1
|
Xu Y, Wen L, Tang Y, Zhao Z, Xu M, Wang T, Chen Z. Sodium butyrate activates the K ATP channels to regulate the mechanism of Parkinson's disease microglia model inflammation. Immun Inflamm Dis 2024; 12:e1194. [PMID: 38501544 PMCID: PMC10949401 DOI: 10.1002/iid3.1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder. Microglia-mediated neuroinflammation has emerged as an involving mechanism at the initiation and development of PD. Activation of adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels can protect dopaminergic neurons from damage. Sodium butyrate (NaB) shows anti-inflammatory and neuroprotective effects in some animal models of brain injury and regulates the KATP channels in islet β cells. In this study, we aimed to verify the anti-inflammatory effect of NaB on PD and further explored potential molecular mechanisms. METHODS We established an in vitro PD model in BV2 cells using 1-methyl-4-phenylpyridinium (MPP+ ). The effects of MPP+ and NaB on BV2 cell viability were detected by cell counting kit-8 assays. The morphology of BV2 cells with or without MPP+ treatment was imaged via an optical microscope. The expression of Iba-1 was examined by the immunofluorescence staining. The intracellular ATP content was estimated through the colorimetric method, and Griess assay was conducted to measure the nitric oxide production. The expression levels of pro-inflammatory cytokines and KATP channel subunits were evaluated by reverse transcription-quantitative polymerase chain reaction and western blot analysis. RESULTS NaB (5 mM) activated the KATP channels through elevating Kir6.1 and Kir6.1 expression in MPP+ -challenged BV2 cells. Both NaB and pinacidil (a KATP opener) suppressed the MPP+ -induced activation of BV2 cells and reduced the production of nitrite and pro-inflammatory cytokines in MPP+ -challenged BV2 cells. CONCLUSION NaB treatment alleviates the MPP+ -induced inflammatory responses in microglia via activation of KATP channels.
Collapse
Affiliation(s)
- Ye Xu
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Laofu Wen
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Yunyi Tang
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zhenqiang Zhao
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Miaojing Xu
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tan Wang
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zhibin Chen
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| |
Collapse
|
2
|
L-Theanine alleviates MPTP-induced Parkinson's disease by targeting Wnt/β-catenin signaling mediated by the MAPK signaling pathway. Int J Biol Macromol 2023; 226:90-101. [PMID: 36502788 DOI: 10.1016/j.ijbiomac.2022.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
We evaluated the neuroprotective effect of L-theanine in Parkinson's disease and the underlying mechanism focusing on WNT/β-catenin signaling mediated by the MAPK pathway. We treated MPTP-induced SH-SY5Y cells with various concentrations of L-theanine (50, 100, 200, and 500 μg/mL), and we also treated Parkinson's model mice with L-theanine. L-theanine treatment effectively reduced the immunohistochemical hallmarks of Parkinson's disease, particularly Lewy bodies and α-synuclein, and increased the number of tyrosine hydroxylase-positive cells. L-theanine also improved the motor dysfunction in MPTP-induced Parkinson's disease model mice as measured by the rotarod test. The levels of several pro-inflammatory mediators that are overexpressed in Parkinson's disease, namely TNF-α, IL-6, COX-2, and MAC-1, were reduced following L-theanine treatment, and the levels of the pro-apoptotic proteins Bcl-2, caspase-3, p53, and PARP-1 were significantly reduced. L-theanine regulated the oxidative stress-related factors SOD-1, GST, and NOX-4 by targeting several proteins related to WNT/β-catenin signaling, i.e., β-catenin, WNT-3a, WNT-5a, TCF1/TCF7, and LEF1, via the MAPK pathway (p-JNK, p-ERK, and p-p38). Our results indicate that L-theanine is neuroprotective and has anti-inflammatory effects that could be beneficial for treating Parkinson's disease.
Collapse
|
3
|
Ren Z, Ding H, Zhou M, Chan P. Ganoderma lucidum Modulates Inflammatory Responses following 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Administration in Mice. Nutrients 2022; 14:nu14183872. [PMID: 36145248 PMCID: PMC9505693 DOI: 10.3390/nu14183872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Ganoderma lucidum, one of the most valued medicinal mushrooms, has been used for health supplements and medicine in China. Our previous studies have proved that Ganoderma lucidum extract (GLE) could inhibit activation of microglia and protect dopaminergic neurons in vitro. In the present study, we investigated the anti-neuroinflammatory potential of GLE in vivo on Parkinsonian-like pathological dysfunction. Male C57BL/6J mice were subjected to acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesion, and a treatment group was administered intragastrically with GLE at a dose of 400 mg/kg. Immunohistochemistry staining showed that GLE efficiently repressed MPTP-induced microglia activation in nigrostriatal region. Accordingly, Bio-plex multiple cytokine assay indicated that GLE treatment modulates abnormal cytokine expression levels. In microglia BV-2 cells incubated with LPS, increased expression of iNOS and NLRP3 were effectively inhibited by 800 μg/mL GLE. Furthermore, GLE treatment decreased the expression of LC3II/I, and further enhanced the expression of P62. These results indicated that the neuroprotection of GLE in an experimental model of PD was partially related to inhibition of microglia activation in vivo and vitro, possibly through downregulating the iNOS/NLRP3 pathway, inhibiting abnormal microglial autophagy and lysosomal degradation, which provides new evidence for Ganoderma lucidum in PD treatment.
Collapse
Affiliation(s)
- Zhili Ren
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Correspondence: ; Tel.: +86-10-83188677
| | - Hui Ding
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Ming Zhou
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100053, China
- Clinical Center for Parkinson’s Disease, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson’s Disease, Beijing 100053, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| |
Collapse
|
4
|
The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:32. [PMID: 35332154 PMCID: PMC8948240 DOI: 10.1038/s41531-022-00293-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
The pathology of Parkinson's disease (PD) is characterized by α-synuclein aggregation, microglia-mediated neuroinflammation, and dopaminergic neurodegeneration in the substantia nigra with collateral striatal dopamine signaling deficiency. Microglial NLRP3 inflammasome activation has been linked independently to each of these facets of PD pathology. The voltage-gated potassium channel Kv1.3, upregulated in microglia by α-synuclein and facilitating potassium efflux, has also been identified as a modulator of neuroinflammation and neurodegeneration in models of PD. Evidence increasingly suggests that microglial Kv1.3 is mechanistically coupled with NLRP3 inflammasome activation, which is contingent on potassium efflux. Potassium conductance also influences dopamine release from midbrain dopaminergic neurons. Dopamine, in turn, has been shown to inhibit NLRP3 inflammasome activation in microglia. In this review, we provide a literature framework for a hypothesis in which Kv1.3 activity-induced NLRP3 inflammasome activation, evoked by stimuli such as α-synuclein, could lead to microglia utilizing dopamine from adjacent dopaminergic neurons to counteract this process and fend off an activated state. If this is the case, a sufficient dopamine supply would ensure that microglia remain under control, but as dopamine is gradually siphoned from the neurons by microglial demand, NLRP3 inflammasome activation and Kv1.3 activity would progressively intensify to promote each of the three major facets of PD pathology: α-synuclein aggregation, microglia-mediated neuroinflammation, and dopaminergic neurodegeneration. Risk factors overlapping to varying degrees to render brain regions susceptible to such a mechanism would include a high density of microglia, an initially sufficient supply of dopamine, and poor insulation of the dopaminergic neurons by myelin.
Collapse
|
5
|
Wang Q, Wang Y, Liu Z, Guo J, Li J, Zhao Y. Improvement effect of acupuncture on locomotor function in Parkinson disease via regulating gut microbiota and inhibiting inflammatory factor release. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2022. [DOI: 10.1007/s11726-022-1297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Pike AF, Longhena F, Faustini G, van Eik JM, Gombert I, Herrebout MAC, Fayed MMHE, Sandre M, Varanita T, Teunissen CE, Hoozemans JJM, Bellucci A, Veerhuis R, Bubacco L. Dopamine signaling modulates microglial NLRP3 inflammasome activation: implications for Parkinson's disease. J Neuroinflammation 2022; 19:50. [PMID: 35172843 PMCID: PMC8848816 DOI: 10.1186/s12974-022-02410-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the loss of nigral dopaminergic neurons leading to impaired striatal dopamine signaling, α-synuclein- (α-syn-) rich inclusions, and neuroinflammation. Degenerating neurons are surrounded by activated microglia with increased secretion of interleukin-1β (IL-1β), driven largely by the NLRP3 inflammasome. A critical role for microglial NLRP3 inflammasome activation in the progression of both dopaminergic neurodegeneration and α-syn pathology has been demonstrated in parkinsonism mouse models. Fibrillar α-syn activates this inflammasome in mouse and human macrophages, and we have shown previously that the same holds true for primary human microglia. Dopamine blocks microglial NLRP3 inflammasome activation in the MPTP model, but its effects in this framework, highly relevant to PD, remain unexplored in primary human microglia and in other in vivo parkinsonism models. METHODS Biochemical techniques including quantification of IL-1β secretion and confocal microscopy were employed to gain insight into dopamine signaling-mediated inhibition of the NLRP3 inflammasome mechanism in primary human microglia and the SYN120 transgenic mouse model. Dopamine and related metabolites were applied to human microglia together with various inflammasome activating stimuli. The involvement of the receptors through which these catecholamines were predicted to act were assessed with agonists in both species. RESULTS We show in primary human microglia that dopamine, L-DOPA, and high extracellular K+, but not norepinephrine and epinephrine, block canonical, non-canonical, and α-syn-mediated NLRP3 inflammasome-driven IL-1β secretion. This suggests that dopamine acts as an inflammasome inhibitor in human microglia. Accordingly, we provide evidence that dopamine exerts its inhibitory effect through dopamine receptor D1 and D2 (DRD1 and DRD2) signaling. We also show that aged mice transgenic for human C-terminally truncated (1-120) α-syn (SYN120 tg mice) display increased NLRP3 inflammasome activation in comparison to WT mice that is diminished upon DRD1 agonism. CONCLUSIONS Dopamine inhibits canonical, non-canonical, and α-syn-mediated activation of the NLRP3 inflammasome in primary human microglia, as does high extracellular K+. We suggest that dopamine serves as an endogenous repressor of the K+ efflux-dependent microglial NLRP3 inflammasome activation that contributes to dopaminergic neurodegeneration in PD, and that this reciprocation may account for the specific vulnerability of these neurons to disease pathology.
Collapse
Affiliation(s)
- Adrianne F Pike
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Department of Biology, University of Padua, Padua, Italy.
| | - Francesca Longhena
- Pharmacology Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Faustini
- Pharmacology Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jean-Marc van Eik
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Iris Gombert
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maaike A C Herrebout
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Mona M H E Fayed
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Michele Sandre
- Department of Biology, University of Padua, Padua, Italy
| | | | - Charlotte E Teunissen
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Neuropathology Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Robert Veerhuis
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
7
|
Shim JH, Baek HM. Diffusion Measure Changes of Substantia Nigra Subregions and the Ventral Tegmental Area in Newly Diagnosed Parkinson's Disease. Exp Neurobiol 2021; 30:365-373. [PMID: 34737241 PMCID: PMC8572662 DOI: 10.5607/en21025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Historically, studies have extensively examined the basal ganglia in Parkinson’s disease for specific characteristics that can be observed with medical imaging. One particular methodology used for detecting changes that occur in Parkinson’s disease brains is diffusion tensor imaging, which yields diffusion indices such as fractional anisotropy and radial diffusivity that have been shown to correlate with axonal damage. In this study, we compare the diffusion measures of basal ganglia structures (with substantia nigra divided into subregions, pars compacta, and pars reticula), as well as the diffusion measures of the diffusion tracts that pass through each pair of basal ganglia structures to see if significant differences in diffusion measures can be observed in structures or tracts in newly diagnosed Parkinson’s disease patients. Additionally, we include the ventral tegmental area, a structure connected to various basal ganglia structures affected by dopaminergic neuronal loss and have historically shown significant alterations in Parkinson’s disease, in our analysis. We found significant fractional anisotropy differences in the putamen, and in the diffusion tracts that pass through pairs of both substantia nigra subregions, subthalamic nucleus, parabrachial pigmental nucleus, ventral tegmental area. Additionally, we found significant radial diffusivity differences in diffusion tracts that pass through the parabrachial nucleus, putamen, both substantia nigra subregions, and globus pallidus externa. We were able to find significant diffusion measure differences in structures and diffusion tracts, potentially due to compensatory mechanisms in response to dopaminergic neuronal loss that occurs in newly diagnosed Parkinson’s disease patients.
Collapse
Affiliation(s)
- Jae-Hyuk Shim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
8
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
9
|
Mancini A, Ghiglieri V, Parnetti L, Calabresi P, Di Filippo M. Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Front Immunol 2021; 12:644294. [PMID: 33953715 PMCID: PMC8091963 DOI: 10.3389/fimmu.2021.644294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
The basal ganglia network is represented by an interconnected group of subcortical nuclei traditionally thought to play a crucial role in motor learning and movement execution. During the last decades, knowledge about basal ganglia physiology significantly evolved and this network is now considered as a key regulator of important cognitive and emotional processes. Accordingly, the disruption of basal ganglia network dynamics represents a crucial pathogenic factor in many neurological and psychiatric disorders. The striatum is the input station of the circuit. Thanks to the synaptic properties of striatal medium spiny neurons (MSNs) and their ability to express synaptic plasticity, the striatum exerts a fundamental integrative and filtering role in the basal ganglia network, influencing the functional output of the whole circuit. Although it is currently established that the immune system is able to regulate neuronal transmission and plasticity in specific cortical areas, the role played by immune molecules and immune/glial cells in the modulation of intra-striatal connections and basal ganglia activity still needs to be clarified. In this manuscript, we review the available evidence of immune-based regulation of synaptic activity in the striatum, also discussing how an abnormal immune activation in this region could be involved in the pathogenesis of inflammatory and degenerative central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | | | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Section of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
10
|
Du X, Penalva R, Little K, Kissenpfennig A, Chen M, Xu H. Deletion of Socs3 in LysM + cells and Cx3cr1 resulted in age-dependent development of retinal microgliopathy. Mol Neurodegener 2021; 16:9. [PMID: 33602265 PMCID: PMC7891019 DOI: 10.1186/s13024-021-00432-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We generated a mouse model of primary microglial dysfunction by deleting two negative immune regulatory genes, Cx3cr1 and Socs3 (in LysM+ cells). This study aimed to understand how primary microglial dysfunction impacts retinal neurons during aging. METHODS The LysMCre-Socs3fl/flCx3cr1gfp/gfp double knockout (DKO), LysMCre-Socs3fl/fl, Cx3cr1gfp/gfp and Socs3fl/fl mice were maintained up to 12 months. Eyes were collected and processed for immunohistochemistry of IBA-1, cone arrestin, secretagogin, PKCα and GABA. Brain microglia from DKO and WT mice were stimulated with LPS + IFN-γ or IL-4. The expression of TNF-α, IL-1β, IL-6, iNOS, IL-12p40, IL-23p19, CCL2, CCL5, CXCL2, IL-10, CD206 and Arg1 were examined by qRT-PCR and protein production was measured by Luminex assay. Retinal explants from C57BL/6 J mice were co-cultured with microglia from DKO or WT mice for 24 h, after which the number of cone arrestin+ cells in retinal flatmount were quantified. RESULTS In 3-5 month old mice, the number of microglia in retinal ganglion cell layer (GCL) and inner plexiform layer (IPL) were comparable in all strains of mice. The DKO mice had a significantly higher number of microglia in the outer plexiform layer (OPL) but significantly lower numbers of cone arrestin+, secretagogin+ and GABA+ cells compared to Socs3fl/fl and single KO mice. During aging, 57% of the DKO mice died before 12 months old. The 10-12 months old DKO mice had significantly higher numbers of microglia in GCL/IPL and OPL than age-matched Socs3fl/fl and single KO mice. The aged DKO mice developed retinal pigment epithelial (RPE) dysmorphology accompanied by subretinal microglial accumulation. The number of photoreceptors, bipolar cells (Secretagogin+ or PKCα+) and GABA+ amacrine cells was significantly lower in aged DKO mice compared to age-matched Socs3fl/fl and single KO mice. Microglia from DKO mice showed significantly higher levels of phagocytic activity and produced higher levels of TNF-α, IL-6, CCL2, CCL5, CXCL2 and CXCL10 compared to microglia from Socs3fl/fl mice. Co-culture of retinal explants with LPS + IFN-γ or IL-4 pre-treated DKO microglia significantly reduced cone photoreceptor survival. CONCLUSIONS The LysMCre-Socs3fl/flCx3cr1gfp/gfp DKO mice displayed primary microglial dysfunction and developed age-related retinal microgliopathy characterized by aggragated microglial activation and multiple retinal neuronal and RPE degeneration. TRIAL REGISTRATION Not applicable. The article does not contain any results from human participants.
Collapse
Affiliation(s)
- Xuan Du
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Rosana Penalva
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Karis Little
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Adrien Kissenpfennig
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Mei Chen
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK.
| | - Heping Xu
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK.
| |
Collapse
|
11
|
Extracellular cardiolipin modulates microglial phagocytosis and cytokine secretion in a toll-like receptor (TLR) 4-dependent manner. J Neuroimmunol 2021; 353:577496. [PMID: 33517251 DOI: 10.1016/j.jneuroim.2021.577496] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Microglia-driven neuroinflammation contributes to neurodegenerative diseases. Mitochondrial phospholipid cardiolipin acts as a signaling molecule when released from damaged cells. We demonstrate that extracellular cardiolipin induces the secretion of monocyte chemoattractant protein-1 and interferon gamma-induced protein 10 by resting microglia while inhibiting secretion of cytokines by microglia stimulated with lipopolysaccharide, amyloid Aβ42 peptides, or α-synuclein. Extracellular cardiolipin also induces nitric oxide secretion by microglia-like cells and upregulates microglial phagocytosis. By using blocking antibodies, we determine that toll-like receptor 4 mediates the latter effect. Under physiological and pathological conditions characterized by cell death, extracellularly released cardiolipin may regulate immune responses of microglia.
Collapse
|
12
|
Abstract
Neuroinflammation has become a key hallmark of neurological complications including perioperative pathologies such as postoperative delirium and longer-lasting postoperative cognitive dysfunction. Dysregulated inflammation and neuronal injury are emerging from clinical studies as key features of perioperative neurocognitive disorders. These findings are paralleled by a growing body of preclinical investigations aimed at better understanding how surgery and anesthesia affect the central nervous system and possibly contribute to cognitive decline. Herein, we review the role of postoperative neuroinflammation and underlying mechanisms in immune-to-brain signaling after peripheral surgery.
Collapse
Affiliation(s)
- Saraswathi Subramaniyan
- From the Center for Translational Pain Medicine, Department of Anesthe siology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
13
|
Liu Z, Qiu AW, Huang Y, Yang Y, Chen JN, Gu TT, Cao BB, Qiu YH, Peng YP. IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson's disease. Brain Behav Immun 2019; 81:630-645. [PMID: 31351185 DOI: 10.1016/j.bbi.2019.07.026] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022] Open
Abstract
Neuroinflammation has been involved in pathogenesis of Parkinson's disease (PD), a chronic neurodegenerative disease characterized neuropathologically by progressive dopaminergic neuronal loss in the substantia nigra (SN). We recently have shown that helper T (Th)17 cells facilitate dopaminergic neuronal loss in vitro. Herein, we demonstrated that interleukin (IL)-17A, a proinflammatory cytokine produced mainly by Th17 cells, contributed to PD pathogenesis depending on microglia. Mouse and rat models for PD were prepared by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or striatal injection of 1-methyl-4-phenylpyridinium (MPP+), respectively. Both in MPTP-treated mice and MPP+-treated rats, blood-brain barrier (BBB) was disrupted and IL-17A level increased in the SN but not in cortex. Effector T (Teff) cells that were adoptively transferred via tail veins infiltrated into the brain of PD mice but not into that of normal mice. The Teff cell transfer aggravated nigrostriatal dopaminergic neurodegeneration, microglial activation and motor impairment. Contrarily, IL-17A deficiency alleviated BBB disruption, dopaminergic neurodegeneration, microglial activation and motor impairment. Anti-IL-17A-neutralizing antibody that was injected into lateral cerebral ventricle in PD rats ameliorated the manifestations mentioned above. IL-17A activated microglia but did not directly affect dopaminergic neuronal survival in vitro. IL-17A exacerbated dopaminergic neuronal loss only in the presence of microglia, and silencing IL-17A receptor gene in microglia abolished the IL-17A effect. IL-17A-treated microglial medium that contained higher concentration of tumor necrosis factor (TNF)-α facilitated dopaminergic neuronal death. Further, TNF-α-neutralizing antibody attenuated MPP+-induced neurotoxicity. The findings suggest that IL-17A accelerates neurodegeneration in PD depending on microglial activation and at least partly TNF-α release.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Ao-Wang Qiu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Yan Huang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Ya Yang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jin-Na Chen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Ting-Ting Gu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Bei-Bei Cao
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
14
|
Di Santo S, Seiler S, Ducray AD, Widmer HR. Conditioned medium from Endothelial Progenitor Cells promotes number of dopaminergic neurons and exerts neuroprotection in cultured ventral mesencephalic neuronal progenitor cells. Brain Res 2019; 1720:146330. [PMID: 31299185 DOI: 10.1016/j.brainres.2019.146330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022]
Abstract
Transplantation of stem and progenitor cells offers a promising tool for brain repair in the context of neuropathological disorders including Parkinson's disease. There is growing proof that the capacity of adult stem and progenitor cells for tissue regeneration relies rather on the release of paracrine factors than on their cell replacement properties. In line with this notion, we have previously reported that conditioned medium (CM) collected from cultured Endothelial Progenitor Cells (EPC) stimulated survival of striatal neurons. In the present study we investigated whether EPC-CM promotes survival of cultured midbrain progenitor cells. For that purpose primary cultures from fetal rat embryonic ventral mesencephalon (VM) were prepared and grown for 7 days in vitro (DIV). EPC-CM was administered from DIV5-7. First, we found that EPC-CM treatment resulted in significantly increased cell densities of TH-ir neurons. Interestingly, this effect was no longer seen after proteolytic digestion of the EPC-CM. EPC-CM also significantly increased densities of beta-III-tubulin positive neurons and lba-1-ir microglial cells. The effect on dopaminergic neurons was not due to higher cell proliferation as no incorporation of EdU was observed in TH-ir cells. Importantly, EPC-CM exerted neuroprotection against MPP+ induced toxicity as in vitro model of Parkinson's disease. Taken together, our findings identified EPC-CM as a powerful tool to promote survival of cultured VM neurons and further support the importance of paracrine factors in the actions of stem and progenitor cells for brain repair.
Collapse
Affiliation(s)
- Stefano Di Santo
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
| | - Stefanie Seiler
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Angélique D Ducray
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; Division of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Hans Rudolf Widmer
- Dept. of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland.
| |
Collapse
|
15
|
Jacobs AJ, Castillo‐Ruiz A, Cisternas CD, Forger NG. Microglial Depletion Causes Region‐Specific Changes to Developmental Neuronal Cell Death in the Mouse Brain. Dev Neurobiol 2019; 79:769-779. [DOI: 10.1002/dneu.22706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Andrew J. Jacobs
- Neuroscience Institute Georgia State University P.O. Box 5030 Atlanta Georgia30302‐5030
| | | | - Carla D. Cisternas
- Neuroscience Institute Georgia State University P.O. Box 5030 Atlanta Georgia30302‐5030
| | - Nancy G. Forger
- Neuroscience Institute Georgia State University P.O. Box 5030 Atlanta Georgia30302‐5030
| |
Collapse
|