1
|
Sheng T, Mang L, Wu Y, Zhu H, Ha C, Xiao S, Yu Z, Zhou Y. Functions of high glycemic index carbohydrates: Exploring the effect of amorphous rice starch digestibility on glycometabolism. Int J Biol Macromol 2025; 307:142287. [PMID: 40112968 DOI: 10.1016/j.ijbiomac.2025.142287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
The digestive characteristics of amorphous starch in cooked rice have rarely been studied from a metabolic perspective. This study explores the effects of cooked rice starch on glycometabolism in rats to explore the role of high glycemic index (GI) carbohydrates in the daily diet. Utilizing X-ray diffraction and Fourier transform infrared spectroscopy allowed the structure of amorphous starch to be probed, while rats were subjected to a long-term pre-prandial gavage intervention (glucose as a positive control and normal saline as a negative control) to assess the effects of high GI carbohydrates on glucose tolerance, insulin sensitivity, and markers of glucose metabolism in skeletal muscle (SIRT1, PGC-1α, GSK-3β, GLUT4). Results showed that high-GI carbohydrates significantly enhanced systemic insulin sensitivity, glucose tolerance, and skeletal muscle glucose metabolism. Waxy rice starch (WRS), containing a high amylopectin content (98.57 %), was found to be particularly effective due to its high rapidly digestible starch (RDS) content (66.01 %) and a GI of 102 after cooked into an amorphous state. Consequently, it can be concluded that a long-term moderate intake of amorphous rice starch induces the body to increase insulin sensitivity and improve glycometabolism. These findings emphasize the functional characteristics of high-GI starchy foods, offering a more profound understanding of carbohydrate-based diets.
Collapse
Affiliation(s)
- Tao Sheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Lai Mang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Wu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Hui Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Chuanzhi Ha
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Shixun Xiao
- Anhui Rural and Social Science and Technology Development Center, Hefei 230088, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 230036, China; Food Processing Research Institute, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Sultan ZH, Speelman D. A Systematic Review of the Effects of Low-Carbohydrate Diet on Athletic Physical Performance Parameters. Cureus 2025; 17:e79166. [PMID: 40109832 PMCID: PMC11922096 DOI: 10.7759/cureus.79166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
A low-carbohydrate diet (LCD) or ketogenic diet is commonly used by individuals who want to achieve ketosis, which can boost fat metabolism, increase insulin sensitivity, and reduce blood sugar spikes. However, many athletes are hesitant to utilize a diet that specifically restricts the intake of carbohydrates, an important source of energy for physical activity. Athletes usually adopt a high-carbohydrate or high-protein diet, depending on their goals. This review aims to examine the evidence for the impact of an LCD on athletes' aerobic, anaerobic, and upper and lower body strength performance. A systematic review of original studies was conducted for articles indexed in PubMed that utilized an LCD in athletes and reported athletic performance values. A total of 19 studies were included in the final synthesis. An LCD may aid in maintaining or increasing upper and lower body strength. However, this type of diet provides no consistent benefit and may even negatively impact some measures of aerobic and anaerobic performance. Taken together, no strong evidence indicates the benefit of an LCD on athletic performance. Athletes wishing to modify their diet for improved performance should consider possible diets with specific training and performance goals in mind.
Collapse
Affiliation(s)
| | - Diana Speelman
- Biochemistry, Lake Erie College of Osteopathic Medicine, Erie, USA
| |
Collapse
|
3
|
Noh KW, Oh JH, Park S. Effects of the Timing of Carbohydrate Intake on Metabolism and Performance in Soccer Players. Nutrients 2023; 15:3610. [PMID: 37630800 PMCID: PMC10457895 DOI: 10.3390/nu15163610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
This study aims to provide information to improve the performance of athletes comparing the effects of carbohydrate-electrolyte intake before and during exercise on metabolism and performance in soccer players. The study had a single-blind cross-over design. Drust's protocol is a soccer-specific intermittent exercise test. The carbohydrate-electrolyte intake experiments were divided into three timings: first, pre-exercise; second, half-time; and third, mixed. Eight participants were included in the data analysis (age: 21.32 ± 1.19 years; BMI: 22.69 ± 1.91 kg/m2; height: 176.5 ± 7.52 cm; weight: 69.5 ± 9.18 kg; Vmax: 16.75 0.71 km/h). The results of the mixed test showed a significantly lower respiratory exchange ratio than those of the placebo and half-time tests (p < 0.05). The mixed test showed significantly more fat oxidation than the half-time test (p < 0.05). The running times are placebo (422.13 ± 133.44 s) and mixed (677.38 ± 217.75 s), and the distances are placebo (1577.25 ± 517.02 m) and mixed (2530.00 ± 832.71 m) (p < 0.05). The mixed test showed a significantly lower rating of perceived exertion than the placebo test (p < 0.05). Carbohydrate oxidation and heart rate showed no significant differences between the experiments (p > 0.05). The exercise protocol in this study showed the metabolic response of soccer players to intermittent high-intensity exercise and subsequent endurance exercise. In conclusion, it can be seen that the intake of carbohydrate-electrolytes improves the performance of soccer players, and the effect varies depending on the timing of carbohydrate-electrolyte intake.
Collapse
Affiliation(s)
- Ki-Woong Noh
- Institute of Sports Medicine & Science, Kwangwoon University, Seoul 01897, Republic of Korea;
| | - Jung-Hwan Oh
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Sok Park
- Department of Convergence Sports Science, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
4
|
Reliability and Validity of a Flume-Based Maximal Oxygen Uptake Swimming Test. Sports (Basel) 2023; 11:sports11020042. [PMID: 36828327 PMCID: PMC9965664 DOI: 10.3390/sports11020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
A mode-specific swimming protocol to assess maximal aerobic uptake (VO2maxsw) is vital to accurately evaluate swimming performance. A need exists for reliable and valid swimming protocols that assess VO2maxsw in a flume environment. The purpose was to assess: (a) reliability and (b) "performance" validity of a VO2maxsw flume protocol using the 457-m freestyle pool performance swim (PS) test as the criterion. Nineteen males (n = 9) and females (n = 10) (age, 28.5 ± 8.3 years.; height, 174.7 ± 8.2 cm; mass, 72.9 ± 12.5 kg; %body fat, 21.4 ± 5.9) performed two flume VO2maxsw tests (VO2maxswA and VO2maxswB) and one PS test [457 m (469.4 ± 94.7 s)]. For test-retest reliability (Trials A vs. B), moderately strong relationships were established for VO2maxsw (mL·kg-1·min-1)(r= 0.628, p = 0.002), O2pulse (mL O2·beat-1)(r = 0.502, p = 0.014), VEmax (L·min-1) (r = 0.671, p = 0.001), final test time (sec) (0.608, p = 0.004), and immediate post-test blood lactate (IPE (BLa)) (0.716, p = 0.001). For performance validity, moderately strong relationships (p < 0.05) were found between VO2maxswA (r =-0.648, p = 0.005), O2pulse (r= -0.623, p = 0.008), VEmax (r = -0.509 p = 0.037), and 457-m swim times. The swimming flume protocol examined is a reliable and valid assessment of VO2maxsw., and offers an alternative for military, open water, or those seeking complementary forms of training to improve swimming performance.
Collapse
|
5
|
Baart AM, Schaminee H, Mensink M, Terink R. Effect of a low carbohydrate, high fat diet versus a high carbohydrate diet on exercise efficiency and economy in recreational male athletes. J Sports Med Phys Fitness 2023; 63:282-291. [PMID: 36239287 DOI: 10.23736/s0022-4707.22.14066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Exercise efficiency and economy are key determinants of endurance exercise performance. In this cross-over intervention trial, we investigated the effect of adherence to a low carbohydrate, high fat (LCHF) diet versus a high carbohydrate (HC) diet on gross efficiency (GE) and (OC) during exercise, both after 2 days and after 14 days of adherence. METHODS Fourteen recreational male athletes followed a two-week LCHF diet (<10 energy % carbohydrate) and a two-week HC diet (>50 energy % carbohydrate), in random order, with a wash-out period of three weeks in between. After 2 and 14 days on each diet, the athletes performed a 90-minutes submaximal exercise session on a bicycle ergometer. Indirect calorimetry measurements were done after 60 minutes of exercise to calculate GE and OC. RESULTS GE was significantly lower on the LCHF diet compared to the HC diet, after 2 days (17.6±1.9 vs. 18.8±1.2%, P=0.011, for the LCHF and HC diet respectively), not after 14 days. OC was significantly higher on the LCHF diet compared to the HC diet, after 2 days (1191±138 vs. 1087±72 mL O<inf>2</inf>/kCal, P=0.003, for the LCHF and HC diet respectively), and showed a strong tendency to remain higher after 14 days, P=0.018. CONCLUSIONS Although LCHF diets are popular strategies to increase fat oxidation during exercise, adherence to a LCHF diet was associated with a lower exercise efficiency and economy compared to a HC diet.
Collapse
Affiliation(s)
- A Mireille Baart
- Division of Human Nutrition and Health, University of Wageningen, Wageningen, the Netherlands -
| | - Hennes Schaminee
- Division of Human Nutrition and Health, University of Wageningen, Wageningen, the Netherlands
| | - Marco Mensink
- Division of Human Nutrition and Health, University of Wageningen, Wageningen, the Netherlands
| | - Rieneke Terink
- Division of Human Nutrition and Health, University of Wageningen, Wageningen, the Netherlands
| |
Collapse
|
6
|
Wang Y, Zhou K, Wang V, Bao D, Zhou J. The Effects of Concurrent Training Combined with Low-Carbohydrate High-Fat Ketogenic Diet on Body Composition and Aerobic Performance: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11542. [PMID: 36141816 PMCID: PMC9517144 DOI: 10.3390/ijerph191811542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 05/22/2023]
Abstract
(1) Background: Recently, studies have emerged to explore the effects of concurrent training (CT) with a low-carb, high-fat ketogenic diet (LCHF) on body composition and aerobic performance and observed its benefits. However, a large variance in the study design and observations is presented, which needs to be comprehensively assessed. We here thus completed a systematic review and meta-analysis to characterize the effects of the intervention combining CT and LCHF on body composition and aerobic capacity in people with training experience as compared to that combining CT and other dietary strategies. (2) Methods: A search strategy based on the PICOS principle was used to find literature in the databases of PubMed, Web of Science, EBSCO, Sport-discuss, and Medline. The quality and risk of bias in the studies were independently assessed by two researchers. (3) Result: Eight studies consisting of 170 participants were included in this work. The pooled results showed no significant effects of CT with LCHF on lean mass (SMD = -0.08, 95% CI -0.44 to 0.3, p = 0.69), body fat percentage (SMD = -0.29, 95% CI -0.66 to 0.08, p = 0.13), body mass (SMD = -0.21, 95% CI -0.53 to 0.11, p = 0.2), VO2max (SMD = -0.01, 95% CI -0.4 to 0.37, p = 0.95), and time (or distance) to complete the aerobic tests (SMD = -0.02, 95% CI -0.41 to 0.37, p = 0.1). Subgroup analyses also showed that the training background of participants (i.e., recreationally trained participants or professionally trained participants) and intervention duration (e.g., > or ≤six weeks) did not significantly affect the results. (4) Conclusions: This systematic review and meta-analysis provide evidence that compared to other dietary strategies, using LCHF with CT cannot induce greater benefits for lean mass, body fat percentage, body mass, VO2max, and aerobic performance in trained participants.
Collapse
Affiliation(s)
- Yubo Wang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Kaixiang Zhou
- Sports Health College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Vienna Wang
- College of Engineering, California State University, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA
| | - Dapeng Bao
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Junhong Zhou
- Hebrew Senior Life Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
The Low-Carbohydrate Diet: Short-Term Metabolic Efficacy Versus Longer-Term Limitations. Nutrients 2021; 13:nu13041187. [PMID: 33916669 PMCID: PMC8066770 DOI: 10.3390/nu13041187] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Diets have been a central component of lifestyle modification for decades. The Low-Carbohydrate Diet (LCD), originally conceived as a treatment strategy for intractable epilepsy (due to its association with ketogenesis), became popular in the 1970s and since then has risen to prominence as a weight loss strategy. Objective: To explore the efficacy, limitations and potential safety concerns of the LCD. Data Sources: We performed a narrative review, based on relevant articles written in English from a Pubmed search, using the terms ‘low carbohydrate diet and metabolic health’. Results: Evidence supports the efficacy of the LCD in the short-term (up to 6-months) for reduction in fat mass and remission of Type 2 Diabetes Mellitus (T2D). However, the longer-term efficacy of the LCD is disappointing, with diminishment of weight loss potential and metabolic benefits of the LCD beyond 6-months of its adoption. Furthermore, practical limitations of the LCD include the associated restriction of food choices that restrict the acceptability of the LCD for the individual, particularly over the longer term. There are also safety concerns of the LCD that stem from nutritional imbalances (with a relative excess of dietary fat and protein intake with associated dyslipidaemia and increased risk of insulin resistance and T2D development) and ketotic effects. Finally, the LCD often results in a reduction in dietary fibre intake, with potentially serious adverse consequences for overall health and the gut microbiota. Conclusions: Although widely adopted, the LCD usually has short-lived metabolic benefits, with limited efficacy and practicality over the longer term. Dietary modification needs tailoring to the individual, with careful a priori assessments of food preferences to ensure acceptability and adherence over the longer term, with avoidance of dietary imbalances and optimization of dietary fibre intake (primarily from plant-based fruit and vegetables), and with a posteriori assessments of the highly individual responses to the LCD. Finally, we need to change our view of diets from simply an excipient for weight loss to an essential component of a healthy lifestyle.
Collapse
|