1
|
Yasul Y, Yılmaz B, Şenel Ö, Kurt D, Akbulut T, Çalıkuşu A, Anadol E, Yılmaz C. Evaluating the impact of coenzyme Q10 and high-intensity interval training on lactate threshold and Plasma blood gases in rats: a randomized controlled trial. Eur J Appl Physiol 2025:10.1007/s00421-025-05756-8. [PMID: 40100404 DOI: 10.1007/s00421-025-05756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
PURPOSE Coenzyme Q10 (Q10) is a mitochondrial coenzyme that facilitates ATP production via oxidative phosphorylation. This study hypothesized that Q10 enhances mitochondrial efficiency and lactate threshold, while high-intensity interval training (HIIT) promotes metabolic adaptations, improving glucose utilization and buffering capacity for faster recovery after high-intensity exercise. METHODS A randomized controlled trial was conducted using 24 male Sprague-Dawley rats (250.4 ± 6.1 g, 8 weeks old). The rats were allocated into four groups: control (C), coenzyme Q10 (CoQ10), HIIT, and HIIT + Q10. The Q10 administration involved a dosage of 10 mg/kg/day, given 30 min prior to the HIIT protocol. Lactate threshold, blood gas parameters, oximetry values, metabolite levels, and electrolyte status were analyzed utilizing the Radiometer 900 device. The blood samples were collected at the fifth and tenth minutes following the HIIT training trials. RESULTS The HIIT + Q10 group exhibited a significant reduction in lactate threshold (p < 0.01), maintaining values below average. Significant improvements in blood gas parameters, including pH, pO2, and pCO2, were observed in this group. Enhanced oxygen transport capacity was indicated by improved oximetry parameters (Hb, HCT, sO2) and reduced COHb levels. Additionally, positive changes in HCO3- and base values indicated reduced metabolic stress. Q10 supplementation also stabilized electrolytes, particularly K+ and Na+. CONCLUSION The Q10 supplementation supported metabolic balance, improved oxygen transport, and stabilized acid-base levels during HIIT. It reduced lactate accumulation, enhanced glucose availability, and alleviated metabolic stress, thereby improving recovery efficiency and physiological adaptation.
Collapse
Affiliation(s)
- Yavuz Yasul
- Bafra Vocational School, Ondokuz Mayıs University, 55400, Bafra, Samsun, Türkiye.
| | - Büşra Yılmaz
- Faculty of Sport Sciences, Gazi University, Ankara, Türkiye
| | - Ömer Şenel
- Faculty of Sport Sciences, Gazi University, Ankara, Türkiye
| | - Dursun Kurt
- Bafra Vocational School, Ondokuz Mayıs University, 55400, Bafra, Samsun, Türkiye
| | - Taner Akbulut
- Faculty of Sport Sciences, Fırat University, Elazığ, Türkiye
| | | | - Elvan Anadol
- Laboratory Animals Breeding and Experimental Researches Center, Gazi University, Ankara, Türkiye
| | - Canan Yılmaz
- Faculty of Medicine, Department of Medical Biochemistry, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Broome SC, Whitfield J, Karagounis LG, Hawley JA. Mitochondria as Nutritional Targets to Maintain Muscle Health and Physical Function During Ageing. Sports Med 2024; 54:2291-2309. [PMID: 39060742 PMCID: PMC11393155 DOI: 10.1007/s40279-024-02072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The age-related loss of skeletal muscle mass and physical function leads to a loss of independence and an increased reliance on health-care. Mitochondria are crucial in the aetiology of sarcopenia and have been identified as key targets for interventions that can attenuate declines in physical capacity. Exercise training is a primary intervention that reduces many of the deleterious effects of ageing in skeletal muscle quality and function. However, habitual levels of physical activity decline with age, making it necessary to implement adjunct treatments to maintain skeletal muscle mitochondrial health and physical function. This review provides an overview of the effects of ageing and exercise training on human skeletal muscle mitochondria and considers several supplements that have plausible mechanistic underpinning to improve physical function in ageing through their interactions with mitochondria. Several supplements, including MitoQ, urolithin A, omega-3 polyunsaturated fatty acids (n3-PUFAs), and a combination of glycine and N-acetylcysteine (GlyNAC) can improve physical function in older individuals through a variety of inter-dependent mechanisms including increases in mitochondrial biogenesis and energetics, decreases in mitochondrial reactive oxygen species emission and oxidative damage, and improvements in mitochondrial quality control. While there is evidence that some nicotinamide adenine dinucleotide precursors can improve physical function in older individuals, such an outcome seems unrelated to and independent of changes in skeletal muscle mitochondrial function. Future research should investigate the safety and efficacy of compounds that can improve skeletal muscle health in preclinical models through mechanisms involving mitochondria, such as mitochondrial-derived peptides and mitochondrial uncouplers, with a view to extending the human health-span.
Collapse
Affiliation(s)
- Sophie C Broome
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia.
| | - Jamie Whitfield
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| | - Leonidas G Karagounis
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
3
|
Gonzalo-Skok O, Casuso RA. Effects of Mitoquinone (MitoQ) Supplementation on Aerobic Exercise Performance and Oxidative Damage: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2024; 10:77. [PMID: 38981985 PMCID: PMC11233485 DOI: 10.1186/s40798-024-00741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Contracting skeletal muscle produces reactive oxygen species (ROS) originating from both mitochondrial and cytosolic sources. The use of non-specific antioxidants, such as vitamins C and E, during exercise has produced inconsistent results in terms of exercise performance. Consequently, the effects of the mitochondrial-targeted coenzyme Q10, named Mitoquinone (MitoQ) on exercise responses are currently under investigation. METHODS In this study, we conducted a meta-analysis to quantitatively synthesize research assessing the impact of MitoQ on aerobic endurance performance and exercise-induced oxidative damage. PubMed, Web of Science, and SCOPUS databases were used to select articles from inception to January 16th of 2024. Inclusion criteria were MitoQ supplementation must be compared with a placebo group, showing acute exercise responses in both; for crossover designs, at least 14 d of washout was needed, and exercise training can be concomitant to MitoQ or placebo supplementation if the study meets the other inclusion criteria points. The risk of bias was evaluated through the Critical Appraisal Checklist (JBI). RESULTS We identified eight studies encompassing a total sample size of 188 subjects. Our findings indicate that MitoQ supplementation effectively reduces exercise-induced oxidative damage (SMD: -1.33; 95% CI: -2.24 to -0.43). Furthermore, our findings indicate that acute and/or chronic MitoQ supplementation does not improve endurance exercise performance (SMD: -0.50; 95% CI: -1.39 to 0.40) despite reducing exercise-induced oxidative stress. Notably, our sensitivity analysis reveals that MitoQ may benefit subjects with peripheral artery disease (PAD) in improving exercise tolerance. CONCLUSION While MitoQ effectively reduces exercise-induced oxidative damage, no evidence suggests that aerobic exercise performance is enhanced by either acute or chronic MitoQ supplementation. However, acute MitoQ supplementation may improve exercise tolerance in subjects with PAD. Future research should investigate whether MitoQ supplementation concurrent with exercise training (e.g., 4-16 weeks) alters adaptations induced by exercise alone and using different doses.
Collapse
Affiliation(s)
- Oliver Gonzalo-Skok
- Department of Communication and Education, Faculty of Physical Activity and Sports, Universidad Loyola Andalucía, Sevilla, Spain
| | - Rafael A Casuso
- Department of Health Sciences, Faculty of Physical Activity and Sports, Universidad Loyola Andalucía, Córdoba, Spain.
| |
Collapse
|
4
|
Bhatt V, Shukla H, Tiwari AK. Parkinson's Disease and Mitotherapy-Based Approaches towards α-Synucleinopathies. J Integr Neurosci 2024; 23:109. [PMID: 38940084 DOI: 10.31083/j.jin2306109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 06/29/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain and the formation of intracellular protein aggregates known as Lewy bodies, of which a major component is the protein α-synuclein. Several studies have suggested that mitochondria play a central role in the pathogenesis of PD, encompassing both familial and sporadic forms of the disease. Mitochondrial dysfunction is attributed to bioenergetic impairment, increased oxidative stress, damage to mitochondrial DNA, and alteration in mitochondrial morphology. These alterations may contribute to improper functioning of the central nervous system and ultimately lead to neurodegeneration. The perturbation of mitochondrial function makes it a potential target, worthy of exploration for neuroprotective therapies and to improve mitochondrial health in PD. Thus, in the current review, we provide an update on mitochondria-based therapeutic approaches toward α-synucleinopathies in PD.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| | - Halak Shukla
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Hughes RP, Carlini NA, Fleenor BS, Harber MP. Mitochondrial-targeted antioxidant ingestion acutely blunts VO 2max in physically inactive females. Physiol Rep 2023; 11:e15871. [PMID: 38061764 PMCID: PMC10703545 DOI: 10.14814/phy2.15871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/17/2023] Open
Abstract
PURPOSE To determine the acute effects of a mitochondrial targeting antioxidant (MitoQ) on the metabolic response during exercise. METHODS Nine (n = 9) physically inactive females (age 47 ± 22 years) performed two trials (Placebo and MitoQ) in a double-blind randomized cross-over design. In both trials, participants performed an exercise protocol consisting of 3-min stages at submaximal workloads followed by a ramp protocol to volitional exhaustion. Participants received either Placebo or MitoQ (80 mg) 1 h prior to exercise. Indirect calorimetry and cardiovascular measurements were collected throughout the duration of the exercise bout. RESULTS Submaximal metabolic and cardiovascular variables were not different between trials (p > 0.05). VO2max was higher (p = 0.03) during Placebo (23.5 ± 5.7 mL kg min-1 ) compared to MitoQ (21.0 ± 6.6 mL kg min-1 ). Maximal ventilation was also higher (p = 0.02) in Placebo (82.4 ± 17.7 L/min) compared to MitoQ (75.0 ± 16.8 L/min). Maximal cardiovascular variables and blood lactate were not different between trials (p > 0.05). CONCLUSION An acute dose of MitoQ blunted VO2max , which was primarily mediated by impairment of ventilatory function. These data suggest that the acute accumulation of exercise-induced mitochondrial reactive oxygen species (mtROS) are necessary for maximal aerobic capacity. Further research is warranted on mtROS-antioxidant cell signaling cascades, and how they relate to mitochondrial function during exercise.
Collapse
Affiliation(s)
- Ryan P. Hughes
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Nicholas A. Carlini
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Bradley S. Fleenor
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| | - Matthew P. Harber
- Clinical Exercise Physiology, Human Performance LaboratoryBall State UniversityMuncieIndianaUSA
| |
Collapse
|
6
|
Nayyar D, Yan X, Xu G, Shi M, Garnham AP, Mathai ML, McAinch AJ. Gynostemma Pentaphyllum Increases Exercise Performance and Alters Mitochondrial Respiration and AMPK in Healthy Males. Nutrients 2023; 15:4721. [PMID: 38004115 PMCID: PMC10675532 DOI: 10.3390/nu15224721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
This research aimed to determine the effects of Gynostemma pentaphyllum (G. pentaphyllum) on exercise performance, AMP-activated protein kinase (AMPK), and mitochondrial signaling in human muscle. This randomized double-blind placebo control crossover study provided placebo or 450 mg of G. pentaphyllum dried leaf extract equivalent to 2.25 g of dry leaf per day for four weeks to 16 healthy untrained young males, separated by four weeks wash-out. Following 4-week supplementation with G. pentaphyllum, participants had significantly lower leptin and blood glucose levels and improved time trial performance over 20 km, which corresponded with a higher muscle oxygen flux compared to placebo. Muscle AMPK Thr172 phosphorylation significantly increased after 60 min exercise following G. pentaphyllum supplementation. AMPK Thr172 phosphorylation levels relative to total AMPK increased earlier following exercise with G. pentaphyllum compared to placebo. Total ACC-α was lower following G. pentaphyllum supplementation compared to placebo. While further research is warranted, G. pentaphyllum supplementation improved exercise performance in healthy untrained males, which corresponded with improved mitochondrial respiration, altered AMPK and ACC, and decreased plasma leptin and glucose levels.
Collapse
Affiliation(s)
- Deepti Nayyar
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Xu Yan
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Guoqin Xu
- College of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China;
| | - Min Shi
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Andrew P. Garnham
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Michael L. Mathai
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
| | - Andrew J. McAinch
- Institute for Health and Sport, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia; (D.N.); (X.Y.); (M.S.); (A.P.G.); (M.L.M.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| |
Collapse
|
7
|
Kirkman DL, Stock JM, Shenouda N, Bohmke NJ, Kim Y, Kidd J, Townsend RR, Edwards DG. Effects of a mitochondrial-targeted ubiquinol on vascular function and exercise capacity in chronic kidney disease: a randomized controlled pilot study. Am J Physiol Renal Physiol 2023; 325:F448-F456. [PMID: 37560769 DOI: 10.1152/ajprenal.00067.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Mitochondria-derived oxidative stress has been implicated in vascular and skeletal muscle abnormalities in chronic kidney disease (CKD). The purpose of this study was to investigate the effects of a mitochondria-targeted ubiquinol (MitoQ) on vascular function and exercise capacity in CKD. In this randomized controlled trial, 18 patients with CKD (means ± SE, age: 62 ± 3 yr and estimated glomerular filtration rate: 45 ± 3 mL/min/1.73 m2) received 4 wk of 20 mg/day MitoQ (MTQ group) or placebo (PLB). Outcomes assessed at baseline and follow-up included macrovascular function measured by flow-mediated dilation, microvascular function assessed by laser-Doppler flowmetry combined with intradermal microdialysis, aortic hemodynamics assessed by oscillometry, and exercise capacity assessed by cardiopulmonary exercise testing. Compared with PLB, MitoQ improved flow-mediated dilation (baseline vs. follow-up: MTQ, 2.4 ± 0.3% vs. 4.0 ± 0.9%, and PLB, 4.2 ± 1.0% vs. 2.5 ± 1.0%, P = 0.04). MitoQ improved microvascular function (change in cutaneous vascular conductance: MTQ 4.50 ± 2.57% vs. PLB -2.22 ± 2.67%, P = 0.053). Central aortic systolic and pulse pressures were unchanged; however, MitoQ prevented increases in augmentation pressures that were observed in the PLB group (P = 0.026). MitoQ did not affect exercise capacity. In conclusion, this study demonstrates the potential for a MitoQ to improve vascular function in CKD. The findings hold promise for future investigations of mitochondria-targeted therapies in CKD.NEW & NOTEWORTHY In this randomized controlled pilot study, we investigated the effects of a mitochondria-targeted ubiquinol (MitoQ) on vascular function and exercise capacity in chronic kidney disease. Our novel findings showed that 4-wk supplementation of MitoQ was well tolerated and improved macrovascular endothelial function, arterial hemodynamics, and microvascular function in patients with stage 3-4 chronic kidney disease. Our mechanistic findings also suggest that MitoQ improved microvascular function in part by reducing the NADPH oxidase contribution to vascular dysfunction.
Collapse
Affiliation(s)
- Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Ninette Shenouda
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| | - Natalie J Bohmke
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Youngdeok Kim
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jason Kidd
- Department of Internal Medicine, Virginia Commonwealth University Health Systems, Richmond, Virginia, United States
| | - Raymond R Townsend
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
8
|
Shelling AN, Ahmed Nasef N. The Role of Lifestyle and Dietary Factors in the Development of Premature Ovarian Insufficiency. Antioxidants (Basel) 2023; 12:1601. [PMID: 37627595 PMCID: PMC10451748 DOI: 10.3390/antiox12081601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a condition that arises from dysfunction or early depletion of the ovarian follicle pool accompanied by an earlier-than-normal loss of fertility in young women. Oxidative stress has been suggested as an important factor in the decline of fertility in women and POI. In this review, we discuss the mechanisms of oxidative stress implicated in ovarian ageing and dysfunction in relation to POI, in particular mitochondrial dysfunction, apoptosis and inflammation. Genetic defects, autoimmunity and chemotherapy, are some of the reviewed hallmarks of POI that can lead to increased oxidative stress. Additionally, we highlight lifestyle factors, including diet, low energy availability and BMI, that can increase the risk of POI. The final section of this review discusses dietary factors associated with POI, including consumption of oily fish, mitochondria nutrient therapy, melatonin, dairy and vitamins that can be targeted as potential interventions, especially for at-risk women and in combination with personalised nutrition. Understanding the impact of lifestyle and its implications for POI and oxidative stress holds great promise in reducing the burden of this condition.
Collapse
Affiliation(s)
- Andrew N. Shelling
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand;
- Centre for Cancer Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Noha Ahmed Nasef
- Riddet Research Institute, Massey University, Palmerston North 4474, New Zealand
- School of Food and Advanced Technology, College of Science, Massey University, Palmerston North 4474, New Zealand
| |
Collapse
|
9
|
Chen L, Wang Y. Interdisciplinary advances reshape the delivery tools for effective NASH treatment. Mol Metab 2023; 73:101730. [PMID: 37142161 DOI: 10.1016/j.molmet.2023.101730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH), a severe systemic and inflammatory subtype of nonalcoholic fatty liver disease, eventually develops into cirrhosis and hepatocellular carcinoma with few options for effective treatment. Currently potent small molecules identified in preclinical studies are confronted with adverse effects and long-term ineffectiveness in clinical trials. Nevertheless, highly specific delivery tools designed from interdisciplinary concepts may address the significant challenges by either effectively increasing the concentrations of drugs in target cell types, or selectively manipulating the gene expression in liver to resolve NASH. SCOPE OF REVIEW We focus on dissecting the detailed principles of the latest interdisciplinary advances and concepts that direct the design of future delivery tools to enhance the efficacy. Recent advances have indicated that cell and organelle-specific vehicles, non-coding RNA research (e.g. saRNA, hybrid miRNA) improve the specificity, while small extracellular vesicles and coacervates increase the cellular uptake of therapeutics. Moreover, strategies based on interdisciplinary advances drastically elevate drug loading capacity and delivery efficiency and ameliorate NASH and other liver diseases. MAJOR CONCLUSIONS The latest concepts and advances in chemistry, biochemistry and machine learning technology provide the framework and strategies for the design of more effective tools to treat NASH, other pivotal liver diseases and metabolic disorders.
Collapse
Affiliation(s)
- Linshan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health.
| |
Collapse
|
10
|
Mason SA, Wadley GD, Keske MA, Parker L. Effect of mitochondrial-targeted antioxidants on glycaemic control, cardiovascular health, and oxidative stress in humans: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2022; 24:1047-1060. [PMID: 35165982 PMCID: PMC9314850 DOI: 10.1111/dom.14669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 11/30/2022]
Abstract
AIM To investigate the effects of mitochondrial-targeted antioxidants (mitoAOXs) on glycaemic control, cardiovascular health, and oxidative stress outcomes in humans. MATERIALS AND METHODS Randomized controlled trials investigating mitoAOX interventions in humans were searched for in databases (MEDLINE-PubMed, Scopus, EMBASE and Cochrane Library) and clinical trial registries up to 10 June 2021. The Cochrane Collaboration's tool for assessing risk of bias and Grading of Recommendations, Assessment, Development and Evaluations were used to assess trial quality and evidence certainty, respectively. RESULTS Nineteen studies (n = 884 participants) using mitoAOXs (including Elamipretide, MitoQ and MitoTEMPO) were included in the systematic review. There were limited studies investigating the effects of mitoAOXs on glycaemic control; and outcomes and population groups in studies focusing on cardiovascular health were diverse. MitoAOXs significantly improved brachial flow-mediated dilation (n = 3 trials; standardized mean difference: 1.19, 95% CI: 0.28, 2.16; I2 : 67%) with very low evidence certainty. No significant effects were found for any other glycaemic, cardiovascular or oxidative stress-related outcomes with mitoAOXs in quantitative analyses, with evidence certainty rated mostly as low. There was a lack of serious treatment-emergent adverse events with mitoAOXs, although subcutaneous injection of Elamipretide increased mild-moderate injection site-related events. CONCLUSION While short-term studies indicate that mitoAOXs are generally well tolerated, there is currently limited evidence to support the use of mitoAOXs in the management of glycaemic control and cardiovascular health. Review findings suggest that future research should focus on the effects of mitoAOXs on glycaemic control and endothelial function in target clinical population groups.
Collapse
Affiliation(s)
- Shaun Andrew Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelong
| | - Glenn David Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelong
| | - Michelle Anne Keske
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelong
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition SciencesDeakin UniversityGeelong
| |
Collapse
|
11
|
Broome SC, Pham T, Braakhuis AJ, Narang R, Wang HW, Hickey AJR, Mitchell CJ, Merry TL. MitoQ supplementation augments acute exercise-induced increases in muscle PGC1α mRNA and improves training-induced increases in peak power independent of mitochondrial content and function in untrained middle-aged men. Redox Biol 2022; 53:102341. [PMID: 35623315 PMCID: PMC9142706 DOI: 10.1016/j.redox.2022.102341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 10/27/2022] Open
Abstract
The role of mitochondrial ROS in signalling muscle adaptations to exercise training has not been explored in detail. We investigated the effect of supplementation with the mitochondria-targeted antioxidant MitoQ on a) the skeletal muscle mitochondrial and antioxidant gene transcriptional response to acute high-intensity exercise and b) skeletal muscle mitochondrial content and function following exercise training. In a randomised, double-blind, placebo-controlled, parallel design study, 23 untrained men (age: 44 ± 7 years, VO2peak: 39.6 ± 7.9 ml/kg/min) were randomised to receive either MitoQ (20 mg/d) or a placebo for 10 days before completing a bout of high-intensity interval exercise (cycle ergometer, 10 × 60 s at VO2peak workload with 75 s rest). Blood samples and vastus lateralis muscle biopsies were collected before exercise and immediately and 3 h after exercise. Participants then completed high-intensity interval training (HIIT; 3 sessions per week for 3 weeks) and another blood sample and muscle biopsy were collected. There was no effect of acute exercise or MitoQ on systemic (plasma protein carbonyls and reduced glutathione) or skeletal muscle (mtDNA damage and 4-HNE) oxidative stress biomarkers. Acute exercise-induced increases in skeletal muscle peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α) mRNA expression were augmented in the MitoQ group. Despite this, training-induced increases in skeletal muscle mitochondrial content were similar between groups. HIIT-induced increases in VO2peak and 20 km time trial performance were also similar between groups while training-induced increases in peak power achieved during the VO2peak test were augmented in the MitoQ group. These data suggest that training-induced increases in peak power are enhanced following MitoQ supplementation, which may be related to the augmentation of skeletal muscle PGC1α expression following acute exercise. However, these effects do not appear to be related to an effect of MitoQ supplementation on exercise-induced oxidative stress or training-induced mitochondrial biogenesis in skeletal muscle.
Collapse
Affiliation(s)
- S C Broome
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand.
| | - T Pham
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - A J Braakhuis
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - R Narang
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - H W Wang
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - A J R Hickey
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - C J Mitchell
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - T L Merry
- Discipline of Nutrition, School of Medical Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Drobnic F, Lizarraga MA, Caballero-García A, Cordova A. Coenzyme Q 10 Supplementation and Its Impact on Exercise and Sport Performance in Humans: A Recovery or a Performance-Enhancing Molecule? Nutrients 2022; 14:1811. [PMID: 35565783 PMCID: PMC9104583 DOI: 10.3390/nu14091811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Evidence exists to suggest that ROS induce muscular injury with a subsequent decrease in physical performance. Supplementation with certain antioxidants is important for physically active individuals to hasten recovery from fatigue and to prevent exercise damage. The use of nutritional supplements associated with exercise, with the aim of improving health, optimizing training or improving sports performance, is a scientific concern that not only drives many research projects but also generates great expectations in the field of their application in pathology. Since its discovery in the 1970s, coenzyme Q10 (CoQ10) has been one of the most controversial molecules. The interest in determining its true value as a bioenergetic supplement in muscle contraction, antioxidant or in the inflammatory process as a muscle protector in relation to exercise has been studied at different population levels of age, level of physical fitness or sporting aptitude, using different methodologies of effort and with the contribution of data corresponding to very diverse variables. Overall, in the papers reviewed, although the data are inconclusive, they suggest that CoQ10 supplementation may be an interesting molecule in health or disease in individuals without a pathological deficiency and when used for optimising exercise performance. Considering the results observed in the literature, and as a conclusion of this systematic review, we could say that it is an interesting molecule in sports performance. However, clear approaches should be considered when conducting future research.
Collapse
Affiliation(s)
| | | | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR: “Physical Exercise and Aging”, Campus Universitario “Los Pajaritos”, University of Valladolid, 42004 Soria, Spain;
| | - Alfredo Cordova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR: “Physical Exercise and Aging”, Campus Universitario “Los Pajaritos”, University of Valladolid, 42004 Soria, Spain;
| |
Collapse
|
13
|
Tian C, Liu Y, Li Z, Zhu P, Zhao M. Mitochondria Related Cell Death Modalities and Disease. Front Cell Dev Biol 2022; 10:832356. [PMID: 35321239 PMCID: PMC8935059 DOI: 10.3389/fcell.2022.832356] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are well known as the centre of energy metabolism in eukaryotic cells. However, they can not only generate ATP through the tricarboxylic acid cycle and oxidative phosphorylation but also control the mode of cell death through various mechanisms, especially regulated cell death (RCD), such as apoptosis, mitophagy, NETosis, pyroptosis, necroptosis, entosis, parthanatos, ferroptosis, alkaliptosis, autosis, clockophagy and oxeiptosis. These mitochondria-associated modes of cell death can lead to a variety of diseases. During cell growth, these modes of cell death are programmed, meaning that they can be induced or predicted. Mitochondria-based treatments have been shown to be effective in many trials. Therefore, mitochondria have great potential for the treatment of many diseases. In this review, we discuss how mitochondria are involved in modes of cell death, as well as basic research and the latest clinical progress in related fields. We also detail a variety of organ system diseases related to mitochondria, including nervous system diseases, cardiovascular diseases, digestive system diseases, respiratory diseases, endocrine diseases, urinary system diseases and cancer. We highlight the role that mitochondria play in these diseases and suggest possible therapeutic directions as well as pressing issues that need to be addressed today. Because of the key role of mitochondria in cell death, a comprehensive understanding of mitochondria can help provide more effective strategies for clinical treatment.
Collapse
Affiliation(s)
- Chuwen Tian
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yifan Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhuoshu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Ping Zhu, ; Mingyi Zhao,
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ping Zhu, ; Mingyi Zhao,
| |
Collapse
|
14
|
Broome S, Atiola RD, Braakhuis A, Mitchell C, Merry TL. Mitochondria-targeted antioxidant supplementation does not affect muscle soreness or recovery of maximal voluntary isometric contraction force following muscle-damaging exercise in untrained men: a randomised clinical trial. Appl Physiol Nutr Metab 2022; 47:762-774. [PMID: 35201920 DOI: 10.1139/apnm-2021-0767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unaccustomed exercise causes muscle damage resulting in loss of muscle function, which may be attributable to exercise-induced increases in skeletal muscle reactive oxygen species (ROS). This study examined the effect of mitochondria-targeted antioxidant supplementation on recovery of muscle function following exercise. Thirty-two untrained men received MitoQ (20 mg/day) or a placebo for 14 days before performing 300 maximal eccentric contractions of the knee extensor muscles of one leg. Muscle function was assessed using isokinetic dynamometry before, immediately after, and 24, 48, 72, and 168 hours after exercise. Muscle soreness was assessed using a visual analogue scale 24, 48, 72, and 168 hours after exercise. Blood samples were collected before, immediately after, and 2, 24, 48, 72, and 168 hours after exercise and urine samples were collected before and during the 48 hours after exercise. The reduction in maximal voluntary isometric contraction force and peak concentric torque following exercise was unaffected by MitoQ while recovery of peak eccentric torque was delayed in the MitoQ group. Exercise-induced increases in urine F2-isoprostanes were unaffected by MitoQ. MitoQ augmented exercise-induced increases in plasma CK levels while plasma IL-6 was similar between groups. Muscle soreness was not affected by MitoQ. These results indicate that MitoQ does not attenuate post-exercise muscle soreness and may delay recovery of muscle function following eccentric exercise. Novelty: • Post-exercise recovery of maximal voluntary isometric contraction force and peak concentric torque were unaffected by MitoQ. • MitoQ delayed post-exercise recovery of peak eccentric torque. • Post-exercise muscle soreness was unaffected by MitoQ.
Collapse
Affiliation(s)
- Sophie Broome
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| | - R D Atiola
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| | - A Braakhuis
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| | - Cam Mitchell
- The University of British Columbia Faculty of Education, 141631, Vancouver, British Columbia, Canada;
| | - Troy L Merry
- The University of Auckland Faculty of Medical and Health Sciences, 62710, Auckland, Auckland, New Zealand;
| |
Collapse
|