1
|
Luo Q, Xing X, Song Y, Gu B, Hu Q, Liu W, Xiao Y, Wang Z. MiR-29a-3p ameliorate behavioral deficiency in hypoxia-ischemia brain damage in neonatal mice by inhibiting BTG2. Behav Brain Res 2025; 486:115552. [PMID: 40147793 DOI: 10.1016/j.bbr.2025.115552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
It has been reported that miR-29a-3p played a part in series neurological disorders. However, it remains unclear whether miR-29a-3p participate in the pathological mechanism in hypoxia-ischemia (HI) brain injury. In this study, we detected the change of miR-29a-3p level in the ipsilateral cortex following HI brain injury and found that miR-29a-3p was significantly increased at 3 days in the ipsilateral cortex following HI insult in neonatal mice. Therefore, we further explored the role of miR-29a-3p in HI brain injury and its molecular mechanism. The results showed that miR-29a-3p mimics attenuated and miR-29a-3p antagomir aggravated brain infarction volume at 3 days following HI insult. We further found that overexpression of miR-29a-3p also suppressed apoptosis and neuroinflammation, reduced synaptic loss and prevent HI-induced microglial morphological changes 3 days following HI insult. Neurobehavioral tests revealed that overexpression of miR-29a-3p could improve both short-term and long-term behavioral defects after HI injury. Furthermore, we proved that miR-29a-3p targets B-cell translocation gene 2 (BTG2) and further inhibits the expression of Bax by luciferase reporter assay and qRT-PCR. Moreover, overexpression of miR-29a-3p, by applying liposomes through intranasal route, could also achieve the same therapeutic effect in HI injury. Our data showed that by inhibiting BTG2/Bax, increasing level of miR-29a-3p might serve as a strategy to prevent brain damage and behavioral deficiency in HI.
Collapse
Affiliation(s)
- Qian Luo
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaohui Xing
- Department of Neurosurgery, Liaocheng Neuroscience Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Yan Song
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Bing Gu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China; Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Quan Hu
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong 271000, PR China
| | - Weiyang Liu
- Jinan Xicheng Experimental High School, Dezhou Road, Jinan, Shandong 1999, PR China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng Neuroscience Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China.
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
2
|
Yang M, Wang K, Liu B, Shen Y, Liu G. Hypoxic-Ischemic Encephalopathy: Pathogenesis and Promising Therapies. Mol Neurobiol 2025; 62:2105-2122. [PMID: 39073530 DOI: 10.1007/s12035-024-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain lesion caused by inadequate blood supply and oxygen deprivation, often occurring in neonates. It has emerged as a grave complication of neonatal asphyxia, leading to chronic neurological damage. Nevertheless, the precise pathophysiological mechanisms underlying HIE are not entirely understood. This paper aims to comprehensively elucidate the contributions of hypoxia-ischemia, reperfusion injury, inflammation, oxidative stress, mitochondrial dysfunction, excitotoxicity, ferroptosis, endoplasmic reticulum stress, and apoptosis to the onset and progression of HIE. Currently, hypothermia therapy stands as the sole standard treatment for neonatal HIE, albeit providing only partial neuroprotection. Drug therapy and stem cell therapy have been explored in the treatment of HIE, exhibiting certain neuroprotective effects. Employing drug therapy or stem cell therapy as adjunctive treatments to hypothermia therapy holds great significance. This article presents a systematic review of the pathogenesis and treatment strategies of HIE, with the goal of enhancing the effect of treatment and improving the quality of life for HIE patients.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Guangliang Liu
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
3
|
Jin N, Sha S, Ruan Y, Ouyang Y. Identification and analysis of oxidative stress-related genes in hypoxic-ischemic brain damage using bioinformatics and experimental verification. Immun Inflamm Dis 2024; 12:e70000. [PMID: 39172048 PMCID: PMC11340634 DOI: 10.1002/iid3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/19/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Oxidative stress (OS) plays a major role in the progress of hypoxic-ischemic brain damage (HIBD). This study aimed to investigate OS-related genes and their underlying molecular mechanisms in neonatal HIBD. METHODS Microarray data sets were acquired from the Gene Expression Omnibus (GEO) database to screen the differentially expressed genes (DEGs) between control samples and HIBD samples. OS-related genes were drawn from GeneCards and OS-DEGs in HIBD were obtained by intersecting with the DEGs. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were conducted to determine the underlying mechanisms and functions of OS-DEGs in HIBD. Moreover, the hub genes were screened using the protein-protein interaction network and identified in the GSE144456 data set. CIBERSORT was then performed to evaluate the expression of immunocytes in each sample and perform a correlation analysis of the optimal OS-DEGs and immunocytes. Finally, quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemistry were performed to validate the expression levels of the optimal OS-DEGs. RESULTS In total, 93 OS-DEGs were identified. GO, KEGG, and GSEA enrichment analyses indicated that these genes were predominantly enriched in OS and inflammation. Four OS-related biomarker genes (Jun, Fos, Tlr2, and Atf3) were identified and verified. CIBERSORT analysis revealed the dysregulation of six types of immune cells in the HIBD group. Moreover, 47 drugs that might target four OS-related biomarker genes were screened. Eventually, RT-qPCR and immunohistochemistry results for rat samples further validated the expression levels of Fos, Tlr2, and Atf3. CONCLUSIONS Fos, Tlr2 and Atf3 are potential OS-related biomarkers of HIBD progression. The mechanisms of OS are associated with those of neonatal HIBD.
Collapse
Affiliation(s)
- Ni Jin
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Sha Sha
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yanghao Ruan
- Fifth Affiliated Hospital of Sun Yat‐sen UniversityZhuhaiChina
| | - Ying Ouyang
- Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Penny TR, Jenkin G, Miller SL, McDonald CA. Umbilical cord blood derived cell expansion: a potential neuroprotective therapy. Stem Cell Res Ther 2024; 15:234. [PMID: 39075614 PMCID: PMC11287950 DOI: 10.1186/s13287-024-03830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Umbilical cord blood (UCB) is a rich source of beneficial stem and progenitor cells with known angiogenic, neuroregenerative and immune-modulatory properties. Preclinical studies have highlighted the benefit of UCB for a broad range of conditions including haematological conditions, metabolic disorders and neurological conditions, however clinical translation of UCB therapies is lacking. One barrier for clinical translation is inadequate cell numbers in some samples meaning that often a therapeutic dose cannot be achieved. This is particularly important when treating adults or when administering repeat doses of cells. To overcome this, UCB cell expansion is being explored to increase cell numbers. The current focus of UCB cell expansion is CD34+ haematopoietic stem cells (HSCs) for which the main application is treatment of haematological conditions. Currently there are 36 registered clinical trials that are examining the efficacy of expanded UCB cells with 31 of these being for haematological malignancies. Early data from these trials suggest that expanded UCB cells are a safe and feasible treatment option and show greater engraftment potential than unexpanded UCB. Outside of the haematology research space, expanded UCB has been trialled as a therapy in only two preclinical studies, one for spinal cord injury and one for hind limb ischemia. Proteomic analysis of expanded UCB cells in these studies showed that the cells were neuroprotective, anti-inflammatory and angiogenic. These findings are also supported by in vitro studies where expanded UCB CD34+ cells showed increased gene expression of neurotrophic and angiogenic factors compared to unexpanded CD34+ cells. Preclinical evidence demonstrates that unexpanded CD34+ cells are a promising therapy for neurological conditions where they have been shown to improve multiple indices of injury in rodent models of stroke, Parkinson's disease and neonatal hypoxic ischemic brain injury. This review will highlight the current application of expanded UCB derived HSCs in transplant medicine, and also explore the potential use of expanded HSCs as a therapy for neurological conditions. It is proposed that expanded UCB derived CD34+ cells are an appropriate cellular therapy for a range of neurological conditions in children and adults.
Collapse
Affiliation(s)
- Tayla R Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
5
|
Bingnan W, Jiao T, Ghorbani A, Baghei S. Enhancing regenerative potential: A comprehensive review of stem cell transplantation for sports-related neuronal injuries, with a focus on spinal cord injuries and peripheral nervous system damage. Tissue Cell 2024; 88:102429. [PMID: 38833939 DOI: 10.1016/j.tice.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Neuronal injuries, as one of the consequences of sports-related incidents, exert a profound influence on the athletes' future, potentially leading to complete immobility and impeding their athletic pursuits. In cases of severe damage inflicted upon the spinal cord (SC) and peripheral nervous systems (PNS), the regenerative process is notably compromised, rendering it essentially inefficient. Among the pivotal therapeutic approaches for the enhancement and prevention of secondary SC injuries (SCI), stem cell transplantation (SCT) stands out prominently. Stem cells, whether directly involved in replacement and reconstruction or indirectly through modification and secretion of crucial bioenvironmental factors, engage in the intricate process of tissue regeneration. Stem cells, through the secretion of neurotrophic factors (NTFs) (aiming to modulate the immune system), reduction of inflammation, axonal growth stimulation, and myelin formation, endeavor to facilitate the regeneration of damaged SC tissue. The fundamental challenges of this approach encompass the proper selection of suitable stem cell candidates for transplantation and the establishment of an appropriate microenvironment conducive to SC repair. In this article, an attempt has been made to explore sports-related injuries, particularly SCI, to comprehensively review innovative methods for treating SCI, and to address the existing challenges. Additionally, some of the stem cells used in neural injuries and the process of their utilization have been discussed.
Collapse
Affiliation(s)
- Wang Bingnan
- Department of P.E, Central South University, Changsha 410083, China
| | - Tong Jiao
- The High School Attached to Hunan Normal University Bocai Experimental Middle School,Changsha 410208, China.
| | - A Ghorbani
- Biotechnology Department, Islamic Azad University, Isfahan, Iran
| | - Sh Baghei
- Biotechnology Department, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
6
|
Jithoo A, Penny TR, Pham Y, Sutherland AE, Smith MJ, Petraki M, Fahey MC, Jenkin G, Malhotra A, Miller SL, McDonald CA. The Temporal Relationship between Blood-Brain Barrier Integrity and Microglial Response following Neonatal Hypoxia Ischemia. Cells 2024; 13:660. [PMID: 38667275 PMCID: PMC11049639 DOI: 10.3390/cells13080660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Blood-brain barrier (BBB) dysfunction and neuroinflammation are key mechanisms of brain injury. We performed a time-course study following neonatal hypoxia-ischemia (HI) to characterize these events. HI brain injury was induced in postnatal day 10 rats by single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). At 6, 12, 24, and 72 h (h) post-HI, brains were collected to assess neuropathology and BBB dysfunction. A significant breakdown of the BBB was observed in the HI injury group compared to the sham group from 6 h in the cortex and hippocampus (p < 0.001), including a significant increase in albumin extravasation (p < 0.0033) and decrease in basal lamina integrity and tight-junction proteins. There was a decrease in resting microglia (p < 0.0001) transitioning to an intermediate state from as early as 6 h post-HI, with the intermediate microglia peaking at 12 h (p < 0.0001), which significantly correlated to the peak of microbleeds. Neonatal HI insult leads to significant brain injury over the first 72 h that is mediated by BBB disruption within 6 h and a transitioning state of the resident microglia. Key BBB events coincide with the appearance of the intermediate microglial state and this relationship warrants further research and may be a key target for therapeutic intervention.
Collapse
Affiliation(s)
- Arya Jithoo
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Tayla R. Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Amy E. Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Madeleine J. Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Maria Petraki
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
| | - Michael C. Fahey
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia;
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia;
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
7
|
Chen XF, Wu Y, Kim B, Nguyen KV, Chen A, Qiu J, Santoso AR, Disdier C, Lim YP, Stonestreet BS. Neuroprotective efficacy of hypothermia and Inter-alpha Inhibitor Proteins after hypoxic ischemic brain injury in neonatal rats. Neurotherapeutics 2024; 21:e00341. [PMID: 38453562 PMCID: PMC11070713 DOI: 10.1016/j.neurot.2024.e00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Therapeutic hypothermia is the standard of care for hypoxic-ischemic (HI) encephalopathy. Inter-alpha Inhibitor Proteins (IAIPs) attenuate brain injury after HI in neonatal rats. Human (h) IAIPs (60 mg/kg) or placebo (PL) were given 15 min, 24 and 48 h to postnatal (P) day-7 rats after carotid ligation and 8% oxygen for 90 min with (30 °C) and without (36 °C) exposure to hypothermia 1.5 h after HI for 3 h. Hemispheric volume atrophy (P14) and neurobehavioral tests including righting reflex (P8-P10), small open field (P13-P14), and negative geotaxis (P14) were determined. Hemispheric volume atrophy in males was reduced (P < 0.05) by 41.9% in the normothermic-IAIP and 28.1% in the hypothermic-IAIP compared with the normothermic-PL group, and in females reduced (P < 0.05) by 30.3% in the normothermic-IAIP, 45.7% in hypothermic-PL, and 55.2% in hypothermic-IAIP compared with the normothermic-PL group after HI. Hypothermia improved (P < 0.05) the neuroprotective effects of hIAIPs in females. The neuroprotective efficacy of hIAIPs was comparable to hypothermia in female rats (P = 0.183). Treatment with hIAIPs, hypothermia, and hIAIPs with hypothermia decreased (P < 0.05) the latency to enter the peripheral zone in the small open field test in males. We conclude that hIAIPs provide neuroprotection from HI brain injury that is comparable to the protection by hypothermia, hypothermia increases the effects of hIAIPs in females, and hIAIPs and hypothermia exhibit some sex-related differential effects.
Collapse
Affiliation(s)
- Xiaodi F Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Yuqi Wu
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Boram Kim
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Kevin V Nguyen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Ainuo Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, USA
| | | | - Clemence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, USA; The Alpert Medical School of Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, USA; The Alpert Medical School of Brown University, USA; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Cai X, Li Y, Gao F, Muhammad B, Yang H. Therapeutic effect and study of human umbilical cord blood mononuclear cells in patients with ischaemic bowel disease. Sci Rep 2024; 14:6121. [PMID: 38480861 PMCID: PMC10937724 DOI: 10.1038/s41598-024-56720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 03/17/2024] Open
Abstract
Ischaemic bowel disease (ICBD) is a group of intestinal ischaemia syndromes caused by various aetiologies of reduced intestinal blood flow or vascular occlusion. ICBD can present as abdominal pain, bloody stool, and diarrhoea. This disease often occurs in middle-aged and elderly individuals with cardiovascular and cerebrovascular diseases. The incidence of ischaemic bowel disease has been increasing for decades, and it is difficult to diagnose, resulting in rapid disease progression and a high mortality rate. Therefore, fully understanding this disease, improving the diagnosis rate of this disease, and finding appropriate treatment methods are urgently needed to improve the condition and prognosis of patients. Umbilical cord blood stem cells are accessible, have weak immunogenicity, and have various biological functions, such as angiogenesis, inflammation and immune regulation. Many studies have confirmed that cord blood stem cells can relieve ischaemia, and these cells have attracted tremendous amounts of attention in regenerative medicine in recent years. In this paper, we discuss the clinical characteristics of ICBD, analyse the characteristics of human umbilical cord blood mononuclear cells (HUCB-MNCs), and use its to treat ischaemic bowel disease. Additionally, we compare the clinical manifestations and related indicators before and after treatment to evaluate the efficacy and safety of these methods.
Collapse
Affiliation(s)
- Xiaoxiao Cai
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, No. 238 Jingshi East Road, Jinan, Shandong, China
- Graduate Department of Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699 Qingdao Road, Jinan, Shandong, China
| | - Yonghao Li
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, No. 238 Jingshi East Road, Jinan, Shandong, China
- Graduate Department of Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699 Qingdao Road, Jinan, Shandong, China
| | - Fengyu Gao
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, No. 238 Jingshi East Road, Jinan, Shandong, China
| | - Bilal Muhammad
- Graduate Department of Shandong First Medical University & Shandong Academy of Medical Sciences, No. 6699 Qingdao Road, Jinan, Shandong, China
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, Shandong, China
| | - Hongli Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, No. 16766 Jingshi Road, Jinan, Shandong, China.
| |
Collapse
|
9
|
Bruschettini M, Badura A, Romantsik O. Stem cell-based interventions for the treatment of stroke in newborn infants. Cochrane Database Syst Rev 2023; 11:CD015582. [PMID: 37994736 PMCID: PMC10666199 DOI: 10.1002/14651858.cd015582.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Perinatal stroke refers to a diverse but specific group of cerebrovascular diseases that occur between 20 weeks of fetal life and 28 days of postnatal life. Acute treatment options for perinatal stroke are limited supportive care, such as controlling hypoglycemia and seizures. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. Preclinical findings have culminated in ongoing human neonatal studies. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem-cell based interventions of a different type or source. SEARCH METHODS We searched CENTRAL, PubMed, Embase, and three trials registries in February 2023. We planned to search the reference lists of included studies and relevant systematic reviews for studies not identified by the database searches. SELECTION CRITERIA We attempted to include randomized controlled trials, quasi-randomized controlled trials, and cluster trials that evaluated any of the following comparisons. • Stem cell-based interventions (any type) versus control (placebo or no treatment) • Mesenchymal stem/stromal cells (MSCs) of a specifictype (e.g. number of doses or passages) or source (e.g. autologous/allogeneic or bone marrow/cord) versus MSCs of another type or source • Stem cell-based interventions (other than MSCs) of a specific type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, or induced pluripotent stem cell-derived cells) or source (e.g. autologous/allogeneic or bone marrow/cord) versus stem cell-based interventions (other than MSCs) of another type or source • MSCs versus stem cell-based interventions other than MSCs We planned to include all types of transplantation regardless of cell source (bone marrow, cord blood, Wharton's jelly, placenta, adipose tissue, peripheral blood), type of graft (autologous or allogeneic), and dose. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were all-cause neonatal mortality, major neurodevelopmental disability, and immune rejection or any serious adverse event. Our secondary outcomes included all-cause mortality prior to first hospital discharge, seizures, adverse effects, and death or major neurodevelopmental disability at 18 to 24 months of age. We planned to use GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS We identified no completed or ongoing randomized trials that met our inclusion criteria. We excluded three studies: two were phase 1 trials, and one included newborn infants with conditions other than stroke (i.e. cerebral ischemia and anemia). Among the three excluded studies, we identified the first phase 1 trial on the use of stem cells for neonatal stroke. It reported that a single intranasal application of bone marrow-derived MSCs in term neonates with a diagnosis of perinatal arterial ischemic stroke (PAIS) was feasible and apparently not associated with severe adverse events. However, the trial included only 10 infants, and follow-up was limited to three months. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment of stroke in newborn infants. We identified no ongoing studies. Future clinical trials should focus on standardizing the timing and method of cell delivery and cell processing to optimize the therapeutic potential of stem cell-based interventions and safety profiles. Phase 1 and large animal studies might provide the groundwork for future randomized trials. Outcome measures should include all-cause mortality, major neurodevelopmental disability and immune rejection, and any other serious adverse events.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna Badura
- Department of Neonatology, University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany
| | - Olga Romantsik
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
10
|
Smith MJ, Penny T, Pham Y, Sutherland AE, Jenkin G, Fahey MC, Paton MCB, Finch-Edmondson M, Miller SL, McDonald CA. Neuroprotective Action of Tacrolimus before and after Onset of Neonatal Hypoxic-Ischaemic Brain Injury in Rats. Cells 2023; 12:2659. [PMID: 37998394 PMCID: PMC10669941 DOI: 10.3390/cells12222659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
(1) Background: Neonatal brain injury can lead to permanent neurodevelopmental impairments. Notably, suppressing inflammatory pathways may reduce damage. To determine the role of neuroinflammation in the progression of neonatal brain injury, we investigated the effect of treating neonatal rat pups with the immunosuppressant tacrolimus at two time points: before and after hypoxic-ischaemic (HI)-induced injury. (2) Methods: To induce HI injury, postnatal day (PND) 10 rat pups underwent single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). Pups received daily tacrolimus (or a vehicle) starting either 3 days before HI on PND 7 (pre-HI), or 12 h after HI (post-HI). Four doses were tested: 0.025, 0.05, 0.1 or 0.25 mg/kg/day. Pups were euthanised at PND 17 or PND 50. (3) Results: All tacrolimus doses administered pre-HI significantly reduced brain infarct size and neuronal loss, increased the number of resting microglia and reduced cellular apoptosis (p < 0.05 compared to control). In contrast, only the highest dose of tacrolimus administered post-HI (0.25 mg/kg/day) reduced brain infarct size (p < 0.05). All doses of tacrolimus reduced pup weight compared to the controls. (4) Conclusions: Tacrolimus administration 3 days pre-HI was neuroprotective, likely mediated through neuroinflammatory and cell death pathways. Tacrolimus post-HI may have limited capacity to reduce brain injury, with higher doses increasing rat pup mortality. This work highlights the benefits of targeting neuroinflammation during the acute injurious period. More specific targeting of neuroinflammation, e.g., via T-cells, warrants further investigation.
Collapse
Affiliation(s)
- Madeleine J. Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Tayla Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
| | - Amy E. Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Michael C. Fahey
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
- Department of Paediatrics, Monash University, Clayton, VIC 3168, Australia
| | - Madison C. B. Paton
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; (M.C.B.P.); (M.F.-E.)
| | - Megan Finch-Edmondson
- Cerebral Palsy Alliance Research Institute, Speciality of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia; (M.C.B.P.); (M.F.-E.)
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; (M.J.S.); (T.P.); (Y.P.); (A.E.S.); (G.J.); (M.C.F.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
11
|
Zhou J, Gao T, Tang W, Qian T, Wang Z, Xu P, Wang L. Progress in the treatment of neonatal hypoxic-ischemic encephalopathy with umbilical cord blood mononuclear cells. Brain Dev 2023; 45:533-546. [PMID: 37806836 DOI: 10.1016/j.braindev.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a common disease among newborns, which is a leading cause of neonatal death and permanent neurological sequelae. Therapeutic hypothermia (TH) is the only method for the treatment of HIE that has been recognized effective clinically at home and abroad, but the efficacy is limited. Recent research suggests that the cord blood-derived mononuclear cells (CB-MNCs), which the refer to blood cells containing one nucleus in the cord blood, exert anti-oxidative, anti-inflammatory, anti-apoptotic effects and play a neuroprotective role in HIE. This review focuses on safety and efficacy, the route of administration, dose, timing and combination treatment of CB-MNCs in HIE.
Collapse
Affiliation(s)
- Jiayu Zhou
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Wan Tang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Ziming Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Pu Xu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, China.
| |
Collapse
|
12
|
Yao Y, Li J, Zhou Y, Wang S, Zhang Z, Jiang Q, Li K. Macrophage/microglia polarization for the treatment of diabetic retinopathy. Front Endocrinol (Lausanne) 2023; 14:1276225. [PMID: 37842315 PMCID: PMC10569308 DOI: 10.3389/fendo.2023.1276225] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Macrophages/microglia are immune system defense and homeostatic cells that develop from bone marrow progenitor cells. According to the different phenotypes and immune responses of macrophages (Th1 and Th2), the two primary categories of polarized macrophages/microglia are those conventionally activated (M1) and alternatively activated (M2). Macrophage/microglial polarization is a key regulating factor in the development of inflammatory disorders, cancers, metabolic disturbances, and neural degeneration. Macrophage/microglial polarization is involved in inflammation, oxidative stress, pathological angiogenesis, and tissue healing processes in ocular diseases, particularly in diabetic retinopathy (DR). The functional phenotypes of macrophages/microglia affect disease progression and prognosis, and thus regulate the polarization or functional phenotype of microglia at different DR stages, which may offer new concepts for individualized therapy of DR. This review summarizes the involvement of macrophage/microglia polarization in physiological situations and in the pathological process of DR, and discusses the promising role of polarization in personalized treatment of DR.
Collapse
Affiliation(s)
- Yujia Yao
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jiajun Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yunfan Zhou
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Suyu Wang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ziran Zhang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Keran Li
- Department of Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Pimentel‐Coelho PM. Monocytes in neonatal stroke and hypoxic‐ischemic encephalopathy: Pathophysiological mechanisms and therapeutic possibilities. NEUROPROTECTION 2023; 1:66-79. [DOI: 10.1002/nep3.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2023] [Indexed: 01/03/2025]
Abstract
AbstractNeonatal arterial ischemic stroke (NAIS) and neonatal hypoxic‐ischemic encephalopathy (HIE) are common causes of neurological impairments in infants, for which treatment options are very limited. NAIS and HIE induce an innate immune response that involves the recruitment of peripheral immune cells, including monocytes, into the brain. Monocytes and monocyte‐derived cells have the potential to contribute to both harmful and beneficial pathophysiological processes, such as neuroinflammation and brain repair, but their roles in NAIS and HIE remain poorly understood. Furthermore, recent evidence indicates that monocyte‐derived macrophages can persist in the brain for several months following NAIS and HIE in mice, with possible long‐lasting consequences that are still unknown. This review provides a comprehensive overview of the mechanisms of monocyte infiltration and their potential functions in the ischemic brain, focusing on HIE and NAIS. Therapeutic strategies targeting monocytes and the possibility of using monocytes for cell‐based therapies are also discussed.
Collapse
Affiliation(s)
- Pedro M. Pimentel‐Coelho
- Carlos Chagas Filho Biophysics Institute Federal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
14
|
Torabi S, Zarrabi M, Hossein-Khannazer N, Lotfinia M, Nouri M, Gramignoli R, Hassan M, Vosough M. Umbilical Cord Blood-Derived Monocytes as A Reliable Source of Functional Macrophages for Biomedical Research. CELL JOURNAL 2023; 25:524-535. [PMID: 37641414 PMCID: PMC10542205 DOI: 10.22074/cellj.2023.1990203.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Macrophages are multifunctional immune cells widely used in immunological research. While autologous macrophages have been widely used in several biomedical applications, allogeneic macrophages have also demonstrated similar or even superior therapeutic potential. The umbilical cord blood (UCB) is a well-described source of abundant allogenic monocytes and macrophages that is easy to collect and can be processed without invasive methods. Current monocyte isolation procedures frequently result in heterogenous cell products, with limited yields, activated cells, and high cost. This study outlines a simple isolation method that results in high yields and pure monocytes with the potential to differentiate into functional macrophages. MATERIALS AND METHODS In the experimental study, we describe a simple and efficient protocol to isolate highpurity monocytes. After collection of human UCB samples, we used a gradient-based procedure composed of three consecutive gradient steps: i. Hydroxyethyl starch-based erythrocytes sedimentation, followed by ii. Mononuclear cells (MNCs) isolation by Ficoll-Hypaque gradient, and iii. Separation of monocytes from lymphocytes by a slight hyperosmolar Percoll gradient (0.573 g/ml). Then the differentiation potential of isolated monocytes to pro- and antiinflammatory macrophages were evaluated in the presence of granulocyte colony-stimulating factor (GM-CSF) and macrophage CSF (M-CSF), respectively. The macrophages were functionally characterized as well. RESULTS A high yield of monocytes after isolation (25 to 50 million) with a high purity (>95%) could be obtained from every 100-150 ml UCB. Isolated monocytes were defined based on their phenotype and surface markers expression pattern. Moreover, they possess the ability to differentiate into pro- or anti-inflammatory macrophages with specific phenotypes, gene/surface protein markers, cytokine secretion patterns, T-cell interactions, and phagocytosis activity. CONCLUSION Here we describe a simple and reproducible procedure for isolation of pure monocytes from UCB, which could be utilized to provide functional macrophages as a reliable and feasible source of allogenic macrophages for biomedical research.
Collapse
Affiliation(s)
- Shukoofeh Torabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Applied Cell Sciences, Faculty of Basic Sciences and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- R and D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoumeh Nouri
- R and D Department, Royan Stem Cell Technology Co, Tehran, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden.
- Department of Pathology and Cancer Diagnostic, Karolinska University Hospital, 141 83 Stockholm, Sweden
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
15
|
Nguyen T, Purcell E, Smith MJ, Penny TR, Paton MCB, Zhou L, Jenkin G, Miller SL, McDonald CA, Malhotra A. Umbilical Cord Blood-Derived Cell Therapy for Perinatal Brain Injury: A Systematic Review & Meta-Analysis of Preclinical Studies. Int J Mol Sci 2023; 24:ijms24054351. [PMID: 36901781 PMCID: PMC10001969 DOI: 10.3390/ijms24054351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Perinatal brain injury is a major contributor to long-term adverse neurodevelopment. There is mounting preclinical evidence for use of umbilical cord blood (UCB)-derived cell therapy as potential treatment. To systematically review and analyse effects of UCB-derived cell therapy on brain outcomes in preclinical models of perinatal brain injury. MEDLINE and Embase databases were searched for relevant studies. Brain injury outcomes were extracted for meta-analysis to calculate standard mean difference (SMD) with 95% confidence interval (CI), using an inverse variance, random effects model. Outcomes were separated based on grey matter (GM) and white matter (WM) regions where applicable. Risk of bias was assessed using SYRCLE, and GRADE was used to summarise certainty of evidence. Fifty-five eligible studies were included (7 large, 48 small animal models). UCB-derived cell therapy significantly improved outcomes across multiple domains, including decreased infarct size (SMD 0.53; 95% CI (0.32, 0.74), p < 0.00001), apoptosis (WM, SMD 1.59; 95%CI (0.86, 2.32), p < 0.0001), astrogliosis (GM, SMD 0.56; 95% CI (0.12, 1.01), p = 0.01), microglial activation (WM, SMD 1.03; 95% CI (0.40, 1.66), p = 0.001), neuroinflammation (TNF-α, SMD 0.84; 95%CI (0.44, 1.25), p < 0.0001); as well as improved neuron number (SMD 0.86; 95% CI (0.39, 1.33), p = 0.0003), oligodendrocyte number (GM, SMD 3.35; 95 %CI (1.00, 5.69), p = 0.005) and motor function (cylinder test, SMD 0.49; 95 %CI (0.23, 0.76), p = 0.0003). Risk of bias was determined as serious, and overall certainty of evidence was low. UCB-derived cell therapy is an efficacious treatment in pre-clinical models of perinatal brain injury, however findings are limited by low certainty of evidence.
Collapse
Affiliation(s)
- Timothy Nguyen
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Elisha Purcell
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
| | - Madeleine J. Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Tayla R. Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Madison C. B. Paton
- Cerebral Palsy Alliance Research Institute & Specialty of Child and Adolescent Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lindsay Zhou
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC 3168, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC 3168, Australia
- Correspondence:
| |
Collapse
|
16
|
Bruschettini M, Badura A, Romantsik O. Stem cell‐based interventions for the treatment of stroke in newborn infants. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2023; 2023:CD015582. [PMCID: PMC9933426 DOI: 10.1002/14651858.cd015582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To evaluate the benefits and harms of stem cell‐based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem‐cell based interventions of a different type or source.
Collapse
Affiliation(s)
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden,Cochrane SwedenLund University, Skåne University HospitalLundSweden
| | | | - Olga Romantsik
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden
| |
Collapse
|
17
|
Romantsik O, Moreira A, Thébaud B, Ådén U, Ley D, Bruschettini M. Stem cell-based interventions for the prevention and treatment of intraventricular haemorrhage and encephalopathy of prematurity in preterm infants. Cochrane Database Syst Rev 2023; 2:CD013201. [PMID: 36790019 PMCID: PMC9932000 DOI: 10.1002/14651858.cd013201.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
BACKGROUND Germinal matrix-intraventricular haemorrhage (GMH-IVH) and encephalopathy of prematurity (EoP) remain substantial issues in neonatal intensive care units worldwide. Current therapies to prevent or treat these conditions are limited. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. These preclinical findings have now culminated in ongoing human neonatal studies. This is an update of the 2019 review, which did not include EoP. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for prevention or treatment of GM-IVH and EoP in preterm infants. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search was April 2022. SELECTION CRITERIA We attempted to include randomised controlled trials, quasi-randomised controlled trials, and cluster trials comparing 1. stem cell-based interventions versus control; 2. mesenchymal stromal cells (MSCs) of type or source versus MSCs of other type or source; 3. stem cell-based interventions other than MSCs of type or source versus stem cell-based interventions other than MSCs of other type or source; or 4. MSCs versus stem cell-based interventions other than MSCs. For prevention studies, we included extremely preterm infants (less than 28 weeks' gestation), 24 hours of age or less, without ultrasound diagnosis of GM-IVH or EoP; for treatment studies, we included preterm infants (less than 37 weeks' gestation), of any postnatal age, with ultrasound diagnosis of GM-IVH or with EoP. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. all-cause neonatal mortality, 2. major neurodevelopmental disability, 3. GM-IVH, 4. EoP, and 5. extension of pre-existing non-severe GM-IVH or EoP. We planned to use GRADE to assess certainty of evidence for each outcome. MAIN RESULTS We identified no studies that met our inclusion criteria. Three studies are currently registered and ongoing. Phase 1 trials are described in the 'Excluded studies' section. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment or prevention of GM-IVH or EoP in preterm infants. We identified three ongoing studies, with a sample size range from 20 to 200. In two studies, autologous cord blood mononuclear cells will be administered to extremely preterm infants via the intravenous route; in one, intracerebroventricular injection of MSCs will be administered to preterm infants up to 34 weeks' gestational age.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Alvaro Moreira
- Pediatrics, Division of Neonatology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Bernard Thébaud
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Canada
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Ulrika Ådén
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - David Ley
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
18
|
Bell A, Watt AP, Dudink I, Pham Y, Sutherland AE, Allison BJ, McDonald CA, Castillo-Melendez M, Jenkin G, Malhotra A, Miller SL, Yawno T. Endothelial colony forming cell administration promotes neurovascular unit development in growth restricted and appropriately grown fetal lambs. Stem Cell Res Ther 2023; 14:29. [PMID: 36788590 PMCID: PMC9930266 DOI: 10.1186/s13287-023-03249-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep. METHODS Twin-bearing ewes had surgery performed at 88-90 days' gestation, inducing FGR in one fetus. At 113 days, ECFCs (1 × 107 cells) cultured from human UCB were administered intravenously to fetal sheep in utero. At 127 days, ewes and their fetuses were euthanised, fetal brains collected, and NVU components analysed by immunohistochemistry. RESULTS Twenty-four fetal lambs, arranged in four groups: AGA (n = 7), FGR (n = 5), AGA + ECFC (n = 6), and FGR + ECFC (n = 6), were included in analyses. FGR resulted in lower body weight than AGA (P = 0.002) with higher brain/body weight ratio (P = 0.003). ECFC treatment was associated with increased vascular density throughout the brain in both AGA + ECFC and FGR + ECFC groups, as well as increased vascular-astrocyte coverage and VEGF expression in the cortex (P = 0.003, P = 0.0006, respectively) and in the subcortical white matter (P = 0.01, P = 0.0002, respectively) when compared with the untreated groups. CONCLUSIONS ECFC administration enhanced development of NVU components in both the AGA and FGR fetal brain. Further investigation is required to assess how to optimise the enhanced angiogenic capabilities of ECFCs to provide a therapeutic strategy to protect the developing NVU against vulnerabilities associated with FGR.
Collapse
Affiliation(s)
- Alexander Bell
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Ashalyn P. Watt
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Ingrid Dudink
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Yen Pham
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Amy E. Sutherland
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Beth J. Allison
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Courtney A. McDonald
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | | | - Graham Jenkin
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia. .,Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia. .,Monash Newborn, Monash Children's Hospital, Melbourne, Australia.
| | - Suzanne L. Miller
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Tamara Yawno
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC 3168 Australia
| |
Collapse
|
19
|
Liu J, Sun W, Liu C, Na Q. Umbilical Cord Blood-Derived Exosomes in Maternal-Fetal Disease: a Review. Reprod Sci 2023; 30:54-61. [PMID: 35157260 DOI: 10.1007/s43032-022-00879-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 01/06/2023]
Abstract
The nutrients and other factors transported by umbilical cord blood, which is vital for fetal survival, play crucial roles in fetal development. There are various communication modes between the fetal-placental system and the maternal-placental system, and these communication modes are all mediated by umbilical cord blood. During the process of umbilical cord blood transportation, the changes of some nutrients and factors may play a key role in fetal development. Exosomes, which are members of the extracellular vesicle family, are present in the umbilical cord blood and play roles in information transmission as a result of their efficient cellular communication activity. The study of umbilical cord blood-derived exosomes provides a new approach for research on the etiology of maternal-fetal diseases and they may be useful for the development of intrauterine treatments. This review summarizes specific functions and research directions regarding umbilical cord blood-derived exosomes, and their potential associations with pregnancy complications.
Collapse
Affiliation(s)
- Jingyi Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Quan Na
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Rao RB, Shiao ML, Ennis-Czerniak KM, Low WC. Nonhematopoietic Umbilical Cord Blood Stem Cell Administration Improves Long-term Neurodevelopment After Periventricular-Intraventricular Hemorrhage in Neonatal Rats. Cell Transplant 2023; 32:9636897231189301. [PMID: 37493283 PMCID: PMC10387682 DOI: 10.1177/09636897231189301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023] Open
Abstract
Periventricular-intraventricular hemorrhage (PIVH) is common in extremely low gestational age neonates (ELGAN) and leads to motor and behavioral impairments. Currently there is no effective treatment for PIVH. Whether human nonhematopoietic umbilical cord blood-derived stem cell (nh-UCBSC) administration reduces the severity of brain injury and improves long-term motor and behavioral function was tested in an ELGAN-equivalent neonatal rat model of PIVH. In a collagenase-induced unilateral PIVH on postnatal day (P) 2 model, rat pups received a single dose of nh-UCBSCs at a dose of 1 × 106 cells i.p. on P6 (PIVH + UCBSC group) or were left untreated (Untreated PIVH group). Motor deficit was determined using forelimb placement, edge-push, and elevated body swing tests at 2 months (N = 5-8). Behavior was evaluated using open field exploration and rearing tests at 4 months (N =10-12). Cavity volume and hemispheric volume loss on the PIVH side were determined at 7 months (N = 6-7). Outcomes were compared between the Untreated PIVH and PIVH + UCBSC groups and a Control group. Unilateral motor deficits were present in 60%-100% of rats in the Untreated PIVH group and 12.5% rats in the PIVH + UCBSC group (P = 0.02). Untreated PIVH group exhibited a higher number of quadrant crossings in open field exploration, indicating low emotionality and poor habituation, and had a cavitary lesion and hemispheric volume loss on the PIVH side. Performance in open field exploration correlated with cavity volume (r2 = 0.25; P < 0.05). Compared with the Untreated PIVH group, performance in open field exploration was better (P = 0.0025) and hemispheric volume loss was lower (19.9 ± 4.4% vs 6.1 ± 2.6%, P = 0.018) in the PIVH + UCBSC group. These results suggest that a single dose of nh-UCBSCs administered in the subacute period after PIVH reduces the severity of injury and improves neurodevelopment in neonatal rats.
Collapse
Affiliation(s)
- Raghavendra B. Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Maple L. Shiao
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Kathleen M. Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Serrenho I, Cardoso CM, Grãos M, Dinis A, Manadas B, Baltazar G. Hypothermia Does Not Boost the Neuroprotection Promoted by Umbilical Cord Blood Cells in a Neonatal Hypoxia-Ischemia Rat Model. Int J Mol Sci 2022; 24:ijms24010257. [PMID: 36613698 PMCID: PMC9820288 DOI: 10.3390/ijms24010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of death and long-term disability in the perinatal period. Currently, therapeutic hypothermia is the standard of care for this condition with modest efficacy and strict enrollment criteria. Therapy with umbilical cord blood cells (UCBC) has come forward as a strong candidate for the treatment of neonatal HIE, but no preclinical studies have yet compared the action of UCBC combined with hypothermia (HT) with the action of each therapy by itself. Thus, to evaluate the potential of each therapeutic approach, a hypoxic-ischemic brain lesion was induced in postnatal day ten rat pups; two hours later, HT was applied for 4 h; and 24, 48, and 72 h post-injury, UCBC were administered intravenously. The neonatal hypoxic-ischemic injury led to a brain lesion involving about 48% of the left hemisphere that was not improved by HT (36%) or UCBC alone (28%), but only with the combined therapies (25%; p = 0.0294). Moreover, a decrease in glial reactivity and improved functional outcomes were observed in both groups treated with UCBC. Overall, these results support UCBC as a successful therapeutic approach for HIE, even when treatment with therapeutic hypothermia is not possible.
Collapse
Affiliation(s)
- Inês Serrenho
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Mário Grãos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Biocant, Technology Transfer Association, 3060-197 Cantanhede, Portugal
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Alexandra Dinis
- Pediatric Intensive Care Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
- Correspondence: (B.M.); (G.B.)
| | - Graça Baltazar
- Health Sciences Research Center (CICS-UBI), University of Beira Interior, 6201-506 Covilhã, Portugal
- Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Correspondence: (B.M.); (G.B.)
| |
Collapse
|
22
|
Chen X, Malaeb SN, Pan J, Wang L, Scafidi J. Editorial: Perinatal hypoxic-ischemic brain injury: Mechanisms, pathogenesis, and potential therapeutic strategies. Front Cell Neurosci 2022; 16:1086692. [PMID: 36582212 PMCID: PMC9793000 DOI: 10.3389/fncel.2022.1086692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Xiaodi Chen
- Women and Infants Hospital of RI, Alpert Medical School of Brown University, Providence, RI, United States
| | | | - Jonathan Pan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, United States
| | - Laishuan Wang
- Children's Hospital, Fudan University, Shanghai, China
| | - Joseph Scafidi
- Department of Neurology and Pediatrics, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Wang J, Nan Y, Liu M, Hu K. The Role of CD4 + T Cells in the Immunotherapy of Brain Disease by Secreting Different Cytokines. J Neuroimmune Pharmacol 2022; 17:409-422. [PMID: 36443518 DOI: 10.1007/s11481-022-10056-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Upon different stimulation, naïve CD4+ T cells differentiate into various subsets of T helper (Th) cells, including Th1, Th2, Th17, and Tregs. They play both protective and pathogenic roles in the central nervous system (CNS) by secreting different cytokines. Failure of the homeostasis of the subgroups in the CNS can result in different brain diseases. Recently, immunotherapy has drawn more and more attention in the therapy of various brain diseases. Here, we describe the role of different CD4+ T cell subsets and their secreted cytokines in various brain diseases, as well as the ways in which by affecting CD4+ T cells in therapy of the CNS diseases. Understanding the role of CD4+ T cells and their secreted cytokines in the immunotherapy of brain disease will provide new targets and therapeutics for the treatment of brain disease. The role of CD4 + T cell subtypes in different diseases and their associated regulatory genes, proteins, and enzymes. CD4 + T cell subtypes play both protective (green) and pathogenic (red) roles in different brain diseases. The immune regulatory effects of CD4 + T cells and their subtypes are promoted or inhibited by different genes, proteins, and enzymes.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunrong Nan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mei Liu
- Industrial Development Center of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Kaili Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
24
|
Pedroza-García KA, Calderón-Vallejo D, Quintanar JL. Neonatal Hypoxic-Ischemic Encephalopathy: Perspectives of Neuroprotective and Neuroregenerative Treatments. Neuropediatrics 2022; 53:402-417. [PMID: 36030792 DOI: 10.1055/s-0042-1755235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a serious condition that could have deleterious neurological outcomes, such as cerebral palsy, neuromotor disability, developmental disability, epilepsy, and sensitive or cognitive problems, and increase the risk of death in severe cases. Once HIE occurs, molecular cascades are triggered favoring the oxidative stress, excitotoxicity, and inflammation damage that promote cell death via apoptosis or necrosis. Currently, the therapeutic hypothermia is the standard of care in HIE; however, it has a small window of action and only can be used in children of more than 36 gestational weeks; for this reason, it is very important to develop new therapies to prevent the progression of the hypoxic-ischemic injury or to develop neuroregenerative therapies in severe HIE cases. The objective of this revision is to describe the emerging treatments for HIE, either preventing cell death for oxidative stress, excitotoxicity, or exacerbated inflammation, as well as describing a new therapeutic approach for neuroregeneration, such as mesenchymal stem cells, brain-derived neurotrophic factor, and gonadotropin realizing hormone agonists.
Collapse
Affiliation(s)
- Karina A Pedroza-García
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.,Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Departamento de Fisiología y Farmacología, Laboratorio de Neurofisiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| |
Collapse
|
25
|
Cell-Based and Gene-Based Therapy Approaches in Neuro-orthopedic Disorders: a Literature Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Molloy EJ, El-Dib M, Juul SE, Benders M, Gonzalez F, Bearer C, Wu YW, Robertson NJ, Hurley T, Branagan A, Michael Cotten C, Tan S, Laptook A, Austin T, Mohammad K, Rogers E, Luyt K, Bonifacio S, Soul JS, Gunn AJ. Neuroprotective therapies in the NICU in term infants: present and future. Pediatr Res 2022:10.1038/s41390-022-02295-2. [PMID: 36195634 PMCID: PMC10070589 DOI: 10.1038/s41390-022-02295-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023]
Abstract
Outcomes of neonatal encephalopathy (NE) have improved since the widespread implementation of therapeutic hypothermia (TH) in high-resource settings. While TH for NE in term and near-term infants has proven beneficial, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. There is therefore a critical need to find additional pharmacological and non-pharmacological interventions that improve the outcomes for these children. There are many potential candidates; however, it is unclear whether these interventions have additional benefits when used with TH. Although primary and delayed (secondary) brain injury starting in the latent phase after HI are major contributors to neurodisability, the very late evolving effects of tertiary brain injury likely require different interventions targeting neurorestoration. Clinical trials of seizure management and neuroprotection bundles are needed, in addition to current trials combining erythropoietin, stem cells, and melatonin with TH. IMPACT: The widespread use of therapeutic hypothermia (TH) in the treatment of neonatal encephalopathy (NE) has reduced the associated morbidity and mortality. However, 30-50% of infants with moderate-to-severe NE treated with TH still suffer death or significant impairments. This review details the pathophysiology of NE along with the evidence for the use of TH and other beneficial neuroprotective strategies used in term infants. We also discuss treatment strategies undergoing evaluation at present as potential adjuvant treatments to TH in NE.
Collapse
Affiliation(s)
- Eleanor J Molloy
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland. .,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland. .,Neonatology, CHI at Crumlin, Dublin, Ireland. .,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Manon Benders
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernando Gonzalez
- Department of Neurology, Division of Child Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, OH, USA.,Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yvonne W Wu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Tim Hurley
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | - Aoife Branagan
- Paediatrics, Trinity College Dublin, Trinity Research in Childhood Centre (TRICC), Dublin, Ireland.,Neonatology, Coombe Women's and Infants University Hospital, Dublin, Ireland
| | | | - Sidhartha Tan
- Pediatrics, Division of Neonatology, Children's Hospital of Michigan, Detroit, MI, USA.,Wayne State University School of Medicine, Detroit, MI, 12267, USA.,Pediatrics, Division of Neonatology, Central Michigan University, Mount Pleasant, MI, USA
| | - Abbot Laptook
- Department of Pediatrics, Women and Infants Hospital, Brown University, Providence, RI, USA
| | - Topun Austin
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Khorshid Mohammad
- Section of Neonatology, Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Elizabeth Rogers
- Department of Pediatrics, University of California, San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Karen Luyt
- Translational Health Sciences, University of Bristol, Bristol, UK.,Neonatology, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Sonia Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 750 Welch Road, Suite 315, Palo Alto, CA, 94304, USA
| | - Janet S Soul
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alistair J Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | |
Collapse
|
27
|
Wang XK, Gao C, Zhong HQ, Kong XY, Qiao R, Zhang HC, Chen BY, Gao Y, Li B. TNAP—a potential cytokine in the cerebral inflammation in spastic cerebral palsy. Front Mol Neurosci 2022; 15:926791. [PMID: 36187348 PMCID: PMC9515907 DOI: 10.3389/fnmol.2022.926791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Several studies have shown the significance of neuroinflammation in the pathological progress of cerebral palsy (CP). However, the etiology of CP remains poorly understood. Spastic CP is the most common form of CP, comprising 80% of all cases. Therefore, identifying the specific factors may serve to understand the etiology of spastic CP. Our research aimed to find some relevant factors through protein profiling, screening, and validation to help understand the pathogenesis of cerebral palsy. Materials and methods: In the current study, related clinical parameters were assessed in 18 children with spastic CP along with 20 healthy individuals of the same age. Blood samples of the spastic CP children and controls were analyzed with proteomics profiling to detect differentially expressed proteins. On the other hand, after hypoxic-ischemic encephalopathy (HIE) was induced in the postnatal day 7 rat pups, behavioral tests were performed followed by detection of the differentially expressed markers and inflammatory cytokines in the peripheral blood and cerebral cortex of the CP model rats by Elisa and Western blot. Independent sample t-tests, one-way analysis of variance, and the Pearson correlation were used for statistical analysis. Results: Through proteomic analysis, differentially expressed proteins were identified. Among them, tissue-nonspecific alkaline phosphatase (TNAP), the gene expression product of alkaline phosphatase (ALPL), was downregulated in spastic CP. In addition, significantly lower TNAP levels were found in the children with CP and model rats. In contrast, compared with the sham rats, the model rats demonstrated a significant increase in osteopontin and proinflammatory biomarkers in both the plasma and cerebral cortex on the ischemic side whereas serum 25 hydroxyvitamin D and IL-10 were significantly decreased. Moreover, serum TNAP level was positively correlated with serum CRP and IL-10 in model rats. Conclusion: These results suggest that TNAP is the potential molecule playing a specific and critical role in the neuroinflammation in spastic CP, which may provide a promising target for the diagnosis and treatment of spastic CP.
Collapse
Affiliation(s)
- Xiao-Kun Wang
- Research Center for Clinical Medicine, JinShan Hospital, Fudan University, Shanghai, China
| | - Chao Gao
- Department of Rehabilitation, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Children’s Genetics and Metabolic Diseases, Zhengzhou, China
| | - He-Quan Zhong
- Research Center for Clinical Medicine, JinShan Hospital, Fudan University, Shanghai, China
| | - Xiang-Yu Kong
- Research Center for Clinical Medicine, JinShan Hospital, Fudan University, Shanghai, China
| | - Rui Qiao
- College of Acupuncture-Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Yunnan, China
| | - Hui-Chun Zhang
- Department of Rehabilitation, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Bai-Yun Chen
- Department of Rehabilitation, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Yang Gao
- Department of Rehabilitation, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Bing Li
- Research Center for Clinical Medicine, JinShan Hospital, Fudan University, Shanghai, China
- *Correspondence: Bing Li https://orcid.org/0000-0001-5709-9396
| |
Collapse
|
28
|
Xi Y, Yue G, Gao S, Ju R, Wang Y. Human umbilical cord blood mononuclear cells transplantation for perinatal brain injury. Stem Cell Res Ther 2022; 13:458. [PMID: 36064459 PMCID: PMC9446746 DOI: 10.1186/s13287-022-03153-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 01/06/2023] Open
Abstract
Perinatal brain injury is a leading cause of death and disability in children. Hypoxic-ischemic encephalopathy in full term infants, and white matter injury in premature infants are most known brain injury in perinatal period. Human umbilical cord blood mononuclear cells contain hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, lymphocytes, monocytes, and so on. Human umbilical cord blood mononuclear cells have many biological functions, such as nerve and vascular regeneration, anti-apoptosis, anti-inflammation, and immune regulation. Human umbilical cord blood mononuclear cells transplantation has achieved significant efficacy and safety in animal and clinical trials for the treatment of perinatal brain injury. We will review human umbilical cord blood mononuclear cells transplantation for perinatal brain injury in this review.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Guang Yue
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shuqiang Gao
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yujia Wang
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China. .,Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Zdolińska-Malinowska I, Boruczkowski D, Hołowaty D, Krajewski P, Snarski E. Rationale for the Use of Cord Blood in Hypoxic-Ischaemic Encephalopathy. Stem Cells Int 2022; 2022:9125460. [PMID: 35599846 PMCID: PMC9117076 DOI: 10.1155/2022/9125460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Hypoxic-ischaemic encephalopathy (HIE) is a severe complication of asphyxia at birth. Therapeutic hypothermia, the standard method for HIE prevention, is effective in only 50% of the cases. As the understanding of the immunological basis of these changes increases, experiments have begun with the use of cord blood (CB) because of its neuroprotective properties. Mechanisms for the neuroprotective effects of CB stem cells include antiapoptotic and anti-inflammatory actions, stimulation of angiogenesis, production of trophic factors, and mitochondrial donation. In several animal models of HIE, CB decreased oxidative stress, cell death markers, CD4+ T cell infiltration, and microglial activation; restored normal brain metabolic activity; promoted neurogenesis; improved myelination; and increased the proportion of mature oligodendrocytes, neuron numbers in the motor cortex and somatosensory cortex, and brain weight. These observations translate into motor strength, limb function, gait, and cognitive function and behaviour. In humans, the efficacy and safety of CB administration were reported in a few early clinical studies which confirmed the feasibility and safety of this intervention for up to 10 years. The results of these studies showed an improvement in the developmental outcomes over hypothermia. Two phase-2 clinical studies are ongoing under the United States regulations, namely one controlled study and one blinded study.
Collapse
Affiliation(s)
| | - Dariusz Boruczkowski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
| | - Dominika Hołowaty
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Paweł Krajewski
- Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza Square 1/3, 02-015 Warsaw, Poland
| | - Emilian Snarski
- Polski Bank Komórek Macierzystych S.A. (FamiCord Group), Jana Pawła II 29, 00-86 Warsaw, Poland
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
30
|
Chen X, Zhang J, Wu Y, Tucker R, Baird GL, Domonoske R, Barrios-Anderson A, Lim YP, Bath K, Walsh EG, Stonestreet BS. Inter-alpha Inhibitor Proteins Ameliorate Brain Injury and Improve Behavioral Outcomes in a Sex-Dependent Manner After Exposure to Neonatal Hypoxia Ischemia in Newborn and Young Adult Rats. Neurotherapeutics 2022; 19:528-549. [PMID: 35290609 PMCID: PMC9226254 DOI: 10.1007/s13311-022-01217-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is a major contributor to neurodevelopmental morbidities. Inter-alpha inhibitor proteins (IAIPs) have neuroprotective effects on HI-related brain injury in neonatal rats. However, the effects of treatment with IAIPs on sequential behavioral, MRI, and histopathological abnormalities in the young adult brain after treatment with IAIPs in neonates remain to be determined. The objective of this study was to examine the neuroprotective effects of IAIPs at different neurodevelopmental stages from newborn to young adults after exposure of neonates to HI injury. IAIPs were given as 11-sequential 30-mg/kg doses to postnatal (P) day 7-21 rats after right common carotid artery ligation and exposure to 90 min of 8% oxygen. The resulting brain edema and injury were examined by T2-weighted magnetic resonance imaging (MRI) and cresyl violet staining, respectively. The mean T2 values of the ipsilateral hemisphere from MRI slices 6 to 10 were reduced in IAIP-treated HI males + females on P8, P9, and P10 and females on P8, P9, P10, and P14. IAIP treatment reduced hemispheric volume atrophy by 44.5 ± 29.7% in adult male + female P42 rats and improved general locomotor abilities measured by the righting reflex over time at P7.5, P8, and P9 in males + females and males and muscle strength/endurance measured by wire hang on P16 in males + females and females. IAIPs provided beneficial effects during the learning phase of the Morris water maze with females exhibiting beneficial effects. IAIPs confer neuroprotection from HI-related brain injury in neonates and even in adult rats and beneficial MRI and behavioral benefits in a sex-dependent manner.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Jiyong Zhang
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yuqi Wu
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Richard Tucker
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Grayson L Baird
- Department of Diagnostic Imaging, Biostatistics Core Lifespan Hospital System, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rose Domonoske
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Adriel Barrios-Anderson
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical College, New York, NY, USA
| | - Edward G Walsh
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA.
| |
Collapse
|
31
|
Effect of expansion of human umbilical cord blood CD34 + cells on neurotrophic and angiogenic factor expression and function. Cell Tissue Res 2022; 388:117-132. [PMID: 35106623 PMCID: PMC8976778 DOI: 10.1007/s00441-022-03592-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022]
Abstract
The use of CD34 + cell-based therapies has largely been focused on haematological conditions. However, there is increasing evidence that umbilical cord blood (UCB) CD34 + -derived cells have neuroregenerative properties. Due to low cell numbers of CD34 + cells present in UCB, expansion is required to produce sufficient cells for therapeutic purposes, especially in adults or when frequent applications are required. However, it is not known whether expansion of CD34 + cells has an impact on their function and neuroregenerative capacity. We addressed this knowledge gap in this study, via expansion of UCB-derived CD34 + cells using combinations of LDL, UM171 and SR-1 to yield large numbers of cells and then tested their functionality. CD34 + cells expanded for 14 days in media containing UM171 and SR-1 resulted in over 1000-fold expansion. The expanded cells showed an up-regulation of the neurotrophic factor genes BDNF, GDNF, NTF-3 and NTF-4, as well as the angiogenic factors VEGF and ANG. In vitro functionality testing showed that these expanded cells promoted angiogenesis and, in brain glial cells, promoted cell proliferation and reduced production of reactive oxygen species (ROS) during oxidative stress. Collectively, this study showed that our 14-day expansion protocol provided a robust expansion that could produce enough cells for therapeutic purposes. These expanded cells, when tested in in vitro, maintained functionality as demonstrated through promotion of cell proliferation, attenuation of ROS production caused by oxidative stress and promotion of angiogenesis.
Collapse
|
32
|
Safety of sibling cord blood cell infusion for children with cerebral palsy. Cytotherapy 2022; 24:931-939. [DOI: 10.1016/j.jcyt.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/11/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
|
33
|
Brégère C, Schwendele B, Radanovic B, Guzman R. Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Rev Rep 2022; 18:474-522. [PMID: 34382141 PMCID: PMC8930888 DOI: 10.1007/s12015-021-10213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxia-ischemia encephalopathy (HIE) refers to a brain injury in term infants that can lead to death or lifelong neurological deficits such as cerebral palsy (CP). The pathogenesis of this disease involves multiple cellular and molecular events, notably a neuroinflammatory response driven partly by microglia, the brain resident macrophages. Treatment options are currently very limited, but stem cell (SC) therapy holds promise, as beneficial outcomes are reported in animal studies and to a lesser degree in human trials. Among putative mechanisms of action, immunomodulation is considered a major contributor to SC associated benefits. The goal of this review is to examine whether microglia is a cellular target of SC-mediated immunomodulation and whether the recruitment of microglia is linked to brain repair. We will first provide an overview on microglial activation in the rodent model of neonatal HI, and highlight its sensitivity to developmental age. Two complementary questions are then addressed: (i) do immune-related treatments impact microglia and provide neuroprotection, (ii) does stem cell treatment modulates microglia? Finally, the immune-related findings in patients enrolled in SC based clinical trials are discussed. Our review points to an impact of SCs on the microglial phenotype, but heterogeneity in experimental designs and methodological limitations hamper our understanding of a potential contribution of microglia to SC associated benefits. Thorough analyses of the microglial phenotype are warranted to better address the relevance of the neuroimmune crosstalk in brain repair and improve or advance the development of SC protocols in humans.
Collapse
Affiliation(s)
- Catherine Brégère
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Bernd Schwendele
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Boris Radanovic
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
34
|
Bizymi N, Georgopoulou A, Mastrogamvraki N, Matheakakis A, Gontika I, Fragiadaki I, Mavroudi I, Papadaki HA. Myeloid-Derived Suppressor Cells (MDSC) in the Umbilical Cord Blood: Biological Significance and Possible Therapeutic Applications. J Clin Med 2022; 11:jcm11030727. [PMID: 35160177 PMCID: PMC8836851 DOI: 10.3390/jcm11030727] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells that suppress immune responses in cancer, infection, and trauma. They mainly act by inhibiting T-cells, natural-killer cells, and dendritic cells, and also by inducing T-regulatory cells, and modulating macrophages. Although they are mostly associated with adverse prognosis of the underlying disease entity, they may display positive effects in specific situations, such as in allogeneic hematopoietic stem cell transplantation (HSCT), where they suppress graft-versus-host disease (GVHD). They also contribute to the feto-maternal tolerance, and in the fetus growth process, whereas several pregnancy complications have been associated with their defects. Human umbilical cord blood (UCB) is a source rich in MDSCs and their myeloid progenitor cells. Recently, a number of studies have investigated the generation, isolation, and expansion of UCB-MDSCs for potential clinical application associated with their immunosuppressive properties, such as GVHD, and autoimmune and inflammatory diseases. Given that a significant proportion of UCB units in cord blood banks are not suitable for clinical use in HSCT, they might be used as a significant source of MDSCs for research and clinical purposes. The current review summarizes the roles of MDSCs in the UCB, as well as their promising applications.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece; (N.B.); (A.M.); (I.M.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Anthie Georgopoulou
- Public Cord Blood Bank of Crete, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece; (A.G.); (N.M.); (I.G.); (I.F.)
| | - Natalia Mastrogamvraki
- Public Cord Blood Bank of Crete, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece; (A.G.); (N.M.); (I.G.); (I.F.)
| | - Angelos Matheakakis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece; (N.B.); (A.M.); (I.M.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Ioanna Gontika
- Public Cord Blood Bank of Crete, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece; (A.G.); (N.M.); (I.G.); (I.F.)
| | - Irene Fragiadaki
- Public Cord Blood Bank of Crete, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece; (A.G.); (N.M.); (I.G.); (I.F.)
| | - Irene Mavroudi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece; (N.B.); (A.M.); (I.M.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Public Cord Blood Bank of Crete, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece; (A.G.); (N.M.); (I.G.); (I.F.)
| | - Helen A. Papadaki
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece; (N.B.); (A.M.); (I.M.)
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Public Cord Blood Bank of Crete, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece; (A.G.); (N.M.); (I.G.); (I.F.)
- Correspondence: ; Tel.: +30-2810394637
| |
Collapse
|
35
|
Pozzi G, Gobbi G, Masselli E, Carubbi C, Presta V, Ambrosini L, Vitale M, Mirandola P. Buffering Adaptive Immunity by Hydrogen Sulfide. Cells 2022; 11:cells11030325. [PMID: 35159135 PMCID: PMC8834412 DOI: 10.3390/cells11030325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
T cell-mediated adaptive immunity is designed to respond to non-self antigens and pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1), Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (H2S) is one of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both endogenous and exogenous H2S modulate numerous important cell signaling pathways. In monocytes, polymorphonuclear, and T cells H2S impacts on activation, survival, proliferation, polarization, adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we offer a comprehensive review on the role of H2S as a natural buffer able to maintain over time a functional balance between Th1, Th2, Th17 and Treg immunological responses.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Giuliana Gobbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Elena Masselli
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (P.M.)
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Valentina Presta
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Luca Ambrosini
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Marco Vitale
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Italian Foundation for the Research in Balneology, Via Po 22, 00198 Rome, Italy
| | - Prisco Mirandola
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- Correspondence: (E.M.); (P.M.)
| |
Collapse
|
36
|
Synergistic Effect in Neurological Recovery via Anti-Apoptotic Akt Signaling in Umbilical Cord Blood and Erythropoietin Combination Therapy for Neonatal Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2021; 22:ijms222111995. [PMID: 34769434 PMCID: PMC8584683 DOI: 10.3390/ijms222111995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Our previous clinical studies demonstrated the synergistic therapeutic effect induced by co-administering recombinant human erythropoietin (rhEPO) in human umbilical cord blood (hUCB) therapy for children with cerebral palsy. However, the cellular mechanism beyond the beneficial effects in this combination therapy still needs to be elucidated. A hypoxic–ischemic encephalopathy (HIE) model of neonates, representing cerebral palsy, was prepared and randomly divided into five groups (hUCB+rhEPO combination, hUCB, and rhEPO treatments over HIE, HIE control, and sham). Seven days after, hUCB was administered intraperitoneally and the rhEPO injections were started. Neurobehavioral tests showed the best outcome in the combination therapy group, while the hUCB and rhEPO alone treatments also showed better outcomes compared with the control (p < 0.05). Inflammatory cytokines were downregulated by the treatments and attenuated most by the combination therapy (p < 0.05). The hUCB+rhEPO treatment also showed remarkable increase in phosphorylation of Akt and potentiation of anti-apoptotic responses with decreased Bax and increased Bcl-2 (p < 0.05). Pre-treatment of MK-2206, an Akt inhibitor, for the combination therapy depressed the anti-apoptotic effects. In conclusion, these findings suggest that the therapeutic effect of hUCB therapy might be potentiated by co-administration of rhEPO via augmentation of anti-inflammatory and anti-apoptotic responses related to the phosphorylation of Akt.
Collapse
|
37
|
Ray SK, Mukherjee S. Clinical Practice of Umbilical Cord Blood Stem Cells in Transplantation and Regenerative Medicine - Prodigious Promise for Imminent Times. Recent Pat Biotechnol 2021; 16:16-34. [PMID: 34702158 DOI: 10.2174/1872208315666211026103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
The umbilical cord blood is usually disposed of as an unwanted material after parturition; however, today, it is viewed as a regenerative medication so as to create the organ tissues. This cord blood gathered from the umbilical cord is made up of mesenchymal stem cells, hematopoietic stem cells, and multipotent non-hematopoietic stem cells having many therapeutic effects as these stem cells are utilized to treat malignancies, hematological ailments, inborn metabolic problem, and immune deficiencies. Presently, numerous clinical applications for human umbilical cord blood inferred stem cells, as stem cell treatment initiate new research. These cells are showing such a boon to stem cell treatment; it is nevertheless characteristic that the prospect of conservation of umbilical cord blood is gaining impetus. Current research works have demonstrated that about 80 diseases, including cancer, can be treated or relieved utilizing umbilical cord blood stem cells, and every year, many transplants have been effectively done around the world. However, in terms of factors, including patient selection, cell preparation, dosing, and delivery process, the treatment procedure for therapy with minimally manipulated stem cells can be patented. It is also worth thinking about how this patent could affect cord blood banks. Meanwhile, the utilization of cord blood cells is controversial and adult-derived cells may not be as successful, so numerous clinicians have begun working with stem cells that are acquired from umbilical cord blood. This review epitomizes a change in outlook from what has been completed with umbilical cord blood cell research and cord blood banking on the grounds that cord blood cells do not require much in the method of handling for cryopreservation or for transplantation in regenerative medicine.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. 0
| |
Collapse
|
38
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
39
|
Umbilical cord blood therapy modulates neonatal hypoxic ischemic brain injury in both females and males. Sci Rep 2021; 11:15788. [PMID: 34349144 PMCID: PMC8338979 DOI: 10.1038/s41598-021-95035-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical and clinical studies have shown that sex is a significant risk factor for perinatal morbidity and mortality, with males being more susceptible to neonatal hypoxic ischemic (HI) brain injury. No study has investigated sexual dimorphism in the efficacy of umbilical cord blood (UCB) cell therapy. HI injury was induced in postnatal day 10 (PND10) rat pups using the Rice-Vannucci method of carotid artery ligation. Pups received 3 doses of UCB cells (PND11, 13, 20) and underwent behavioural testing. On PND50, brains were collected for immunohistochemical analysis. Behavioural and neuropathological outcomes were assessed for sex differences. HI brain injury resulted in a significant decrease in brain weight and increase in tissue loss in females and males. Females and males also exhibited significant cell death, region-specific neuron loss and long-term behavioural deficits. Females had significantly smaller brains overall compared to males and males had significantly reduced neuron numbers in the cortex compared to females. UCB administration improved multiple aspects of neuropathology and functional outcomes in males and females. Females and males both exhibited injury following HI. This is the first preclinical evidence that UCB is an appropriate treatment for neonatal brain injury in both female and male neonates.
Collapse
|
40
|
Cord-Blood-Derived Professional Antigen-Presenting Cells: Functions and Applications in Current and Prospective Cell Therapies. Int J Mol Sci 2021; 22:ijms22115923. [PMID: 34072923 PMCID: PMC8199409 DOI: 10.3390/ijms22115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Human umbilical cord blood (UCB) represents a valuable source of hematopoietic stem cells, particularly for patients lacking a matching donor. UCB provides practical advantages, including a lower risk of graft-versus-host-disease and permissive human leukocyte antigen mismatching. These advantageous properties have so far been applied for stem cell, mesenchymal stromal cell, and chimeric antigen receptor T cell therapies. However, UCB-derived professional antigen-presenting cells are increasingly being utilized in the context of immune tolerance and regenerative therapy. Here, we review the cell-specific characteristics as well as recent advancements in UCB-based cell therapies focusing on dendritic cells, monocytes, B lymphocytes, innate lymphoid cells, and macrophages.
Collapse
|
41
|
Sato Y, Tsuji M. Diverse actions of cord blood cell therapy for hypoxic-ischemic encephalopathy. Pediatr Int 2021; 63:497-503. [PMID: 33453136 PMCID: PMC8252712 DOI: 10.1111/ped.14604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal death and permanent neurological deficits. However, effective treatments have not yet been established, except therapeutic hypothermia, which is not effective for severe HIE; therefore, developing a novel therapy for HIE is of the utmost importance. Stem cell therapy has recently been identified as a novel therapy for HIE. Among the various stem cell sources, ethical hurdles can be avoided by using stem cells that originate from non-embryonic or non-neural tissues, such as umbilical cord blood cells (UCBCs), which are readily available and can be exploited for autologous transplantations. Human UCBs are a rich source of stem and progenitor cells. Many recent studies have reported the treatment effect of UCBCs. Additionally, phase I clinical trials have already been conducted, showing this therapy's safety and feasibility. One advantage of stem cell therapies, including UCBC administration, is that they exert treatment effects through multifaceted mechanisms. According to the findings of several publications, replacement of lost cells, namely, engraftment and differentiation into neuronal cells, is not likely to be the main mechanism. However, the association between UCBCs and various mechanism of action, such as neurogenesis, angiogenesis, and anti-inflammation, has been suggested in many studies, and most mechanisms are due to growth factors secreted from UCBCs. These diverse actions of UCBC treatment are expected to exert a substantial effect on HIE, which has a complex injury mechanism.
Collapse
Affiliation(s)
- Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Masahiro Tsuji
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| |
Collapse
|
42
|
Penny TR, Pham Y, Sutherland AE, Smith MJ, Lee J, Jenkin G, Fahey MC, Miller SL, McDonald CA. Optimization of behavioral testing in a long-term rat model of hypoxic ischemic brain injury. Behav Brain Res 2021; 409:113322. [PMID: 33901432 DOI: 10.1016/j.bbr.2021.113322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hypoxic ischemic (HI) brain injury is a significant cause of childhood neurological deficits. Preclinical rodent models are often used to study these deficits; however, no preclinical study has determined which behavioral tests are most appropriate for long-term follow up after neonatal HI. METHODS HI brain injury was induced in postnatal day (PND) 10 rat pups using the Rice-Vannucci method of unilateral carotid artery ligation. Rats underwent long-term behavioral testing to assess motor and cognitive outcomes between PND11-50. Behavioral scores were transformed into Z-scores and combined to create composite behavioral scores. RESULTS HI rats showed a significant deficit in three out of eight behavioral tests: negative geotaxis analysis, the cylinder test and the novel object recognition test. These individual test outcomes were transformed into Z-scores and combined to create a composite Z-score. This composite z-score showed that HI rats had a significantly increased behavioral burden over the course of the experiment. CONCLUSION In this study we have identified tests that highlight specific cognitive and motor deficits in a rat model of neonatal HI. Due to the high variability in this model of neonatal HI brain injury, significant impairment is not always observed in individual behavioral tests, but by combining outcomes from these individual tests, long-term behavioral burden can be measured.
Collapse
Affiliation(s)
- Tayla R Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Madeleine J Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Joohyung Lee
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Michael C Fahey
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
| |
Collapse
|
43
|
McAdams RM, Berube MW. Emerging therapies and management for neonatal encephalopathy-controversies and current approaches. J Perinatol 2021; 41:661-674. [PMID: 33712717 DOI: 10.1038/s41372-021-01022-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 01/31/2023]
Abstract
Neonatal encephalopathy (NE) continues to have a major impact on newborn survival and neurodevelopmental outcomes worldwide. In high-income settings, therapeutic hypothermia is the only established standard treatment for neonates with moderate-to-severe NE, with compelling evidence that cooling reduces mortality and major neurodevelopmental impairment in survivors. Despite therapeutic hypothermia, a significant proportion of cooled infants continue to suffer long-term disability from brain injury. Innovative therapies offer the possibility of further improving neurodevelopmental outcomes by working synergistically with therapeutic hypothermia to decrease hypoxia-ischemia-induced excitotoxicity, prevent progression to secondary energy failure, and in some cases, promote neuroregeneration in the developing neonatal brain. This review discusses emerging NE therapies currently under investigation, offers insight into controversies surrounding various approaches to clinical care during therapeutic hypothermia, and identifies ongoing knowledge deficits that hinder attainment of optimal outcomes for neonates with NE.
Collapse
Affiliation(s)
- Ryan M McAdams
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Megan W Berube
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
44
|
Stem Cell Therapy for Neonatal Hypoxic-Ischemic Encephalopathy: A Systematic Review of Preclinical Studies. Int J Mol Sci 2021; 22:ijms22063142. [PMID: 33808671 PMCID: PMC8003344 DOI: 10.3390/ijms22063142] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is an important cause of mortality and morbidity in the perinatal period. This condition results from a period of ischemia and hypoxia to the brain of neonates, leading to several disorders that profoundly affect the daily life of patients and their families. Currently, therapeutic hypothermia (TH) is the standard of care in developing countries; however, TH is not always effective, especially in severe cases of HIE. Addressing this concern, several preclinical studies assessed the potential of stem cell therapy (SCT) for HIE. With this systematic review, we gathered information included in 58 preclinical studies from the last decade, focusing on the ones using stem cells isolated from the umbilical cord blood, umbilical cord tissue, placenta, and bone marrow. Outstandingly, about 80% of these studies reported a significant improvement of cognitive and/or sensorimotor function, as well as decreased brain damage. These results show the potential of SCT for HIE and the possibility of this therapy, in combination with TH, becoming the next therapeutic approach for HIE. Nonetheless, few preclinical studies assessed the combination of TH and SCT for HIE, and the existent studies show some contradictory results, revealing the need to further explore this line of research.
Collapse
|
45
|
Li T, Chu X, Xin D, Ke H, Wang S, Liu D, Chen W, Wang Z. H 2S prevents peripheral immune cell invasion, increasing [Ca 2+]i and excessive phagocytosis following hypoxia-ischemia injury in neonatal mice. Biomed Pharmacother 2021; 135:111207. [PMID: 33460958 DOI: 10.1016/j.biopha.2020.111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/24/2022] Open
Abstract
We previously reported that L-Cysteine, H2S donor, remarkably attenuated neuroinflammation following hypoxia-ischemia (HI) brain injury in neonatal mice. However, its anti-inflammatory mechanism for HI insult is still unknown. The study focus on the effects of L-Cysteine on immune cell populations, Ca2+ mobilization and phagocytosis after neonatal HI. We found that L-Cysteine treatment skewed CD11b+/CD45low microglia and CD11b+/CD45high brain monocytes/macrophages towards a more anti-inflammatory property 72 h after HI-injured brain. Moreover, L-Cysteine treatment reduced cerebral infiltration of CD4 T cells 7 days following HI insult. Furthermore, CD4 T cell subset analysis revealed that L-Cysteine treatment decreased Th1 and Th2 counts, while increased Th17/Th2 ratio. Moreover, L-Cysteine treatment suppressed LPS-induced cytosolic Ca2+ and LPS-stimulated phagocytosis in primary microglia. The anti-inflammatory effect of L-Cysteine was associated with improving neurobehavioral impairment following HI insult. Our results demonstrate L-Cysteine treatment suppressed the invasion of peripheral immune cells, increasing [Ca2+]i and excessive phagocytosis to improve neurobehavioral deficits following hypoxia-ischemia injury in neonatal mice by H2S release.
Collapse
Affiliation(s)
- Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China; Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Shuhan Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, PR China
| | - Wenqiang Chen
- Qilu Hospital, Shandong University, Jinan, Shandong, PR China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
46
|
Dumbuya JS, Chen L, Wu JY, Wang B. The role of G-CSF neuroprotective effects in neonatal hypoxic-ischemic encephalopathy (HIE): current status. J Neuroinflammation 2021; 18:55. [PMID: 33612099 PMCID: PMC7897393 DOI: 10.1186/s12974-021-02084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/23/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is an important cause of permanent damage to central nervous system (CNS) that may result in neonatal death or manifest later as mental retardation, epilepsy, cerebral palsy, or developmental delay. The primary cause of this condition is systemic hypoxemia and/or reduced cerebral blood flow with long-lasting neurological disabilities and neurodevelopmental impairment in neonates. About 20 to 25% of infants with HIE die in the neonatal period, and 25-30% of survivors are left with permanent neurodevelopmental abnormalities. The mechanisms of hypoxia-ischemia (HI) include activation and/or stimulation of myriad of cascades such as increased excitotoxicity, oxidative stress, N-methyl-D-aspartic acid (NMDA) receptor hyperexcitability, mitochondrial collapse, inflammation, cell swelling, impaired maturation, and loss of trophic support. Different therapeutic modalities have been implicated in managing neonatal HIE, though translation of most of these regimens into clinical practices is still limited. Therapeutic hypothermia, for instance, is the most widely used standard treatment in neonates with HIE as studies have shown that it can inhibit many steps in the excito-oxidative cascade including secondary energy failure, increases in brain lactic acid, glutamate, and nitric oxide concentration. Granulocyte-colony stimulating factor (G-CSF) is a glycoprotein that has been implicated in stimulation of cell survival, proliferation, and function of neutrophil precursors and mature neutrophils. Extensive studies both in vivo and ex vivo have shown the neuroprotective effect of G-CSF in neurodegenerative diseases and neonatal brain damage via inhibition of apoptosis and inflammation. Yet, there are still few experimentation models of neonatal HIE and G-CSF's effectiveness, and extrapolation of adult stroke models is challenging because of the evolving brain. Here, we review current studies and/or researches of G-CSF's crucial role in regulating these cytokines and apoptotic mediators triggered following neonatal brain injury, as well as driving neurogenesis and angiogenesis post-HI insults.
Collapse
Affiliation(s)
- John Sieh Dumbuya
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lu Chen
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
47
|
Therapeutic potential of stem cells for preterm infant brain damage: Can we move from the heterogeneity of preclinical and clinical studies to established therapeutics? Biochem Pharmacol 2021; 186:114461. [PMID: 33571501 DOI: 10.1016/j.bcp.2021.114461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Acquired perinatal brain injuries are a set of conditions that remains a key challenge for neonatologists and that have significant social, emotional and financial implications for our communities. In our perspective article, we will introduce perinatal brain injury focusing specifically on the events leading to brain damage in preterm born infants and outcomes for these infants. Then we will summarize and discuss the preclinical and clinical studies testing the efficacy of stem cells as neuroprotectants in the last ten years in perinatal brain injury. There are no therapies to treat brain damage in preterm born infants and a primary finding from this review is that there is a scarcity of stem cell trials focused on overcoming brain injuries in these infants. Overall, across all forms of perinatal brain injury there is a remarkable heterogeneity in previous and on-going preclinical and clinical studies in terms of the stem cell type, animal models/patient selection, route and time of administration. Despite the quality of many of the studies this variation makes it difficult to reach a valid consensus for future developments. However, it is clear that stem cells (and stem cell derived exosomes) can reduce perinatal brain injury and our field needs to work collectively to refine an effective protocol for each type of injury. The use of standardized stem cell products and testing these products across multiple models of injury will provide a stronger framework for clinical trials development.
Collapse
|
48
|
Ogawa Y, Tanaka E, Sato Y, Tsuji M. Brain damage caused by neonatal hypoxia-ischemia and the effects of hypothermia in severe combined immunodeficient (SCID) mice. Exp Neurol 2020; 337:113577. [PMID: 33359474 DOI: 10.1016/j.expneurol.2020.113577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of brain damage in newborns. Although therapeutic hypothermia has been shown to be neuroprotective against neonatal HIE in clinical trials, its effect is not satisfactory. Cell-based therapies have attracted much attention as novel treatments for HIE. Preclinical studies on a variety of human cell transplantation methods have been performed in immunodeficient/immunosuppressed animals, such as severe combined immunodeficient (SCID) mice, which lack functional T and B lymphocytes. The detailed characteristics of neonatal HIE in SCID mice, however, have not been delineated. In preclinical studies, novel therapies for neonatal HIE should be evaluated in combination with hypothermia, which has become a standard treatment for neonatal HIE. However, the effects of hypothermia in SCID mice have not been delineated. In the present study, we compared neonatal hypoxic-ischemic (HI) brain damage in SCID mice and wild-type mice treated with or without hypothermia. Male and female mouse pups were subjected to HI insult induced by unilateral common carotid artery ligation combined with systemic hypoxia on postnatal day 12. In the first 4 h after HI insult, body temperature was maintained at 36 °C for the normothermia groups or 32 °C for the hypothermia groups. The severity of brain damage in SCID mice did not differ from that in wild-type mice based on most evaluations, i.e., cerebral blood flow, hemiparesis, muscle strength, spontaneous activity, cerebral hemispheric volume, neuropathological injury, and serum cytokine levels, although spleen weight, brain weight, leukocyte counts and the levels of some cytokines in the peripheral blood were different between genotypes. The effects of hypothermia in SCID mice were comparable to those in wild-type mice based on most evaluations. Taken together, these findings indicate that SCID mice can be used as an appropriate preclinical model for cell therapies for neonatal HIE.
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan.
| | - Emi Tanaka
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal - Neonatal Care, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan.
| |
Collapse
|
49
|
Qiu H, Qian T, Wu T, Wang X, Zhu C, Chen C, Wang L. Umbilical cord blood cells for the treatment of preterm white matter injury: Potential effects and treatment options. J Neurosci Res 2020; 99:778-792. [PMID: 33207392 DOI: 10.1002/jnr.24751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022]
Abstract
Preterm birth is a global public health problem. A large number of preterm infants survive with preterm white matter injury (PWMI), which leads to neurological deficits, and has multifaceted etiology, clinical course, monitoring, and outcomes. The principal upstream insults leading to PWMI initiation are hypoxia-ischemia and infection and/or inflammation and the key target cells are late oligodendrocyte precursor cells. Current PWMI treatments are mainly supportive, and thus have little effect in terms of protecting the immature brain or repairing injury to improve long-term outcomes. Umbilical cord blood (UCB) cells comprise abundant immunomodulatory and stem cells, which have the potential to reduce brain injury, mainly due to anti-inflammatory and immunomodulatory mechanisms, and also through their release of neurotrophic or growth factors to promote endogenous neurogenesis. In this review, we briefly summarize PWMI pathogenesis and pathophysiology, and the specific properties of different cell types in UCB. We further explore the potential mechanism by which UCB can be used to treat PWMI, and discuss the advantages of and potential issues related to UCB cell therapy. Finally, we suggest potential future studies of UCB cell therapy in preterm infants.
Collapse
Affiliation(s)
- Han Qiu
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Tianyang Qian
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Tong Wu
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoyang Wang
- Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Center of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Chao Chen
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| | - Laishuan Wang
- Key Laboratory of Neonatal Diseases of Health Commission of the People's Republic of China, Shanghai, China.,Department of Neonatology, National Children's Medical Center/Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
50
|
Vankeshwaram V, Maheshwary A, Mohite D, Omole JA, Khan S. Is Stem Cell Therapy the New Savior for Cerebral Palsy Patients? A Review. Cureus 2020; 12:e10214. [PMID: 33042660 PMCID: PMC7535865 DOI: 10.7759/cureus.10214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cerebral Palsy (CP) is one of the foremost causes of childhood motor disability and disrupts the individual's development and ability to function. Several factors contribute to the development of CP such as preterm delivery, low birth weight, infection/inflammation, and additional pregnancy complications, both in preterm and term infants. As there is no specific treatment for CP, rehabilitation is the current option for the management of patients. The serious nature of this condition creates deficits that last a lifetime. We collected studies that were published in the past 10 years, using PubMed as our main database. We chose studies that were relevant to CP and stem cell therapy. We mainly focused on various types of stem cells that can be used in treatment, mechanism of action (MOA) of stem cells, routes, dosage, and adverse effects, their efficacy, and safety in CP patients. Of all the 38 studies we reviewed, we found that five articles discussed the utilization of human umbilical cord blood [hUCB], four articles discussed autologous bone marrow stem cells, and one discussed allogeneic umbilical cord blood usage. One article discussed neural stem-like cells (NSLCs) derived from bone marrow and the remaining 27 articles were about CP and its treatment. We reviewed detailed information about the possible stem cell therapies and their benefits in patients with CP. We found that immune modulation is the major mechanism of action of stem cells, and among all the types of stem cells. Autologous umbilical cord mesenchymal stem cells appear to be safe and most effective in treatment compared to other stem cell treatments. Among all symptoms, motor symptoms are best corrected by stem cell therapy. Still, it did not show any marked improvement in treating other symptoms like speech defects, sensory or cognitive defects, or visual impairment.
Collapse
Affiliation(s)
- Varun Vankeshwaram
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Medicine, Zaporozhye State Medical University, Zaporozhye, UKR
| | - Ankush Maheshwary
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Medicine, Government Medical College, Amritsar, IND
| | - Divya Mohite
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Janet A Omole
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|