1
|
Sun R, Meng Y, Li L, Chen WH, Xu J, Lv P, Dong Y. A rare presentation of acute-onset chronic inflammatory demyelinating polyneuropathy with the detection of anti-GM3 and anti-sulfatides antibodies: a case report. Front Immunol 2024; 15:1409637. [PMID: 39076987 PMCID: PMC11284090 DOI: 10.3389/fimmu.2024.1409637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Objectives Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immune-mediated neuropathy defined by clinical progression for more than 2 months. 16-20% of CIDP patients may present with rapidly progressive weakness that resembles GBS, known as acute-onset CIDP (A-CIDP). However, it is challenging to distinguish from GBS-TRF because of their similar clinical symptom and features. In this case review, we report a patient with A-CIDP with the detection of anti-GM3 and anti-sulfatides antibodies, which rarely have been in A-CIDP and may account for her progressive and recurrent symptoms. Methods We analyzed existing medical literature and described a clinical case of A-CIDP with antibodies positive. Results We reported a 56-year-old female presented with bilateral lower extremity weakness and distal numbness. She experienced similar symptoms four times and responded well to the IVIg therapy. Lumbar puncture demonstrated albumin-cytologic dissociation and EDX examination revealed multiple peripheral nerve damage. After ruling out other demyelination diseases, a diagnosis of A-CIDP was made. Discussion The antiganglioside and anti-sulfatide antibodies are involved in CIDP pathogenesis and can help to distinguish A-CIDP and other variants. To prevent secondary damage, it is important to monitor relapse and remission symptoms along the treatment line. A rare case of A-CIDP is discussed concerning the detection of anti-GM3 and anti-sulfatides antibodies, thus making a retrospective comparison of antibodies in some literature to understand A-CIDP better.
Collapse
Affiliation(s)
- Ruohan Sun
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- Department of Neurology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yao Meng
- Department of Neurology, Hebei North University, Zhangjiakou, Hebei, China
| | - Lingyu Li
- Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China
| | - Wei-Hong Chen
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Jing Xu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- Department of Neurology, Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
- Department of Neurology, Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Svačina MKR, Meißner A, Schweitzer F, Ladwig A, Pitarokoili K, Kofler DM, Sprenger‐Svačina A, Schneider C, Kohle F, Klein I, Wüstenberg H, Lehmann HC. Immunomodulatory effects of intravenous and subcutaneous immunoglobulin in chronic inflammatory demyelinating polyneuropathy: An observational study. Eur J Neurol 2024; 31:e16079. [PMID: 37789648 PMCID: PMC11235934 DOI: 10.1111/ene.16079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND AND PURPOSE It is not known whether the route of administration affects the mechanisms of action of therapeutic immunoglobulin in chronic inflammatory demyelinating polyneuropathy (CIDP). The aim of this study, therefore, was to compare the immunomodulatory effects of intravenous (IVIg) and subcutaneous immunoglobulin (SCIg) in patients with CIDP and in IVIg-treated common variable immunodeficiency (CVID) patients. METHODS Serum and peripheral blood mononuclear cell samples were obtained from 30 CIDP patients receiving IVIg, 10 CIDP patients receiving SCIg, and 15 patients with CVID receiving IVIg. Samples and clinical data were obtained prior to IVIg/SCIg and at 3 days, 7 days, and, in CIDP patients receiving IVIg, 21 days post-administration. Serum cytokines were assessed by Luminex-based multiplex assay and enzyme-linked immunosorbent assay. Immune cells were characterized by flow cytometry. RESULTS Immune cell profiles of CIDP and CVID patients differed in frequencies of myeloid dendritic cells and cytotoxic natural killer cells. During treatment with IVIg or SCIg in CIDP patients, cellular immunomarkers were largely similar. CIDP patients receiving IVIg had higher macrophage inflammatory protein (MIP)-1α (p = 0.01), interleukin (IL)-4 (p = 0.04), and IL-33 (p = 0.04) levels than SCIg recipients. IVIg treatment more broadly modulated cytokines in CIDP than SCIg treatment. CONCLUSIONS Our study demonstrates that the modulation of cellular immunomarkers in CIDP is independent of the application route of therapeutic immunoglobulin. Minor differences were observed between CIDP and CVID patients. In contrast, cytokines were differentially modulated by IVIg and SCIg in CIDP.
Collapse
Affiliation(s)
- Martin K. R. Svačina
- Department of NeurologyFaculty of Medicine, University Hospital of CologneCologneGermany
| | - Anika Meißner
- Department of NeurologyFaculty of Medicine, University Hospital of CologneCologneGermany
| | - Finja Schweitzer
- Department of NeurologyFaculty of Medicine, University Hospital of CologneCologneGermany
| | - Anne Ladwig
- Department of NeurologyFaculty of Medicine, University Hospital of CologneCologneGermany
| | | | - David M. Kofler
- Medical Clinic I, Department of Immunology and RheumatologyFaculty of Medicine, University Hospital of CologneCologneGermany
| | - Alina Sprenger‐Svačina
- Department of NeurologyFaculty of Medicine, University Hospital of CologneCologneGermany
| | - Christian Schneider
- Department of NeurologyFaculty of Medicine, University Hospital of CologneCologneGermany
- Department of NeurologySt. Katharinen HospitalFrechenGermany
| | - Felix Kohle
- Department of NeurologyFaculty of Medicine, University Hospital of CologneCologneGermany
| | - Ines Klein
- Department of NeurologyFaculty of Medicine, University Hospital of CologneCologneGermany
| | - Hauke Wüstenberg
- Department of NeurologyFaculty of Medicine, University Hospital of CologneCologneGermany
| | - Helmar C. Lehmann
- Department of NeurologyFaculty of Medicine, University Hospital of CologneCologneGermany
- Department of NeurologyClinic of Leverkusen gGmbHLeverkusenGermany
| |
Collapse
|
3
|
Svačina MKR, Meißner A, Schweitzer F, Ladwig A, Sprenger‐Svačina A, Klein I, Wüstenberg H, Kohle F, Schneider C, Grether NB, Wunderlich G, Fink GR, Klein F, Di Cristanziano V, Lehmann HC. Antibody response after COVID-19 vaccination in intravenous immunoglobulin-treated immune neuropathies. Eur J Neurol 2022; 29:3380-3388. [PMID: 35842740 PMCID: PMC9349681 DOI: 10.1111/ene.15508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE This study assessed the prevalence of anti-SARS-CoV-2 antibodies in therapeutic immunoglobulin and their impact on serological response to COVID-19 mRNA vaccine in patients with intravenous immunoglobulin (IVIg)-treated chronic immune neuropathies. METHODS Forty-six samples of different brands or lots of IVIg or subcutaneous IgG were analyzed for anti-SARS-CoV-2 IgG using enzyme-linked immunosorbent assay and chemiluminescent microparticle immunoassay. Blood sera from 16 patients with immune neuropathies were prospectively analyzed for anti-SARS-CoV-2 IgA, IgG, and IgM before and 1 week after IVIg infusion subsequent to consecutive COVID-19 mRNA vaccine doses and after 12 weeks. These were compared to 42 healthy subjects. RESULTS Twenty-four (52%) therapeutic immunoglobulin samples contained anti-SARS-CoV-2 IgG. All patients with immune neuropathies (mean age = 65 ± 16 years, 25% female) were positive for anti-SARS-CoV-2 IgG after COVID-19 vaccination. Anti-SARS-CoV-2 IgA titers significantly decreased 12-14 weeks after vaccination (p = 0.02), whereas IgG titers remained stable (p = 0.2). IVIg did not significantly reduce intraindividual anti-SARS-CoV-2 IgA/IgG serum titers in immune neuropathies (p = 0.69). IVIg-derived anti-SARS-CoV-2 IgG did not alter serum anti-SARS-CoV-2 IgG decrease after IVIg administration (p = 0.67). CONCLUSIONS Our study indicates that IVIg does not impair the antibody response to COVID-19 mRNA vaccine in a short-term observation, when administered a minimum of 2 weeks after each vaccine dose. The infusion of current IVIg preparations that contain anti-SARS-CoV-2 IgG does not significantly alter serum anti-SARS-CoV-2 IgG titers.
Collapse
Affiliation(s)
- Martin K. R. Svačina
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Anika Meißner
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Finja Schweitzer
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Anne Ladwig
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Alina Sprenger‐Svačina
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Ines Klein
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Hauke Wüstenberg
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Felix Kohle
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Christian Schneider
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Nicolai B. Grether
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Gereon R. Fink
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- Cognitive Neuroscience, Research Center JuelichInstitute of Neuroscience and Medicine (INM‐3)JuelichGermany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Center for Infection Research (DZIF), partner site Bonn‐CologneCologneGermany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| | - Helmar C. Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
| |
Collapse
|
4
|
Svačina MKR, Lehmann HC. Chronic Inflammatory Demyelinating Polyneuropathy (CIDP): Current Therapies and Future Approaches. Curr Pharm Des 2022; 28:854-862. [PMID: 35339172 DOI: 10.2174/1381612828666220325102840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/08/2022] [Indexed: 11/22/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an acquired immune-mediated polyradiculoneuropathy leading to disability via inflammatory demyelination of peripheral nerves. Various therapeutic approaches with different mechanisms of action are established for the treatment of CIDP. Of those, corticosteroids, intravenous or subcutaneous immunoglobulin, or plasma exchange are established first-line therapies as suggested by the recently revised EAN/PNS guidelines for the management of CIDP. In special cases, immunosuppressants or rituximab may be used. Novel therapeutic approaches currently undergoing clinical studies include molecules or monoclonal antibodies interacting with Fc receptors on immune cells to alleviate immune-mediated neuronal damage. Despite various established therapies and the current development of novel therapeutics, treatment of CIDP remains challenging due to an inter-individually heterogeneous disease course and the lack of surrogate parameters to predict the risk of clinical deterioration.
Collapse
Affiliation(s)
- Martin K R Svačina
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Helmar C Lehmann
- Department of Neurology, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Beydoun SR, Sharma KR, Bassam BA, Pulley MT, Shije JZ, Kafal A. Individualizing Therapy in CIDP: A Mini-Review Comparing the Pharmacokinetics of Ig With SCIg and IVIg. Front Neurol 2021; 12:638816. [PMID: 33763019 PMCID: PMC7982536 DOI: 10.3389/fneur.2021.638816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin (Ig) therapy is a first-line treatment for CIDP, which can be administered intravenously (IVIg) or subcutaneously (SCIg) and is often required long term. The differences between these modes of administration and how they can affect dosing strategies and treatment optimization need to be understood. In general, the efficacy of IVIg and SCIg appear comparable in CIDP, but SCIg may offer some safety and quality of life advantages to some patients. The differences in pharmacokinetic (PK) profile and infusion regimens account for many of the differences between IVIg and SCIg. IVIg is administered as a large bolus every 3–4 weeks resulting in cyclic fluctuations in Ig concentration that have been linked to systemic adverse events (AEs) (potentially caused by high Ig levels) and end of dose “wear-off” effects (potentially caused by low Ig concentration). SCIg is administered as a smaller weekly, or twice weekly, volume resulting in near steady-state Ig levels that have been linked to continuously maintained function and reduced systemic AEs, but an increase in local reactions at the infusion site. The reduced frequency of systemic AEs observed with SCIg is likely related to the avoidance of high Ig concentrations. Some small studies in immune-mediated neuropathies have focused on serum Ig data to evaluate its potential use as a biomarker to aid clinical decision-making. Analyzing dose data may help understand how establishing and monitoring patients' Ig concentration could aid dose optimization and the transition from IVIg to SCIg therapy.
Collapse
Affiliation(s)
- Said R Beydoun
- Neuromuscular Division, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA, United States
| | - Khema R Sharma
- Neurology Department, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Bassam A Bassam
- Neurology Department, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Michael T Pulley
- Department of Neurology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Jeffrey Z Shije
- Department of Neurology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Ayman Kafal
- CSL Behring, King of Prussia, PA, United States
| |
Collapse
|
6
|
Lin J, Xue B, Zhu R, Pan J, Li J, Lin Y, Li X, Xia J. Intravenous immunoglobulin as the rescue treatment in NMOSD patients. Neurol Sci 2021; 42:3857-3863. [DOI: 10.1007/s10072-021-05079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/19/2021] [Indexed: 12/01/2022]
|
7
|
Fisse AL, Motte J, Grüter T, Sgodzai M, Pitarokoili K, Gold R. Comprehensive approaches for diagnosis, monitoring and treatment of chronic inflammatory demyelinating polyneuropathy. Neurol Res Pract 2020; 2:42. [PMID: 33324942 PMCID: PMC7722337 DOI: 10.1186/s42466-020-00088-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is the most common chronic inflammatory neuropathy. CIDP is diagnosed according to the European Federation of Neurological Societies/Peripheral Nerve Society (EFNS/PNS) criteria, which combine clinical features with the electrophysiological evidence of demyelination. However, firstly, diagnosis is challenging, as some patients e.g. with severe early axonal damage do not fulfil the criteria. Secondly, objective and reliable tools to monitor the disease course are lacking. Thirdly, about 25% of CIDP patients do not respond to evidence-based first-line therapy. Recognition of these patients is difficult and treatment beyond first-line therapy is based on observational studies and case series only. Individualized immunomodulatory treatment does not exist due to the lack of understanding of essential aspects of the underlying pathophysiology. Novel diagnostic imaging techniques and molecular approaches can help to solve these problems but do not find enough implementation. This review gives a comprehensive overview of novel diagnostic techniques and monitoring approaches for CIDP and how these can lead to individualized treatment and better understanding of pathophysiology.
Collapse
Affiliation(s)
- Anna Lena Fisse
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany.,Immunmediated Neuropathies Biobank (INHIBIT), Ruhr-University Bochum, Bochum, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany.,Immunmediated Neuropathies Biobank (INHIBIT), Ruhr-University Bochum, Bochum, Germany
| | - Thomas Grüter
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany.,Immunmediated Neuropathies Biobank (INHIBIT), Ruhr-University Bochum, Bochum, Germany
| | - Melissa Sgodzai
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany.,Immunmediated Neuropathies Biobank (INHIBIT), Ruhr-University Bochum, Bochum, Germany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany.,Immunmediated Neuropathies Biobank (INHIBIT), Ruhr-University Bochum, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Gudrunstrasse 56, 44791 Bochum, Germany.,Immunmediated Neuropathies Biobank (INHIBIT), Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Liu X, Cao W, Li T. High-Dose Intravenous Immunoglobulins in the Treatment of Severe Acute Viral Pneumonia: The Known Mechanisms and Clinical Effects. Front Immunol 2020; 11:1660. [PMID: 32760407 PMCID: PMC7372093 DOI: 10.3389/fimmu.2020.01660] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
The current outbreak of viral pneumonia, caused by novel coronavirus SARS-CoV-2, is the focus of worldwide attention. The WHO declared the COVID-19 outbreak a pandemic event on Mar 12, 2020, and the number of confirmed cases is still on the rise worldwide. While most infected individuals only experience mild symptoms or may even be asymptomatic, some patients rapidly progress to severe acute respiratory failure with substantial mortality, making it imperative to develop an efficient treatment for severe SARS-CoV-2 pneumonia alongside supportive care. So far, the optimal treatment strategy for severe COVID-19 remains unknown. Intravenous immunoglobulin (IVIg) is a blood product pooled from healthy donors with high concentrations of immunoglobulin G (IgG) and has been used in patients with autoimmune and inflammatory diseases for more than 30 years. In this review, we aim to highlight the known mechanisms of immunomodulatory effects of high-dose IVIg therapy, the immunopathological hypothesis of viral pneumonia, and the clinical evidence of IVIg therapy in viral pneumonia. We then make cautious therapeutic inferences about high-dose IVIg therapy in treating severe COVID-19. These inferences may provide relevant and useful insights in order to aid treatment for COVID-19.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Changes of Serum IgG Dimer Levels after Treatment with IVIg in Guillain-Barré Syndrome. J Neuroimmune Pharmacol 2019; 14:642-648. [PMID: 31515689 DOI: 10.1007/s11481-019-09871-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2019] [Indexed: 02/03/2023]
Abstract
Intravenous immunoglobulins (IVIg) are standard treatment for Guillain-Barré syndrome (GBS). Their exact mechanisms of action are versatile and not fully understood. One possible mechanism is neutralization of circulating autoantibodies via binding to anti- idiotypic antibodies forming idiotype-anti-idiotype dimeric IgG immune complexes. To examine the role of immune complex formation as mechanism of action for IVIg in GBS, 34 C57Bl/6 mice were either treated with anti-ganglioside antibodies and IVIg or IVIg and PBS alone, whereas eight additional mice were treated either with anti-ganglioside autoantibodies and IVIg or anti-ganglioside autoantibodies alone. Subsequently IgG dimer formation was assessed by high performance liquid chromatography (HPLC) and enzyme- linked immunosorbent assay (ELISA). In addition, IgG dimer formation was measured in sera of eight GBS patients who were treated with IVIg. In mice, a significant increase of dimeric IgG after administration of anti-ganglioside antibodies and IVIg could be observed. Re-monomerized IgG dimers showed immunoreactivity against gangliosides and serum immunoreactivity was significantly reduced after IVIg infusion. Likewise also in GBS patients, IgG dimer formation could be detected after IVIg treatment. Our data indicate that dimeric IgG immune complexes contain anti-idiotypic antibodies and provide proof of concept that IVIg treatment in GBS results in measurable amounts of IgG dimers. Larger patient cohorts are needed to evaluate serum IgG dimer increase as a possible marker for treatment response in GBS. Graphical Abstract Mechanism of action: Intravenous immunoglobulins (IVIg) and anti-ganglioside antibodies form dimeric IgG immune complexes, preventing axonal damage in Guillain-Barré Syndrome.
Collapse
|
10
|
Lehmann HC, Burke D, Kuwabara S. Chronic inflammatory demyelinating polyneuropathy: update on diagnosis, immunopathogenesis and treatment. J Neurol Neurosurg Psychiatry 2019; 90:981-987. [PMID: 30992333 DOI: 10.1136/jnnp-2019-320314] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/26/2019] [Accepted: 03/24/2019] [Indexed: 11/03/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is an immune-mediated neuropathy typically characterised by symmetrical involvement, and proximal as well as distal muscle weakness (typical CIDP). However, there are several 'atypical' subtypes, such as multifocal acquired demyelinating sensory and motor neuropathy (Lewis-Sumner syndrome) and 'distal acquired demyelinating symmetric neuropathy', possibly having different immunopathogenesis and treatment responses. In the absence of diagnostic and pathogenetic biomarkers, diagnosis and treatment may be difficult, but recent progress has been made in the application of neuroimaging tools demonstrating nerve hypertrophy and in identifying subgroups of patients who harbour antibodies against nodal proteins such as neurofascin and contactin-1. Despite its relative rarity, CIDP represents a significant economic burden, mostly due to costly treatment with immunoglobulin. Recent studies have demonstrated the efficacy of subcutaneous as well as intravenous immunoglobulin as maintenance therapy, and newer immunomodulating drugs can be used in refractory cases. This review provides an overview focusing on advances over the past several years.
Collapse
Affiliation(s)
| | - David Burke
- Institute of Clinical Neurosciences, University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
11
|
Khoo A, Frasca J, Schultz D. Measuring disease activity and predicting response to intravenous immunoglobulin in chronic inflammatory demyelinating polyneuropathy. Biomark Res 2019; 7:3. [PMID: 30805188 PMCID: PMC6373155 DOI: 10.1186/s40364-019-0154-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is characterised by significant clinical heterogeneity and as such reliable biomarkers are required to measure disease activity and assess treatment response. Recent advances in our understanding of disease pathogenesis and the discovery of novel serum-based, electrophysiologic and imaging biomarkers allow clinicians to make more informed decisions regarding individualised treatment regimes. As a chronic immune-mediated process typified by relapse following withdrawal of immunomodulatory therapy, a substantial proportion of patients with CIDP require long term treatment with intravenous immunoglobulin (IVIg), a scarce and expensive donor-derived resource. The required duration and intensity of immunoglobulin treatment vary widely between individuals, highlighting both the heterogeneous nature of the underlying disease process as well as the variable pharmacologic properties of IVIg. This review outlines the use of multimodal biomarkers in the longitudinal evaluation of nerve injury and how recent developments have impacted our ability to predict both response to immunoglobulin administration and its withdrawal.
Collapse
Affiliation(s)
- Anthony Khoo
- 1Department of Neurology, Flinders Medical Centre, Bedford Park, South Australia 5042 Australia.,2College of Medicine and Public Health, Flinders University, Adelaide, South Australia
| | - Joseph Frasca
- 1Department of Neurology, Flinders Medical Centre, Bedford Park, South Australia 5042 Australia.,2College of Medicine and Public Health, Flinders University, Adelaide, South Australia
| | - David Schultz
- 1Department of Neurology, Flinders Medical Centre, Bedford Park, South Australia 5042 Australia.,2College of Medicine and Public Health, Flinders University, Adelaide, South Australia
| |
Collapse
|
12
|
Dimeric IgG complexes from IVIg are incapable of inducing in vitro neutrophil degranulation or complement activation. PLoS One 2018; 13:e0195729. [PMID: 29634774 PMCID: PMC5892932 DOI: 10.1371/journal.pone.0195729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Purpose Intravenous immunoglobulin (IVIg) products contain various amounts of dimeric IgG complexes. Current insights into the possible biological activities of these dimers remain controversial, and both immunemodulating and immune-activating effects have been reported. Here, we analyzed the putative immune-activating effects of dimers isolated from IVIg. Methods Dimers isolated from IVIg were purified by high-performance size-exclusion chromatography (HP-SEC) and tested for the ability to induce neutrophil degranulation in vitro. Results Dimers isolated from IVIg were found to be incapable of inducing in vitro neutrophil degranulation or complement activation, even at concentrations exceeding those expected to be reached upon administration in patients. These results depend on the removal of artefactual activation by using 0.1 micron filtration and the use of poloxamer to prevent adsorption of IgG onto the solid phase. Conclusions The data suggest dimeric IgG found in IVIg may bind to Fc-receptors without causing activation.
Collapse
|
13
|
Sahin S, Cinar N, Karsidag S. Are Cerebrospinal Fluid Protein Levels and Plasma Neutrophil/Lymphocyte Ratio Associated with Prognosis of Guillain Barré Syndrome? Neurol Int 2017; 9:7032. [PMID: 28713530 PMCID: PMC5505084 DOI: 10.4081/ni.2017.7032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/12/2022] Open
Abstract
Guillain Barré syndrome (GBS) is a post-infectious acute autoimmune polyradiculopathy. Cerebrospinal fluid (CSF) total protein level and plasma neutrophil/lymphocyte ratio (NLR) are related with autoimmune response. We aimed to reach a prognostic indicator for GBS by using electrophysiological findings, protein level of CSF, and plasma NLR based on Medical Research Council (MRC) sum score data. Cases who met diagnostic criteria of GBS and followed at least six months were enrolled in the study. Nerve conduction study (NCS) and lumbar puncture were performed one week after symptom onset. Routine CSF findings and complete blood count were recorded. Plasma NLR was calculated as the ratio of neutrophil cell count to lymphocyte cell count. All patients received intravenous immunoglobulin. MRC sum scores were calculated on administration time (1st) and six months later (2nd) for evaluation of recovery. Mean values of baseline CSF protein level, NCS parameters and NLR were compared with mean scores of MRC1st and MRC2nd. Increased CSF protein levels showed negative correlation with MRC2nd scores but no correlation with NCS. Increased NLR levels were positively correlated with age, MRC2nd scores and NCS. Facial diplegia was observed in 42% of patients. A positive correlation was found between high level of NLR and MRC1st, and there was no relationship with MRC2nd. Regression analyses showed that only CSF protein level was an independent factor on both MRC1st and MRC2nd. A positive association was found between baseline data included young age high plasma NLR, low level of CSF protein and good prognosis in our study. Also a positive correlation was found between high level of NLR and baseline disability in GBS cases with facial diplegia. Calculation of NLR is an easy and inexpensive method. On the other hand it may be influenced by age and immunotherapy. Our results showed that CSF protein level is still a liable parameter for prognosis. NLR could be a candidate prognostic marker of GBS cases. Further investigations including more cases are needed.
Collapse
Affiliation(s)
- Sevki Sahin
- Department of Neurology, Maltepe University, Istanbul, Turkey
| | - Nilgun Cinar
- Department of Neurology, Maltepe University, Istanbul, Turkey
| | - Sibel Karsidag
- Department of Neurology, Maltepe University, Istanbul, Turkey
| |
Collapse
|
14
|
Gilmore KJ, Allen MD, Doherty TJ, Kimpinski K, Rice CL. Electrophysiological and neuromuscular stability of persons with chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 2017; 56:413-420. [DOI: 10.1002/mus.25516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Kevin J. Gilmore
- School of Kinesiology; The University of Western Ontario; London ON Canada
| | - Matti D. Allen
- School of Medicine Queen's University Kingston ON Canada
| | - Timothy J. Doherty
- Department of Clinical Neurological Sciences; Schulich School of Medicine and Dentistry, The University of Western Ontario; London ON Canada
- Department of Physical Medicine and Rehabilitation; Schulich School of Medicine and Dentistry, The University of Western Ontario; London ON Canada
| | - Kurt Kimpinski
- School of Kinesiology; The University of Western Ontario; London ON Canada
- Department of Clinical Neurological Sciences; Schulich School of Medicine and Dentistry, The University of Western Ontario; London ON Canada
| | - Charles L. Rice
- School of Kinesiology; The University of Western Ontario; London ON Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine and Dentistry, The University of Western Ontario; London ON Canada
| |
Collapse
|
15
|
Maddur MS, Stephen-Victor E, Das M, Prakhar P, Sharma VK, Singh V, Rabin M, Trinath J, Balaji KN, Bolgert F, Vallat JM, Magy L, Kaveri SV, Bayry J. Regulatory T cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to intravenous immunoglobulin therapy. J Neuroinflammation 2017; 14:58. [PMID: 28320438 PMCID: PMC5360043 DOI: 10.1186/s12974-017-0818-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/18/2017] [Indexed: 02/08/2023] Open
Abstract
Background Intravenous immunoglobulin (IVIG) is a polyspecific pooled immunoglobulin G preparation and one of the commonly used therapeutics for autoimmune diseases including those of neurological origin. A recent report in murine model proposed that IVIG expands regulatory T (Treg) cells via induction of interleukin 33 (IL-33). However, translational insight on these observations is lacking. Methods Ten newly diagnosed Guillain-Barré syndrome (GBS) patients were treated with IVIG at the rate of 0.4 g/kg for three to five consecutive days. Clinical evaluation for muscular weakness was performed by Medical Research Council (MRC) and modified Rankin scoring (MRS) system. Heparinized blood samples were collected before and 1, 2, and 4–5 weeks post-IVIG therapy. Peripheral blood mononuclear cells were stained for surface CD4 and intracellular Foxp3, IFN-γ, and tumor necrosis factor alpha (TNF-α) and were analyzed by flow cytometry. IL-33 and prostaglandin E2 in the plasma were measured by ELISA. Results The fold changes in plasma IL-33 at week 1 showed no correlation with the MRC and MRS scores at weeks 1, 2, and ≥4 post-IVIG therapy. Clinical recovery following IVIG therapy appears to be associated with Treg cell response. Contrary to murine study, there was no association between the fold changes in IL-33 at week 1 and Treg cell frequency at weeks 1, 2, and ≥4 post-IVIG therapy. Treg cell-mediated clinical response to IVIG therapy in GBS patients was associated with reciprocal regulation of effector T cells-expressing TNF-α. Conclusion Treg cell expansion by IVIG in patients with autoimmune diseases lack correlation with IL-33. Treg cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to IVIG therapy.
Collapse
Affiliation(s)
- Mohan S Maddur
- Institut National de la Santé et de la Recherche Médicale, Unité 1138, Paris, 75006, France.,Centre de Recherche des Cordeliers, Equipe- Immunopathologie et immuno-intervention thérapeutique, Paris, 75006, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR S 1138, Paris, 75006, France.,Université Paris Descartes, UMR S 1138, Paris, 75006, France.,Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale, Unité 1138, Paris, 75006, France.,Centre de Recherche des Cordeliers, Equipe- Immunopathologie et immuno-intervention thérapeutique, Paris, 75006, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR S 1138, Paris, 75006, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale, Unité 1138, Paris, 75006, France.,Centre de Recherche des Cordeliers, Equipe- Immunopathologie et immuno-intervention thérapeutique, Paris, 75006, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR S 1138, Paris, 75006, France
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Varun K Sharma
- Institut National de la Santé et de la Recherche Médicale, Unité 1138, Paris, 75006, France.,Centre de Recherche des Cordeliers, Equipe- Immunopathologie et immuno-intervention thérapeutique, Paris, 75006, France.,Sorbonne Universités, UPMC Univ Paris 06, UMR S 1138, Paris, 75006, France.,Université Paris Descartes, UMR S 1138, Paris, 75006, France
| | - Vikas Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Magalie Rabin
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1138, Paris, 75006, France
| | - Jamma Trinath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Kithiganahalli N Balaji
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Francis Bolgert
- Réanimation Neurologique, Neurologie 1, Hôpital de la Pitié-Salpêtrière, Paris, 75651, France
| | - Jean-Michel Vallat
- Centre de Référence 'Neuropathies Périphériques Rares' et Service de Neurologie, Hôpital Universitaire Limoges, Limoges, 87042, France
| | - Laurent Magy
- Centre de Référence 'Neuropathies Périphériques Rares' et Service de Neurologie, Hôpital Universitaire Limoges, Limoges, 87042, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Unité 1138, Paris, 75006, France. .,Centre de Recherche des Cordeliers, Equipe- Immunopathologie et immuno-intervention thérapeutique, Paris, 75006, France. .,Sorbonne Universités, UPMC Univ Paris 06, UMR S 1138, Paris, 75006, France. .,Université Paris Descartes, UMR S 1138, Paris, 75006, France.
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Unité 1138, Paris, 75006, France. .,Centre de Recherche des Cordeliers, Equipe- Immunopathologie et immuno-intervention thérapeutique, Paris, 75006, France. .,Sorbonne Universités, UPMC Univ Paris 06, UMR S 1138, Paris, 75006, France. .,Université Paris Descartes, UMR S 1138, Paris, 75006, France.
| |
Collapse
|
16
|
What is new in 2015 in dysimmune neuropathies? Rev Neurol (Paris) 2016; 172:779-784. [PMID: 27866728 DOI: 10.1016/j.neurol.2016.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 12/30/2022]
Abstract
This review discusses and summarizes the concept of nodopathies, the diagnostic features, investigations, pathophysiology, and treatment options of chronic inflammatory demyelinating polyradiculoneuropathy, and gives updates on other inflammatory and dysimmune neuropathies such as Guillain-Barré syndrome, sensory neuronopathies, small-fiber-predominant ganglionitis, POEMS syndrome, neuropathies associated with IgM monoclonal gammopathy and multifocal motor neuropathy. This field of research has contributed to the antigenic characterization of the peripheral motor and sensory functional systems, as well as helping to define immune neuropathic syndromes with widely different clinical presentation, prognosis and response to therapy.
Collapse
|
17
|
Berg R, Fuellenhals E. Aseptic meningitis following therapy with immune globulins: a combination of product features and patient characteristics? Transfusion 2016; 56:3021-3028. [DOI: 10.1111/trf.13886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/26/2016] [Accepted: 08/09/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Roger Berg
- Global Drug Safety, Baxalta Innovations GmbH; Vienna Austria. Baxalta now belongs to Shire
| | - Elisabeth Fuellenhals
- Global Drug Safety, Baxalta Innovations GmbH; Vienna Austria. Baxalta now belongs to Shire
| |
Collapse
|
18
|
Joshi AR, Holtmann L, Bobylev I, Schneider C, Ritter C, Weis J, Lehmann HC. Loss of Schwann cell plasticity in chronic inflammatory demyelinating polyneuropathy (CIDP). J Neuroinflammation 2016; 13:255. [PMID: 27677703 PMCID: PMC5039906 DOI: 10.1186/s12974-016-0711-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/06/2016] [Indexed: 12/04/2022] Open
Abstract
Background Chronic inflammatory demyelinating polyneuropathy (CIDP) is often associated with chronic disability, which can be accounted to incomplete regeneration of injured axons. We hypothesized that Schwann cell support for regenerating axons may be altered in CIDP, which may account for the poor clinical recovery seen in many patients. Methods We exposed human and rodent Schwann cells to sera from CIDP patients and controls. In a model of chronic nerve denervation, we transplanted these conditioned Schwann cells intraneurally and assessed their capacity to support axonal regeneration by electrophysiology and morphometry. Results CIDP-conditioned Schwann cells were less growth supportive for regenerating axons as compared to Schwann cells exposed to control sera. The loss of Schwann cell support was associated with lower levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) in CIDP sera and correlated with altered expression of c-Jun and p57kip2 in Schwann cells. The inactivation of these regulatory factors resulted in an altered expression of neurotrophins including BDNF, GDNF, and NGF in CIDP-conditioned Schwann cells in vitro. Conclusions Our study provides evidence that pro-regenerative functions of Schwann cells are affected in CIDP. It thereby offers a possible explanation for the clinical observation that in many CIDP patients recovery is incomplete despite sufficient immunosuppressive treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0711-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhijeet R Joshi
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, Cologne, Germany
| | - Laura Holtmann
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Ilja Bobylev
- Department of Neurology, University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, Cologne, Germany
| | | | - Christian Ritter
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University, Aachen, Germany
| | - Helmar C Lehmann
- Department of Neurology, University Hospital of Cologne, Cologne, Germany. .,Center for Molecular Medicine Cologne, Cologne, Germany.
| |
Collapse
|
19
|
Dézsi L, Horváth Z, Vécsei L. Intravenous immunoglobulin: pharmacological properties and use in polyneuropathies. Expert Opin Drug Metab Toxicol 2016; 12:1343-1358. [PMID: 27428464 DOI: 10.1080/17425255.2016.1214715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Intravenous immunoglobulin (IVIg) is increasingly used for the treatment of autoimmune and systemic inflammatory diseases with both licensed and off-label indications. The mechanism of action is complex and not fully understood, involving the neutralization of pathological antibodies, Fc receptor blockade, complement inhibition, immunoregulation of dendritic cells, B cells and T cells and the modulation of apoptosis. Areas covered: First, this review describes the pharmacological properties of IVIg, including the composition, mechanism of action, and adverse events. The second part gives an overview of some of the immune-mediated polyneuropathies, with special focus on the pathomechanism and clinical trials assessing the efficacy of IVIg. A literature search on PubMed was performed using the terms IVIg, IVIg preparations, side effects, mechanism of action, clinical trials, GBS, CIDP. Expert opinion: Challenges associated with IVIg therapy and the treatment possibilities for immune-mediated polyneuropathies are discussed. The availability of IVIg is limited, the expenses are high, and, in several diseases, a chronic therapy is necessary to maintain the immunomodulatory effect. The better understanding of the mechanism of action of IVIg could open the possibility of the development of disease-specific, targeted immune therapies.
Collapse
Affiliation(s)
- Livia Dézsi
- a Department of Neurology , University of Szeged , Szeged , Hungary
| | - Zoltán Horváth
- a Department of Neurology , University of Szeged , Szeged , Hungary
| | - László Vécsei
- a Department of Neurology , University of Szeged , Szeged , Hungary.,b MTA-SZTE Neuroscience Research Group , Szeged , Hungary
| |
Collapse
|