1
|
Yu Q, Zhou X, Kapini R, Arsecularatne A, Song W, Li C, Liu Y, Ren J, Münch G, Liu J, Chang D. Cytokine Storm in COVID-19: Insight into Pathological Mechanisms and Therapeutic Benefits of Chinese Herbal Medicines. MEDICINES (BASEL, SWITZERLAND) 2024; 11:14. [PMID: 39051370 PMCID: PMC11270433 DOI: 10.3390/medicines11070014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Cytokine storm (CS) is the main driver of SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) in severe coronavirus disease-19 (COVID-19). The pathological mechanisms of CS are quite complex and involve multiple critical molecular targets that turn self-limited and mild COVID-19 into a severe and life-threatening concern. At present, vaccines are strongly recommended as safe and effective treatments for preventing serious illness or death from COVID-19. However, effective treatment options are still lacking for people who are at the most risk or hospitalized with severe disease. Chinese herbal medicines have been shown to improve the clinical outcomes of mild to severe COVID-19 as an adjunct therapy, particular preventing the development of mild to severe ARDS. This review illustrates in detail the pathogenesis of CS-involved ARDS and its associated key molecular targets, cytokines and signalling pathways. The therapeutic targets were identified particularly in relation to the turning points of the development of COVID-19, from mild symptoms to severe ARDS. Preclinical and clinical studies were reviewed for the effects of Chinese herbal medicines together with conventional therapies in reducing ARDS symptoms and addressing critical therapeutic targets associated with CS. Multiple herbal formulations, herbal extracts and single bioactive phytochemicals with or without conventional therapies demonstrated strong anti-CS effects through multiple mechanisms. However, evidence from larger, well-designed clinical trials is lacking and their detailed mechanisms of action are yet to be well elucidated. More research is warranted to further evaluate the therapeutic value of Chinese herbal medicine for CS in COVID-19-induced ARDS.
Collapse
Affiliation(s)
- Qingyuan Yu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
- Xiyuan Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Rotina Kapini
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Anthony Arsecularatne
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Wenting Song
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Chunguang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Yang Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Gerald Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; (Q.Y.); (W.S.); (J.R.)
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (R.K.); (A.A.); (C.L.); (Y.L.); (G.M.)
| |
Collapse
|
2
|
Putri AF, Utomo DH, Tunjung WAS, Putri WA. Analysis of the anti-Alzheimer potential of bioactive compounds from Citrus hystrix DC. peel, leaf, and essential oil by network pharmacology. Heliyon 2024; 10:e33496. [PMID: 39050443 PMCID: PMC11267028 DOI: 10.1016/j.heliyon.2024.e33496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Alzheimer's disease (AD) is the most known neurodegenerative disease, and its prevalence is predicted to increase significantly. Discovering novel drugs and treatments for AD is urgently needed. Drugs from natural products have been preferred lately due to their high potential and low toxicity. Citrus hystrix DC. (kaffir lime; KL) is one such herbal plant that is found abundantly in Southeast Asia with many biological activities. In this study, the potential of bioactive compounds from KL peel, leaf, and essential oil as anti-AD agents was explored using network pharmacology. First, the compounds were identified with KNApSAcK database and related literature. Subsequently, the targets of each corresponding compound were determined with SEA Search Server and Swiss Target Prediction, while the proteins associated with AD were identified using OMIM, GenCLiP3, and DisGeNET. Furthermore, a protein-protein interaction network and a compound-target interaction network were constructed to identify the most crucial proteins and compounds in the network by employing Cytoscape v3.9.1. The study continued with pathway enrichment analysis using STRING v1.7.1, molecular docking with PyRx and SwissDock, and molecular dynamics simulation with YASARA for further confirmation. Our results showed that almost all the secondary metabolites of KL targeted AD-associated genes, with oxypeucedanin and citrusoside A showing the highest anti-AD potential and targeting essential genes, EGFR and MAPK14, respectively. These targets were associated with inflammatory and oxidative stress pathways, indicating the potential mechanism of KL in attenuating AD clinical manifestation.
Collapse
Affiliation(s)
- Adhisa Fathirisari Putri
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
- Bioinformatics Research Center, INBIO-Indonesia, Malang, 65162, Indonesia
| | - Didik Huswo Utomo
- Bioinformatics Research Center, INBIO-Indonesia, Malang, 65162, Indonesia
- Biosystem Education Center, Brawijaya University, Malang, 65145, Indonesia
| | - Woro Anindito Sri Tunjung
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Wahyu Aristyaning Putri
- Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281, Indonesia
| |
Collapse
|
3
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
4
|
Zhang XY, Xu ZP, Wang W, Cao JB, Fu Q, Zhao WX, Li Y, Huo XL, Zhang LM, Li YF, Mi WD. Vitamin C alleviates LPS-induced cognitive impairment in mice by suppressing neuroinflammation and oxidative stress. Int Immunopharmacol 2018; 65:438-447. [DOI: 10.1016/j.intimp.2018.10.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 02/08/2023]
|
5
|
Caplan IF, Maguire-Zeiss KA. Toll-Like Receptor 2 Signaling and Current Approaches for Therapeutic Modulation in Synucleinopathies. Front Pharmacol 2018; 9:417. [PMID: 29780321 PMCID: PMC5945810 DOI: 10.3389/fphar.2018.00417] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
The innate immune response in the central nervous system (CNS) is implicated as both beneficial and detrimental to health. Integral to this process are microglia, the resident immune cells of the CNS. Microglia express a wide variety of pattern-recognition receptors, such as Toll-like receptors, that detect changes in the neural environment. The activation of microglia and the subsequent proinflammatory response has become increasingly relevant to synucleinopathies, including Parkinson's disease the second most prevalent neurodegenerative disease. Within these diseases there is evidence of the accumulation of endogenous α-synuclein that stimulates an inflammatory response from microglia via the Toll-like receptors. There have been recent developments in both new and old pharmacological agents designed to target microglia and curtail the inflammatory environment. This review will aim to delineate the process of microglia-mediated inflammation and new therapeutic avenues to manage the response.
Collapse
Affiliation(s)
- Ian F Caplan
- Biology Department, Georgetown University, Washington, DC, United States
| | - Kathleen A Maguire-Zeiss
- Biology Department, Georgetown University, Washington, DC, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
6
|
Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger MD, Liu C, Fassbender K. Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3281-3292. [PMID: 27605009 DOI: 10.4049/jimmunol.1600873] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/14/2016] [Indexed: 01/05/2025]
Abstract
Alzheimer's disease (AD) is characterized by intracellular neurofibrillary tangles. The primary component, hyperphosphorylated Tau (p-Tau), contributes to neuronal death. Recent studies have shown that autophagy efficiently degrades p-Tau, but the mechanisms modulating autophagy and subsequent p-Tau clearance in AD remain unclear. In our study, we first analyzed the relationship between the inflammatory activation and autophagy in brains derived from aged mice and LPS-injected inflammatory mouse models. We found that inflammatory activation was essential for activation of autophagy in the brain, which was neuronal ATG5-dependent. Next, we found that autophagy in cultured neurons was enhanced by LPS treatment of cocultured macrophages. In further experiments designed to provoke chronic mild stimulation of TLR4 without inducing obvious neuroinflammation, we gave repeated LPS injections (i.p., 0.15 mg/kg, weekly for 3 mo) to transgenic mice overexpressing human Tau mutant (P301S) in neurons. We observed significant enhancement of neuronal autophagy, which was associated with a reduction of cerebral p-Tau proteins and improved cognitive function. In summary, these results show that neuroinflammation promotes neuronal autophagy and that chronic mild TLR4 stimulation attenuates AD-related tauopathy, likely by activating neuronal autophagy. Our study displays the beneficial face of neuroinflammation and suggests a possible role in the treatment of AD patients.
Collapse
Affiliation(s)
- Yiren Qin
- Department of Neurology, Second Affiliated Hospital, Soochow University, Suzhou 215123, China
- Institute of Neuroscience, Soochow University, Suzhou 215123, China
- Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany
- German Institute for Dementia Prevention, Saarland University, 66421 Homburg/Saar, Germany; and
| | - Yang Liu
- Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany;
- German Institute for Dementia Prevention, Saarland University, 66421 Homburg/Saar, Germany; and
| | - Wenlin Hao
- Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany
- German Institute for Dementia Prevention, Saarland University, 66421 Homburg/Saar, Germany; and
| | - Yann Decker
- Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany
- German Institute for Dementia Prevention, Saarland University, 66421 Homburg/Saar, Germany; and
| | - Inge Tomic
- Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany
- German Institute for Dementia Prevention, Saarland University, 66421 Homburg/Saar, Germany; and
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg/Saar, Germany
| | - Chunfeng Liu
- Department of Neurology, Second Affiliated Hospital, Soochow University, Suzhou 215123, China
- Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Klaus Fassbender
- Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany
- German Institute for Dementia Prevention, Saarland University, 66421 Homburg/Saar, Germany; and
| |
Collapse
|
7
|
Z-guggulsterone negatively controls microglia-mediated neuroinflammation via blocking IκB-α-NF-κB signals. Neurosci Lett 2016; 619:34-42. [PMID: 26879835 DOI: 10.1016/j.neulet.2016.02.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/29/2022]
Abstract
Induction of pro-inflammatory factors is one of the characteristics of microglial activation and can be regulated by numerous active agents extracted from plants. Suppression of pro-inflammatory factors is beneficial to alleviate neuroinflammation. Z-guggulsterone, a compound extracted from the gum resin of the tree commiphora mukul, exhibits numerous anti-inflammatory effects. However, the role and mechanism of Z-guggulsterone in pro-inflammatory responses in microglia remains unclear. This study addressed this issue in in vitro murine microglia and in vivo neuroinflammation models. Results showed that Z-guggulsterone reduced inducible nitric oxide (iNOS) protein expression as well as nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production in LPS-stimulated BV-2 cells. Z-guggulsterone also reduced the mRNA level of iNOS, TNF-α, and IL-6. Mechanistic studies revealed that Z-guggulsterone attenuated the LPS-induced degradation of inhibitor κ B-α (IκB-α) as well as the LPS-induced nuclear translocation of nuclear factor-κB (NF-κB). Z-guggulsterone, however, failed to reduce the LPS-induced increase in NF-κB phosphorylation level. These major findings were ascertained in primary microglia where the LPS-induced increases in iNOS expression, NO content, and IκB-α degradation were diminished by Z-guggulsterone treatment. In a mouse model of neuroinflammation, Z-guggulsterone exhibited significant anti-inflammatory effects, which were exemplified by the attenuation of microglial activation and neuroinflammation-induced behavioral abnormalities in Z-guggulsterone-treated mice. Taken together, these studies demonstrate that Z-guggulsterone attenuates the LPS-mediated induction of pro-inflammatory factors in microglia via inhibition of IκB-α-NF-κB signals, providing evidence to uncover the potential role of Z-guggulsterone in neuroinflammation-associated disorder therapies.
Collapse
|
8
|
Behrendt P, Arnold P, Brueck M, Rickert U, Lucius R, Hartmann S, Klotz C, Lucius R. A Helminth Protease Inhibitor Modulates the Lipopolysaccharide-Induced Proinflammatory Phenotype of Microglia in vitro. Neuroimmunomodulation 2016; 23:109-21. [PMID: 27088850 DOI: 10.1159/000444756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/14/2016] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to examine whether the natural protease inhibitor Av-cystatin (rAv17) of the parasitic nematode Acanthocheilonema viteae exerts anti-inflammatory effects in an in vitro model of lipopolysaccharide (LPS)-activated microglia. METHODS Primary microglia were harvested from the brains of 2-day-old Wistar rats and cultured with or without rAv17 (250 nM). After 6 and 24 h the release of nitric oxide (Griess reagent) and TNF-α (ELISA) was measured in the supernatant. Real-time PCR was performed after 2, 6 and 24 h of culture to measure the mRNA expression of IL-1β, IL-6, TNF-α, COX-2, iNOS and IL-10. To address the involved signaling pathways, nuclear NF-x0138;B translocation was visualized by immunocytochemistry. Morphological changes of microglia were analyzed by Coomassie blue staining. Differences between groups were calculated using one-way ANOVA with Bonferroni's post hoc test. RESULTS Morphological analysis indicated that LPS-induced microglial transformation towards an amoeboid morphology is inhibited by rAv17. Av-cystatin caused a time-dependent downregulation of proinflammatory cytokines, iNOS and COX-2 mRNA expression, respectively. This was paralleled by an upregulated expression of IL-10 in resting as well as in LPS-stimulated microglia. Av-cystatin reduced the release of NO and TNF-α in the culture supernatant. Immunocytochemical staining demonstrated an attenuated translocation of NF-x0138;B by Av-cystatin in response to LPS. In addition, Western blot analysis revealed a rAv17-dependent reduction of the LPS-induced ERK1/2-pathway activation. CONCLUSION The parasite-derived secretion product Av-cystatin inhibits proinflammatory mechanisms of LPS-induced microglia with IL-10, a potential key mediator.
Collapse
Affiliation(s)
- Peter Behrendt
- Department of Trauma Surgery, University of Kiel, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sun GY, Chen Z, Jasmer KJ, Chuang DY, Gu Z, Hannink M, Simonyi A. Quercetin Attenuates Inflammatory Responses in BV-2 Microglial Cells: Role of MAPKs on the Nrf2 Pathway and Induction of Heme Oxygenase-1. PLoS One 2015; 10:e0141509. [PMID: 26505893 PMCID: PMC4624710 DOI: 10.1371/journal.pone.0141509] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
A large group of flavonoids found in fruits and vegetables have been suggested to elicit health benefits due mainly to their anti-oxidative and anti-inflammatory properties. Recent studies with immune cells have demonstrated inhibition of these inflammatory responses through down-regulation of the pro-inflammatory pathway involving NF-κB and up-regulation of the anti-oxidative pathway involving Nrf2. In the present study, the murine BV-2 microglial cells were used to compare anti-inflammatory activity of quercetin and cyanidin, two flavonoids differing by their alpha, beta keto carbonyl group. Quercetin was 10 folds more potent than cyanidin in inhibition of lipopolysaccharide (LPS)-induced NO production as well as stimulation of Nrf2-induced heme-oxygenase-1 (HO-1) protein expression. In addition, quercetin demonstrated enhanced ability to stimulate HO-1 protein expression when cells were treated with LPS. In an attempt to unveil mechanism(s) for quercetin to enhance Nrf2/HO-1 activity under endotoxic stress, results pointed to an increase in phospho-p38MAPK expression upon addition of quercetin to LPS. In addition, pharmacological inhibitors for phospho-p38MAPK and MEK1/2 for ERK1/2 further showed that these MAPKs target different sites of the Nrf2 pathway that regulates HO-1 expression. However, inhibition of LPS-induced NO by quercetin was not fully reversed by TinPPIX, a specific inhibitor for HO-1 activity. Taken together, results suggest an important role of quercetin to regulate inflammatory responses in microglial cells and its ability to upregulate HO-1 against endotoxic stress through involvement of MAPKs.
Collapse
Affiliation(s)
- Grace Y. Sun
- Biochemistry Department, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| | - Zihong Chen
- Biochemistry Department, University of Missouri, Columbia, Missouri, United States of America
- Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, United States of America
| | - Kimberly J. Jasmer
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Dennis Y. Chuang
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, United States of America
- Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, United States of America
| | - Zezong Gu
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, United States of America
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- Biochemistry Department, University of Missouri, Columbia, Missouri, United States of America
- Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, United States of America
| | - Agnes Simonyi
- Biochemistry Department, University of Missouri, Columbia, Missouri, United States of America
- Center for Botanical Interaction Studies, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|