Peoria, OSF St. Francis Medical Center, Peoria, IL, USA
| | - Carlos Requena Armas
- University of Illinois College of Medicine Peoria, OSF St. Francis Medical Center, Peoria, IL, USA
| | - Vijayasree Paleru
- University of Illinois College of Medicine Peoria, OSF St. Francis Medical Center, Peoria, IL, USA
| | - Ritu Agarwal
- Department of Radiology, Eternal Hospital, Jaipur, India
| | - Rengarajan Rajagopal
- Department of Radiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pranav Bhagirath
- Department of Cardiology, St. Thomas Hospital, London, England, UK
| | - Rebecca Kozor
- Department of Cardiology, Royal North Shore Hospital, The University of Sydney, St Leonards, Australia
| | - Ashish Aneja
- Department of Cardiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Robert Tunks
- Division of Pediatric Cardiology, Penn State Health, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Sylvia S M Chen
- Adult Congenital Heart Disease, The Prince Charles Hospital, Australia.
| |
Collapse
|
14
|
Zhao X, Tan RS, Garg P, Chai P, Leng S, Bryant JA, Teo LLS, Yeo TJ, Fortier MV, Low TT, Ong CC, Zhang S, Van der Geest RJ, Allen JC, Tan TH, Yip JW, Tan JL, Hughes M, Plein S, Westenberg JJM, Zhong L. Age- and sex-specific reference values of biventricular flow components and kinetic energy by 4D flow cardiovascular magnetic resonance in healthy subjects. J Cardiovasc Magn Reson 2023; 25:50. [PMID: 37718441 PMCID: PMC10506211 DOI: 10.1186/s12968-023-00960-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Advances in four-dimensional flow cardiovascular magnetic resonance (4D flow CMR) have allowed quantification of left ventricular (LV) and right ventricular (RV) blood flow. We aimed to (1) investigate age and sex differences of 4D flow CMR-derived LV and RV relative flow components and kinetic energy (KE) parameters indexed to end-diastolic volume (KEiEDV) in healthy subjects; and (2) assess the effects of age and sex on these parameters. METHODS We performed 4D flow analysis in 163 healthy participants (42% female; mean age 43 ± 13 years) of a prospective registry study (NCT03217240) who were free of cardiovascular diseases. Relative flow components (direct flow, retained inflow, delayed ejection flow, residual volume) and multiple phasic KEiEDV (global, peak systolic, average systolic, average diastolic, peak E-wave, peak A-wave) for both LV and RV were analysed. RESULTS Compared with men, women had lower median LV and RV residual volume, and LV peak and average systolic KEiEDV, and higher median values of RV direct flow, RV global KEiEDV, RV average diastolic KEiEDV, and RV peak E-wave KEiEDV. ANOVA analysis found there were no differences in flow components, peak and average systolic, average diastolic and global KEiEDV for both LV and RV across age groups. Peak A-wave KEiEDV increased significantly (r = 0.458 for LV and 0.341 for RV), whereas peak E-wave KEiEDV (r = - 0.355 for LV and - 0.318 for RV), and KEiEDV E/A ratio (r = - 0.475 for LV and - 0.504 for RV) decreased significantly, with age. CONCLUSION These data using state-of-the-art 4D flow CMR show that biventricular flow components and kinetic energy parameters vary significantly by age and sex. Age and sex trends should be considered in the interpretation of quantitative measures of biventricular flow. Clinical trial registration https://www. CLINICALTRIALS gov . Unique identifier: NCT03217240.
Collapse
Affiliation(s)
- Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- National Heart Centre Singapore, Singapore, Singapore
| | - Pankaj Garg
- Department of Cardiovascular Medicine, University of East Anglia, Norwich, UK
| | - Ping Chai
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jennifer Ann Bryant
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- National Heart Centre Singapore, Singapore, Singapore
| | - Lynette L S Teo
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tee Joo Yeo
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marielle V Fortier
- Duke-NUS Medical School, Singapore, Singapore
- KK Women's and Children's Hospital, Singapore, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore
| | - Ting Ting Low
- National University Hospital Singapore, Singapore, Singapore
| | - Ching Ching Ong
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shuo Zhang
- Philips Healthcare Germany, Hamburg, Germany
| | - Rob J Van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Teng Hong Tan
- Duke-NUS Medical School, Singapore, Singapore
- KK Women's and Children's Hospital, Singapore, Singapore
| | - James W Yip
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ju Le Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- National Heart Centre Singapore, Singapore, Singapore
| | - Marina Hughes
- Department of Cardiovascular Medicine, University of East Anglia, Norwich, UK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
15
|
Ashkir Z, Johnson S, Lewandowski AJ, Hess A, Wicks E, Mahmod M, Myerson S, Ebbers T, Watkins H, Neubauer S, Carlhäll CJ, Raman B. Novel insights into diminished cardiac reserve in non-obstructive hypertrophic cardiomyopathy from four-dimensional flow cardiac magnetic resonance component analysis. Eur Heart J Cardiovasc Imaging 2023; 24:1192-1200. [PMID: 37114738 PMCID: PMC10445247 DOI: 10.1093/ehjci/jead074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is characterized by hypercontractility and diastolic dysfunction, which alter blood flow haemodynamics and are linked with increased risk of adverse clinical events. Four-dimensional flow cardiac magnetic resonance (4D-flow CMR) enables comprehensive characterization of ventricular blood flow patterns. We characterized flow component changes in non-obstructive HCM and assessed their relationship with phenotypic severity and sudden cardiac death (SCD) risk. METHODS AND RESULTS Fifty-one participants (37 non-obstructive HCM and 14 matched controls) underwent 4D-flow CMR. Left-ventricular (LV) end-diastolic volume was separated into four components: direct flow (blood transiting the ventricle within one cycle), retained inflow (blood entering the ventricle and retained for one cycle), delayed ejection flow (retained ventricular blood ejected during systole), and residual volume (ventricular blood retained for >two cycles). Flow component distribution and component end-diastolic kinetic energy/mL were estimated. HCM patients demonstrated greater direct flow proportions compared with controls (47.9 ± 9% vs. 39.4 ± 6%, P = 0.002), with reduction in other components. Direct flow proportions correlated with LV mass index (r = 0.40, P = 0.004), end-diastolic volume index (r = -0.40, P = 0.017), and SCD risk (r = 0.34, P = 0.039). In contrast to controls, in HCM, stroke volume decreased with increasing direct flow proportions, indicating diminished volumetric reserve. There was no difference in component end-diastolic kinetic energy/mL. CONCLUSION Non-obstructive HCM possesses a distinctive flow component distribution pattern characterised by greater direct flow proportions, and direct flow-stroke volume uncoupling indicative of diminished cardiac reserve. The correlation of direct flow proportion with phenotypic severity and SCD risk highlight its potential as a novel and sensitive haemodynamic measure of cardiovascular risk in HCM.
Collapse
Affiliation(s)
- Z Ashkir
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
| | - S Johnson
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
| | - A J Lewandowski
- Oxford Cardiovascular Clinical Research Facility (CCRF), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
| | - A Hess
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences (NDCN), University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
| | - E Wicks
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
- Inherited Cardiovascular Conditions (ICC) Service, Oxford University Hospitals NHS Foundation Trust and the University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
| | - M Mahmod
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
| | - S Myerson
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
| | - T Ebbers
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, SE-581 83 Linköping, Sweden
| | - H Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
| | - S Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
| | - C J Carlhäll
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, SE-581 83 Linköping, Sweden
- Department of Clinical Physiology in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 83 Linköping, Sweden
| | - B Raman
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9 DU, UK
| |
Collapse
|
16
|
Soulat G, Alattar Y, Ladouceur M, Craiem D, Pascaner A, Gencer U, Malekzadeh-Milani S, Iserin L, Karsenty C, Mousseaux E. Discordance between 2D and 4D flow in the assessment of pulmonary regurgitation severity: a right ventricular remodeling follow-up study. Eur Radiol 2023; 33:5455-5464. [PMID: 36905468 DOI: 10.1007/s00330-023-09502-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVES Pulmonary regurgitation (PR) is common in adult congenital heart disease (ACHD). 2D phase contrast MRI is the reference method for the quantification of PR and helps in the decision of pulmonary valve replacement (PVR). 4D flow MRI can be an alternative method to estimate PR but more validation is still needed. Our purpose was to compare 2D and 4D flow in PR quantification using the degree of right ventricular remodeling after PVR as the reference standard. METHODS In 30 adult patients with a pulmonary valve disease recruited between 2015 and 2018, PR was assessed using both 2D and 4D flow. Based on the clinical standard of care, 22 underwent PVR. The pre PVR estimate of PR was compared using the post-operative decrease in right ventricle end-diastolic volume on follow-up exam as reference. RESULTS In the overall cohort, regurgitant volume (Rvol) and regurgitant fraction (RF) of PR measured by 2D and 4D flow were well correlated but with moderate agreement in the overall cohort (r = 0.90, mean diff. -14 ± 12.5 mL; and r = 0.72, mean diff. -15 ± 13%; all p < 0.0001). Correlations between Rvol estimates and right ventricle end-diastolic volume decrease after PVR was higher with 4D flow (r = 0.80, p < 0.0001) than with 2D flow (r = 0.72, p < 0.0001). CONCLUSIONS In ACHD, PR quantification from 4D flow better predicts post-PVR right ventricle remodeling than that from 2D flow. Further studies are needed to evaluate the added value of this 4D flow quantification for guiding replacement decision. KEY POINTS • Using 4D flow MRI allows a better quantification of pulmonary regurgitation in adult congenital heart disease than 2D flow when taking right ventricle remodeling after pulmonary valve replacement as a reference. • A plane positioned perpendicular to the ejected flow volume as allowed by 4D flow provides better results to estimate pulmonary regurgitation.
Collapse
Affiliation(s)
- Gilles Soulat
- Université Paris cité, PARCC (Paris-Cardiovascular Research Center), INSERM 970, 20 rue Leblanc, F-75015, Paris, France.
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France.
| | - Yousef Alattar
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Magalie Ladouceur
- Université Paris cité, PARCC (Paris-Cardiovascular Research Center), INSERM 970, 20 rue Leblanc, F-75015, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Damian Craiem
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Ariel Pascaner
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Buenos Aires, Argentina
| | - Umit Gencer
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Sophie Malekzadeh-Milani
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Laurence Iserin
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Clement Karsenty
- Université Paris cité, PARCC (Paris-Cardiovascular Research Center), INSERM 970, 20 rue Leblanc, F-75015, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Elie Mousseaux
- Université Paris cité, PARCC (Paris-Cardiovascular Research Center), INSERM 970, 20 rue Leblanc, F-75015, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| |
Collapse
|
17
|
Zhao X, Garg P, Assadi H, Tan RS, Chai P, Yeo TJ, Matthews G, Mehmood Z, Leng S, Bryant JA, Teo LLS, Ong CC, Yip JW, Tan JL, van der Geest RJ, Zhong L. Aortic flow is associated with aging and exercise capacity. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead079. [PMID: 37635784 PMCID: PMC10460199 DOI: 10.1093/ehjopen/oead079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/02/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Aims Increased blood flow eccentricity in the aorta has been associated with aortic (AO) pathology, however, its association with exercise capacity has not been investigated. This study aimed to assess the relationships between flow eccentricity parameters derived from 2-dimensional (2D) phase-contrast (PC) cardiovascular magnetic resonance (CMR) imaging and aging and cardiopulmonary exercise test (CPET) in a cohort of healthy subjects. Methods and Results One hundred and sixty-nine healthy subjects (age 44 ± 13 years, M/F: 96/73) free of cardiovascular disease were recruited in a prospective study (NCT03217240) and underwent CMR, including 2D PC at an orthogonal plane just above the sinotubular junction, and CPET (cycle ergometer) within one week. The following AO flow parameters were derived: AO forward and backward flow indexed to body surface area (FFi, BFi), average flow displacement during systole (FDsavg), late systole (FDlsavg), diastole (FDdavg), systolic retrograde flow (SRF), systolic flow reversal ratio (sFRR), and pulse wave velocity (PWV). Exercise capacity was assessed by peak oxygen uptake (PVO2) from CPET. The mean values of FDsavg, FDlsavg, FDdavg, SRF, sFRR, and PWV were 17 ± 6%, 19 ± 8%, 29 ± 7%, 4.4 ± 4.2 mL, 5.9 ± 5.1%, and 4.3 ± 1.6 m/s, respectively. They all increased with age (r = 0.623, 0.628, 0.353, 0.590, 0.649, 0.598, all P < 0.0001), and decreased with PVO2 (r = -0.302, -0.270, -0.253, -0.149, -0.219, -0.161, all P < 0.05). A stepwise multivariable linear regression analysis using left ventricular ejection fraction (LVEF), FFi, and FDsavg showed an area under the curve of 0.769 in differentiating healthy subjects with high-risk exercise capacity (PVO2 ≤ 14 mL/kg/min). Conclusion AO flow haemodynamics change with aging and predict exercise capacity. Registration NCT03217240.
Collapse
Affiliation(s)
- Xiaodan Zhao
- National Heart Research Institute Singapore, National Heart Centre
Singapore, 5 Hospital Drive, 169609 Singapore,
Singapore
| | - Pankaj Garg
- Cardiology Department, Norfolk and Norwich University Hospitals NHS
Foundation Trust,Colney Ln, Norwich, NR4 7UY Norfolk, UK
- Department of Cardiovascular and Metabolic Health, Norwich Medical School,
University of East Anglia, Rosalind Franklin Rd, Norwich, NR4
7UQ Norfolk, UK
| | - Hosamadin Assadi
- Cardiology Department, Norfolk and Norwich University Hospitals NHS
Foundation Trust,Colney Ln, Norwich, NR4 7UY Norfolk, UK
- Department of Cardiovascular and Metabolic Health, Norwich Medical School,
University of East Anglia, Rosalind Franklin Rd, Norwich, NR4
7UQ Norfolk, UK
| | - Ru-San Tan
- National Heart Research Institute Singapore, National Heart Centre
Singapore, 5 Hospital Drive, 169609 Singapore,
Singapore
- Duke-NUS Medical School, National University of Singapore, 8 College Road,
169857 Singapore, Singapore
| | - Ping Chai
- Department of Diagnostic Imaging, National University Hospital
Singapore, 5 Lower Kent Ridge Road, 119074
Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of
Singapore, 10 Medical Drive, 117597 Singapore,
Singapore
| | - Tee Joo Yeo
- Department of Diagnostic Imaging, National University Hospital
Singapore, 5 Lower Kent Ridge Road, 119074
Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of
Singapore, 10 Medical Drive, 117597 Singapore,
Singapore
| | - Gareth Matthews
- Cardiology Department, Norfolk and Norwich University Hospitals NHS
Foundation Trust,Colney Ln, Norwich, NR4 7UY Norfolk, UK
- Department of Cardiovascular and Metabolic Health, Norwich Medical School,
University of East Anglia, Rosalind Franklin Rd, Norwich, NR4
7UQ Norfolk, UK
| | - Zia Mehmood
- Cardiology Department, Norfolk and Norwich University Hospitals NHS
Foundation Trust,Colney Ln, Norwich, NR4 7UY Norfolk, UK
- Department of Cardiovascular and Metabolic Health, Norwich Medical School,
University of East Anglia, Rosalind Franklin Rd, Norwich, NR4
7UQ Norfolk, UK
| | - Shuang Leng
- National Heart Research Institute Singapore, National Heart Centre
Singapore, 5 Hospital Drive, 169609 Singapore,
Singapore
- Duke-NUS Medical School, National University of Singapore, 8 College Road,
169857 Singapore, Singapore
| | - Jennifer Ann Bryant
- National Heart Research Institute Singapore, National Heart Centre
Singapore, 5 Hospital Drive, 169609 Singapore,
Singapore
- Duke-NUS Medical School, National University of Singapore, 8 College Road,
169857 Singapore, Singapore
| | - Lynette L S Teo
- Department of Diagnostic Imaging, National University Hospital
Singapore, 5 Lower Kent Ridge Road, 119074
Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of
Singapore, 10 Medical Drive, 117597 Singapore,
Singapore
| | - Ching Ching Ong
- Department of Diagnostic Imaging, National University Hospital
Singapore, 5 Lower Kent Ridge Road, 119074
Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of
Singapore, 10 Medical Drive, 117597 Singapore,
Singapore
| | - James W Yip
- Department of Diagnostic Imaging, National University Hospital
Singapore, 5 Lower Kent Ridge Road, 119074
Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of
Singapore, 10 Medical Drive, 117597 Singapore,
Singapore
| | - Ju Le Tan
- National Heart Research Institute Singapore, National Heart Centre
Singapore, 5 Hospital Drive, 169609 Singapore,
Singapore
- Duke-NUS Medical School, National University of Singapore, 8 College Road,
169857 Singapore, Singapore
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center,
Albinusdreef 2, 2333 ZA Leiden, TheNetherlands
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre
Singapore, 5 Hospital Drive, 169609 Singapore,
Singapore
- Duke-NUS Medical School, National University of Singapore, 8 College Road,
169857 Singapore, Singapore
| |
Collapse
|
18
|
Meyers B, Nyce J, Zhang J, Frank LH, Balaras E, Vlachos PP, Loke YH. Intracardiac Flow Analysis of the Right Ventricle in Pediatric Patients With Repaired Tetralogy of Fallot Using a Novel Color Doppler Velocity Reconstruction. J Am Soc Echocardiogr 2023; 36:644-653. [PMID: 36822439 PMCID: PMC10247486 DOI: 10.1016/j.echo.2023.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Repaired tetralogy of Fallot (RTOF) patients will develop right ventricular (RV) dysfunction from chronic pulmonary regurgitation (PR). Cardiac magnetic resonance sequences such as four-dimensional flow can demonstrate altered vorticity and flow energy loss (FEL); however, they are not as available as conventional echocardiography (echo). The study determined whether a novel, vendor-independent Doppler velocity reconstruction (DoVeR) could measure RV intracardiac flow in conventional echo of RTOF patients. The primary hypothesis was that DoVeR could detect increased vorticity and diastolic FEL in RTOF patients. METHODS Repaired tetralogy of Fallot patients with echo were retrospectively paired with age-/size-matched controls. Doppler velocity reconstruction employed the stream function-vorticity equation to approximate intracardiac flow fields from color Doppler. A velocity field of the right ventricle was reconstructed from the apical 4-chamber view. Vortex strength (VS, area integral of vorticity) and FEL were derived from DoVeR. Cardiac magnetic resonance and exercise stress parameters (performed within 1 year of echo) were collected for analysis. RESULTS Twenty RTOF patients and age-matched controls were included in the study. Mean regurgitant fraction was 40.5% ± 7.6%, and indexed RV end-diastolic volume was 158 ± 36 mL/m2. Repaired tetralogy of Fallot patients had higher total, mean diastolic, and peak diastolic VS (P = .0013, P = .0012, P = .0032, respectively) and higher total, mean diastolic, and peak diastolic body surface area-indexed FEL (P = .0016, P = .0022, P < .001, respectively). Peak diastolic indexed FEL and peak diastolic VS had weak-to-moderate negative correlation with RV ejection fraction (r = -0.52 [P = .019] and r = -0.49 [P = .030], respectively) and left ventricular ejection fraction (r = -0.47 [P = .034] and r = -0.64 [P = .002], respectively). Mean diastolic indexed FEL and VS had moderate-to-strong negative correlation with percent predicted maximal oxygen consumption (r = -0.69 [P = .012] and r = -0.75 [P = .006], respectively). CONCLUSIONS DoVeR can detect alterations to intracardiac flow in RTOF patients from conventional color Doppler imaging. Echo-based measures of diastolic VS and FEL correlated with ventricular function. DoVeR has the potential to provide serial evaluation of abnormal flow dynamics in RTOF patients.
Collapse
Affiliation(s)
- Brett Meyers
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Jonathan Nyce
- Department of Cardiology, Children's National Hospital, Washington, D.C
| | - Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Lowell H Frank
- Department of Cardiology, Children's National Hospital, Washington, D.C
| | - Elias Balaras
- School of Engineering & Applied Science, George Washington University, Washington, D.C
| | - Pavlos P Vlachos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Yue-Hin Loke
- Department of Cardiology, Children's National Hospital, Washington, D.C..
| |
Collapse
|
19
|
Derman ID, Singh YP, Saini S, Nagamine M, Banerjee D, Ozbolat IT. Bioengineering and Clinical Translation of Human Lung and its Components. Adv Biol (Weinh) 2023; 7:e2200267. [PMID: 36658734 PMCID: PMC10121779 DOI: 10.1002/adbi.202200267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Indexed: 01/21/2023]
Abstract
Clinical lung transplantation has rapidly established itself as the gold standard of treatment for end-stage lung diseases in a restricted group of patients since the first successful lung transplant occurred. Although significant progress has been made in lung transplantation, there are still numerous obstacles on the path to clinical success. The development of bioartificial lung grafts using patient-derived cells may serve as an alternative treatment modality; however, challenges include developing appropriate scaffold materials, advanced culture strategies for lung-specific multiple cell populations, and fully matured constructs to ensure increased transplant lifetime following implantation. This review highlights the development of tissue-engineered tracheal and lung equivalents over the past two decades, key problems in lung transplantation in a clinical environment, the advancements made in scaffolds, bioprinting technologies, bioreactors, organoids, and organ-on-a-chip technologies. The review aims to fill the lacuna in existing literature toward a holistic bioartificial lung tissue, including trachea, capillaries, airways, bifurcating bronchioles, lung disease models, and their clinical translation. Herein, the efforts are on bridging the application of lung tissue engineering methods in a clinical environment as it is thought that tissue engineering holds enormous promise for overcoming the challenges associated with the clinical translation of bioengineered human lung and its components.
Collapse
Affiliation(s)
- I. Deniz Derman
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Shweta Saini
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Momoka Nagamine
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Department of Chemistry, Penn State University; University Park, PA,16802, USA
| | - Dishary Banerjee
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University; University Park, PA, 16802, USA
- Materials Research Institute, Penn State University; University Park, PA, 16802, USA
- Cancer Institute, Penn State University; University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University; University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
20
|
Hudani A, Ihsan Ali S, Patton D, Myers KA, Fine NM, White JA, Greenway S, Garcia J. 4D-Flow MRI Characterization of Pulmonary Flow in Repaired Tetralogy of Fallot. APPLIED SCIENCES 2023; 13:2810. [DOI: 10.3390/app13052810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Patients with Tetralogy of Fallot (TOF) have multiple surgical sequelae altering the pulmonary flow hemodynamics. Repaired TOF (rTOF) adults frequently develop pulmonary regurgitation impacting the blood flow pressure, right ventricle load, and pulmonary hemodynamics. We aimed to evaluate the pulmonary flow hemodynamics using 4D-flow magnetic resonance imaging (MRI) for characterizing altered blood flow, viscous energy loss (EL), wall shear stress (WSS), pressure drop (PD), and ventricular flow analysis (VFA) in rTOF patients. We hypothesized that 4D-flow based parameters can identify pulmonary blood flow alterations. A total of 17 rTOF patients (age: 29 ± 10 years, 35% women) and 20 controls (age: 36 ± 12 years, 25% women) were scanned using a dedicated cardiac MRI protocol. Peak velocity and regurgitant fraction were significantly higher for rTOF patients (p < 0.001). WSS was consistently elevated along the PA in the rTOF (p ≤ 0.05). The rTOF average circumferential WSS was higher than axial WSS at the main pulmonary artery (p ≤ 0.001). PD and EL were consistently higher in the rTOF as compared with controls (p < 0.05). For VFA, delayed ejection increased and retained inflow decreased in rTOF patients (p < 0.001). To conclude, this study demonstrated that 4D-flow MRI pulmonary flow in the rTOF can exhibit altered peak velocity, valvular regurgitation, WSS, EL, PD, and VFA.
Collapse
Affiliation(s)
- Ashifa Hudani
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Safia Ihsan Ali
- Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David Patton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kimberley A. Myers
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nowell M. Fine
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - James A. White
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Steven Greenway
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Julio Garcia
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
21
|
Riva A, Eriksson J, Viola F, Sturla F, Votta E, Ebbers T, Carlhäll CJG, Dyverfeldt P. Impact of dobutamine stress on diastolic energetic efficiency of healthy left ventricle: an in vivo kinetic energy analysis. Front Cardiovasc Med 2023; 10:1103751. [PMID: 37025678 PMCID: PMC10071008 DOI: 10.3389/fcvm.2023.1103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The total kinetic energy (KE) of blood can be decomposed into mean KE (MKE) and turbulent KE (TKE), which are associated with the phase-averaged fluid velocity field and the instantaneous velocity fluctuations, respectively. The aim of this study was to explore the effects of pharmacologically induced stress on MKE and TKE in the left ventricle (LV) in a cohort of healthy volunteers. 4D Flow MRI data were acquired in eleven subjects at rest and after dobutamine infusion, at a heart rate that was ∼60% higher than the one in rest conditions. MKE and TKE were computed as volume integrals over the whole LV and as data mapped to functional LV flow components, i.e., direct flow, retained inflow, delayed ejection flow and residual volume. Diastolic MKE and TKE increased under stress, in particular at peak early filling and peak atrial contraction. Augmented LV inotropy and cardiac frequency also caused an increase in direct flow and retained inflow MKE and TKE. However, the TKE/KE ratio remained comparable between rest and stress conditions, suggesting that LV intracavitary fluid dynamics can adapt to stress conditions without altering the TKE to KE balance of the normal left ventricle at rest.
Collapse
Affiliation(s)
- Alessandra Riva
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- 3D and Computer Simulation Laboratory, IRCCS, Policlinico San Donato, San Donato Milanese, Italy
- Correspondence: Alessandra Riva
| | - Jonatan Eriksson
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Medical Radiation Physics and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Federica Viola
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Francesco Sturla
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- 3D and Computer Simulation Laboratory, IRCCS, Policlinico San Donato, San Donato Milanese, Italy
| | - Emiliano Votta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- 3D and Computer Simulation Laboratory, IRCCS, Policlinico San Donato, San Donato Milanese, Italy
| | - Tino Ebbers
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Carl-Johan Gustav Carlhäll
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Physiology in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Petter Dyverfeldt
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Unit of Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
22
|
Zhao X, Leng S, Tan RS, Chai P, Yeo TJ, Bryant JA, Teo LLS, Fortier MV, Ruan W, Low TT, Ong CC, Zhang S, van der Geest RJ, Allen JC, Hughes M, Garg P, Tan TH, Yip JW, Tan JL, Zhong L. Right ventricular energetic biomarkers from 4D Flow CMR are associated with exertional capacity in pulmonary arterial hypertension. J Cardiovasc Magn Reson 2022; 24:61. [PMID: 36451198 PMCID: PMC9714144 DOI: 10.1186/s12968-022-00896-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) offers comprehensive right ventricular (RV) evaluation in pulmonary arterial hypertension (PAH). Emerging four-dimensional (4D) flow CMR allows visualization and quantification of intracardiac flow components and calculation of phasic blood kinetic energy (KE) parameters but it is unknown whether these parameters are associated with cardiopulmonary exercise test (CPET)-assessed exercise capacity, which is a surrogate measure of survival in PAH. We compared 4D flow CMR parameters in PAH with healthy controls, and investigated the association of these parameters with RV remodelling, RV functional and CPET outcomes. METHODS PAH patients and healthy controls from two centers were prospectively enrolled to undergo on-site cine and 4D flow CMR, and CPET within one week. RV remodelling index was calculated as the ratio of RV to left ventricular (LV) end-diastolic volumes (EDV). Phasic (peak systolic, average systolic, and peak E-wave) LV and RV blood flow KE indexed to EDV (KEIEDV) and ventricular LV and RV flow components (direct flow, retained inflow, delayed ejection flow, and residual volume) were calculated. Oxygen uptake (VO2), carbon dioxide production (VCO2) and minute ventilation (VE) were measured and recorded. RESULTS 45 PAH patients (46 ± 11 years; 7 M) and 51 healthy subjects (46 ± 14 years; 17 M) with no significant differences in age and gender were analyzed. Compared with healthy controls, PAH had significantly lower median RV direct flow, RV delayed ejection flow, RV peak E-wave KEIEDV, peak VO2, and percentage (%) predicted peak VO2, while significantly higher median RV residual volume and VE/VCO2 slope. RV direct flow and RV residual volume were significantly associated with RV remodelling, function, peak VO2, % predicted peak VO2 and VE/VCO2 slope (all P < 0.01). Multiple linear regression analyses showed RV direct flow to be an independent marker of RV function, remodelling and exercise capacity. CONCLUSION In this 4D flow CMR and CPET study, RV direct flow provided incremental value over RVEF for discriminating adverse RV remodelling, impaired exercise capacity, and PAH with intermediate and high risk based on risk score. These data suggest that CMR with 4D flow CMR can provide comprehensive assessment of PAH severity, and may be used to monitor disease progression and therapeutic response. TRIAL REGISTRATION NUMBER https://www. CLINICALTRIALS gov . Unique identifier: NCT03217240.
Collapse
Affiliation(s)
- Xiaodan Zhao
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Shuang Leng
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ru-San Tan
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ping Chai
- National University Hospital Singapore, Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Tee Joo Yeo
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jennifer Ann Bryant
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Lynette L S Teo
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marielle V Fortier
- Duke-NUS Medical School, Singapore, Singapore
- KK Women's and Children's Hospital, Singapore, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, Singapore
| | - Wen Ruan
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Ting Ting Low
- National University Hospital Singapore, Singapore, Singapore
| | - Ching Ching Ong
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shuo Zhang
- Philips Healthcare Germany, Hamburg, Germany
| | - Rob J van der Geest
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Marina Hughes
- Department of Cardiovascular Medicine, University of East Anglia, Norwich, UK
| | - Pankaj Garg
- Department of Cardiovascular Medicine, University of East Anglia, Norwich, UK
| | - Teng Hong Tan
- Duke-NUS Medical School, Singapore, Singapore
- KK Women's and Children's Hospital, Singapore, Singapore
| | - James W Yip
- National University Hospital Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ju Le Tan
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Liang Zhong
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
23
|
Kato Y, Tao S, Lima JAC. Editorial for “Highly Accelerated Compressed Sensing
4D
Flow for Intra‐Cardiac Flow Assessment”. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Yoko Kato
- Division of Cardiology Johns Hopkins University Baltimore Maryland USA
| | - Susumu Tao
- Department of Cardiology Tokyo Medical and Dental University Tokyo Japan
| | - Joao A. C. Lima
- Division of Cardiology Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
24
|
Assadi H, Uthayachandran B, Li R, Wardley J, Nyi TH, Grafton-Clarke C, Swift AJ, Solana AB, Aben JP, Thampi K, Hewson D, Sawh C, Greenwood R, Hughes M, Kasmai B, Zhong L, Flather M, Vassiliou VS, Garg P. Kat-ARC accelerated 4D flow CMR: clinical validation for transvalvular flow and peak velocity assessment. Eur Radiol Exp 2022; 6:46. [PMID: 36131185 PMCID: PMC9492816 DOI: 10.1186/s41747-022-00299-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/24/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND To validate the k-adaptive-t autocalibrating reconstruction for Cartesian sampling (kat-ARC), an exclusive sparse reconstruction technique for four-dimensional (4D) flow cardiac magnetic resonance (CMR) using conservation of mass principle applied to transvalvular flow. METHODS This observational retrospective study (2020/21-075) was approved by the local ethics committee at the University of East Anglia. Consent was waived. Thirty-five patients who had a clinical CMR scan were included. CMR protocol included cine and 4D flow using Kat-ARC acceleration factor 6. No respiratory navigation was applied. For validation, the agreement between mitral net flow (MNF) and the aortic net flow (ANF) was investigated. Additionally, we checked the agreement between peak aortic valve velocity derived by 4D flow and that derived by continuous-wave Doppler echocardiography in 20 patients. RESULTS The median age of our patient population was 63 years (interquartile range [IQR] 54-73), and 18/35 (51%) were male. Seventeen (49%) patients had mitral regurgitation, and seven (20%) patients had aortic regurgitation. Mean acquisition time was 8 ± 4 min. MNF and ANF were comparable: 60 mL (51-78) versus 63 mL (57-77), p = 0.310). There was an association between MNF and ANF (rho = 0.58, p < 0.001). Peak aortic valve velocity by Doppler and 4D flow were comparable (1.40 m/s, [1.30-1.75] versus 1.46 m/s [1.25-2.11], p = 0.602) and also correlated with each other (rho = 0.77, p < 0.001). CONCLUSIONS Kat-ARC accelerated 4D flow CMR quantified transvalvular flow in accordance with the conservation of mass principle and is primed for clinical translation.
Collapse
Affiliation(s)
- Hosamadin Assadi
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Bhalraam Uthayachandran
- grid.8241.f0000 0004 0397 2876Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Rui Li
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - James Wardley
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Tha H. Nyi
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Ciaran Grafton-Clarke
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Andrew J. Swift
- grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | | | | | - Kurian Thampi
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - David Hewson
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Chris Sawh
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Richard Greenwood
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Marina Hughes
- grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Bahman Kasmai
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Liang Zhong
- grid.419385.20000 0004 0620 9905National Heart Centre Singapore, 5 Hospital Drive, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Marcus Flather
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Vassilios S. Vassiliou
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK
| | - Pankaj Garg
- grid.8273.e0000 0001 1092 7967University of East Anglia, Norwich Medical School, Norfolk, UK ,grid.240367.40000 0004 0445 7876Norfolk and Norwich University Hospitals NHS Foundation Trust, Norfolk, UK ,grid.31410.370000 0000 9422 8284Department of Infection, Immunity and Cardiovascular disease, University of Sheffield Medical School and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| |
Collapse
|
25
|
Loke YH, Capuano F, Kollar S, Cibis M, Kitslaar P, Balaras E, Reiber JHC, Pedrizzetti G, Olivieri L. Abnormal Diastolic Hemodynamic Forces: A Link Between Right Ventricular Wall Motion, Intracardiac Flow, and Pulmonary Regurgitation in Repaired Tetralogy of Fallot. Front Cardiovasc Med 2022; 9:929470. [PMID: 35911535 PMCID: PMC9329698 DOI: 10.3389/fcvm.2022.929470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Objective The effect of chronic pulmonary regurgitation (PR) on right ventricular (RV) dysfunction in repaired Tetralogy of Fallot (RTOF) patients is well recognized by cardiac magnetic resonance (CMR). However, the link between RV wall motion, intracardiac flow and PR has not been established. Hemodynamic force (HDF) represents the global force exchanged between intracardiac blood volume and endocardium, measurable by 4D flow or by a novel mathematical model of wall motion. In our study, we used this novel methodology to derive HDF in a cohort of RTOF patients, exclusively using routine CMR imaging. Methods RTOF patients and controls with CMR imaging were retrospectively included. Three-dimensional (3D) models of RV were segmented, including RV outflow tract (RVOT). Feature-tracking software (QStrain 2.0, Medis Medical Imaging Systems, Leiden, Netherlands) captured endocardial contours from long/short-axis cine and used to reconstruct RV wall motion. A global HDF vector was computed from the moving surface, then decomposed into amplitude/impulse of three directional components based on reference (Apical-to-Basal, Septal-to-Free Wall and Diaphragm-to-RVOT direction). HDF were compared and correlated against CMR and exercise stress test parameters. A subset of RTOF patients had 4D flow that was used to derive vorticity (for correlation) and HDF (for comparison against cine method). Results 68 RTOF patients and 20 controls were included. RTOF patients had increased diastolic HDF amplitude in all three directions (p<0.05). PR% correlated with Diaphragm-RVOT HDF amplitude/impulse (r = 0.578, p<0.0001, r = 0.508, p < 0.0001, respectively). RV ejection fraction modestly correlated with global HDF amplitude (r = 0.2916, p = 0.031). VO2-max correlated with Septal-to-Free Wall HDF impulse (r = 0.536, p = 0.007). Diaphragm-to-RVOT HDF correlated with RVOT vorticity (r = 0.4997, p = 0.001). There was no significant measurement bias between Cine-derived HDF and 4D flow-derived HDF by Bland-Altman analysis. Conclusion RTOF patients have abnormal diastolic HDF that is correlated to PR, RV function, exercise capacity and vorticity. HDF can be derived from conventional cine, and is a potential link between RV wall motion and intracardiac flow from PR in RTOF patients.
Collapse
Affiliation(s)
- Yue-Hin Loke
- Department of Cardiology, Children’s National Hospital, Washington, DC, United States
- 3D Cardiac Visualization Laboratory, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, United States
| | - Francesco Capuano
- Department of Fluid Mechanics, Universitat Politècnica de Catalunya BarcelonaTech (UPC), Barcelona, Spain
| | - Sarah Kollar
- Department of Cardiology, Children’s National Hospital, Washington, DC, United States
| | - Merih Cibis
- Medis Medical Imaging Systems, Leiden, Netherlands
| | | | - Elias Balaras
- Laboratory for Computational Physics and Fluid Mechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, George Washington University, Washington, DC, United States
| | | | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Laura Olivieri
- 3D Cardiac Visualization Laboratory, Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, United States
- Department of Cardiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Hu LW, Xiang Y, Qin SY, Ouyang RZ, Liu JL, Peng YF, Xie WH, Zhang Y, Liu H, Zhong YM. Vortex formation time as an index of left ventricular filling efficiency: comparison between children volunteers and patients with tetralogy of Fallot. Transl Pediatr 2022; 11:869-881. [PMID: 35800277 PMCID: PMC9253934 DOI: 10.21037/tp-22-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/02/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Vortex formation time (VFT) had been considered a useful marker for assessing diastolic performance. the VFT assessment of diastolic function using four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has not been used in repair of tetralogy of Fallot (rTOF) patient. The aims of this study were as follows: (I) establish reference ranges for VFT measurements in healthy children and adolescents using 4D flow CMR imaging; and (II) analyze VFT parameters to assess diastole dysfunction in rTOF patients group. METHODS We acquired the CMR data was of 62 healthy participants (aged 6-18 years; male: 40, female: 22) and 20 patients with rTOF (aged 10-13 years; male: 15, female: 5) using 4D flow and cine sequence in routine chamber view. The VFT was calculated based on comparison of different algorithms from cine measurements (VFTvolume) and 4D flow measurements (VFTblood). Then, VFT measurements were compared to subject peak filling rate (PFR), age, and cardiac mass using simple linear regression and multiple regression analyses. Data were also categorized according to age for VFT and cardiac functional assessment comparisons between 3 age groups (Group 1: 6-9 years; Group 2: 10-13 years; Group 3: 14-18 years). The correlation of VFT and cardiac function parameters were analyzed in the rTOF group. RESULTS Normal mean value of VFTvolume and VFTblood were 4.25±0.92 and 3.77±1.11 in healthy children participants. The VFTvolume was correlated with VFTblood (r=0.61, P<0.001). There was a moderately significant correlation between VFTvolume and PFR (r=0.46, P<0.001) and between VFTblood and PFR (r=0.47, P<0.001), age (r=0.41, P=0.002) and left ventricular (LV) mass (r=0.48, P<0.001). Multiple regression analyses demonstrated that VFTvolume was independently associated with PFR (T=2.239; P<0.05) and VFTblood (T=4.361; P<0.001). There was a significant difference in VFTvolume between healthy controls and rTOF patients (5.44±1.93 vs. 4.27±0.88, P=0.018). CONCLUSIONS The VFT measurements showed that the LV that had appropriate space to form the optimal vortex ring in normal children and adolescents aged 6-18 years old. The VFTvolume could potentially be helpful in improving our understanding of LV diastolic dysfunction in rTOF patients.
Collapse
Affiliation(s)
- Li-Wei Hu
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Xiang
- J.C. Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China
| | - Su-Yang Qin
- J.C. Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China
| | - Rong-Zhen Ouyang
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Long Liu
- Department of Cardiovascular and Thoracic Surgery, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya-Feng Peng
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Hui Xie
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- MR Research, GE Healthcare, Shanghai, China
| | - Hong Liu
- J.C. Wu Center for Aerodynamics, School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Min Zhong
- Diagnostic Imaging Center, Shanghai Children's Medical Center Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|