1
|
Jiang T, Li Y, Liu H, Sun Y, Zhang H, Zhang Q, Tang S, Niu X, Du H, Yu Y, Yue H, Guo Y, Chen Y, Xu F. Blood-brain barrier disruption and neuroinflammation in the hippocampus of a cardiac arrest porcine model: Single-cell RNA sequencing analysis. Neural Regen Res 2026; 21:742-755. [PMID: 40146000 DOI: 10.4103/nrr.nrr-d-24-01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00043/figure1/v/2025-05-05T160104Z/r/image-tiff Global brain ischemia and neurological deficit are consequences of cardiac arrest that lead to high mortality. Despite advancements in resuscitation science, our limited understanding of the cellular and molecular mechanisms underlying post-cardiac arrest brain injury have hindered the development of effective neuroprotective strategies. Previous studies primarily focused on neuronal death, potentially overlooking the contributions of non-neuronal cells and intercellular communication to the pathophysiology of cardiac arrest-induced brain injury. To address these gaps, we hypothesized that single-cell transcriptomic analysis could uncover previously unidentified cellular subpopulations, altered cell communication networks, and novel molecular mechanisms involved in post-cardiac arrest brain injury. In this study, we performed a single-cell transcriptomic analysis of the hippocampus from pigs with ventricular fibrillation-induced cardiac arrest at 6 and 24 hours following the return of spontaneous circulation, and from sham control pigs. Sequencing results revealed changes in the proportions of different cell types, suggesting post-arrest disruption in the blood-brain barrier and infiltration of neutrophils. These results were validated through western blotting, quantitative reverse transcription-polymerase chain reaction, and immunofluorescence staining. We also identified and validated a unique subcluster of activated microglia with high expression of S100A8, which increased over time following cardiac arrest. This subcluster simultaneously exhibited significant M1/M2 polarization and expressed key functional genes related to chemokines and interleukins. Additionally, we revealed the post-cardiac arrest dysfunction of oligodendrocytes and the differentiation of oligodendrocyte precursor cells into oligodendrocytes. Cell communication analysis identified enhanced post-cardiac arrest communication between neutrophils and microglia that was mediated by neutrophil-derived resistin, driving pro-inflammatory microglial polarization. Our findings provide a comprehensive single-cell map of the post-cardiac arrest hippocampus, offering potential novel targets for neuroprotection and repair following cardiac arrest.
Collapse
Affiliation(s)
- Tangxing Jiang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yaning Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hehui Liu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yijun Sun
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Huidan Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Qirui Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Shuyao Tang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xu Niu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Han Du
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yinxia Yu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Hongwei Yue
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yunyun Guo
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Medical and Pharmaceutical Basic Research Innovation Center of Emergency and Critical Care Medicine, China's Ministry of Education, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Zhang K, Zhang Y, Li Z, Chen J, Chang Y, Li Y, Zeng S, Pan S, Pan S, Huang K. Potentiating microglial efferocytosis by MFG-E8 improves survival and neurological outcome after successful cardiopulmonary resuscitation in mice. Brain Pathol 2025; 35:e13327. [PMID: 39717017 PMCID: PMC12145899 DOI: 10.1111/bpa.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
Brain injury represents the leading cause of mortality and disability after cardiopulmonary resuscitation (CPR) from cardiac arrest (CA), in which the accumulation of dying cells aggravate tissue injury by releasing proinflammatory intracellular components. Microglia play an essential role in maintaining brain homeostasis via milk fat globule epidermal growth factor 8 (MFG-E8)-opsonized efferocytosis, the engulfment of dying cells and debris. This study investigates whether potentiating microglia efferocytosis by MFG-E8 provides neuroprotection after CA/CPR. After 8-minute asphyxial CA/CPR, male adult C57BL/6J mice were randomly assigned to receive recombinant mouse MFG-E8 (rmMFG-E8) or vehicle. We evaluated the survival and neurological deficits of mice, along with histological damages, phagocytosis index of dying cells, and microglia polarization. A transcriptome analysis was conducted to explore the downstream molecules modulated by MFG-E8. In mice resuscitated from CA, rmMFG-E8 administration significantly enhanced the efferocytosis of apoptotic cells by microglia, improved the survival and neurological function of mice, and attenuated neuropathological injuries. Additionally, rmMFG-E8 induced a prominent alteration in microglial gene expression and promoted a shift from a proinflammatory phenotype to an anti-inflammatory phenotype. Moreover, rmMFG-E8 treatment induced up-regulation of interferon regulatory factor 7 (IRF7), and IRF7 gene silencing largely reversed the neuroprotective effects of rmMFG-E8. This study demonstrates that rmMFG-E8 improves survival and neurological outcomes after CA/CPR by enhancing microglial efferocytosis and reshaping the inflammatory microenvironment in brain tissue. Potentiating MFG-E8 is a promising strategy to combat post-CA brain injury.
Collapse
Affiliation(s)
- Kunxue Zhang
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuzhen Zhang
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhentong Li
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiancong Chen
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuan Chang
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yongchuan Li
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shuxin Zeng
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Sifan Pan
- The First Clinical Medical CollegeSouthern Medical UniversityGuangzhouChina
| | - Suyue Pan
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Kaibin Huang
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Neurology, Ganzhou Hospital‐Nanfang HospitalSouthern Medical UniversityGanzhouChina
| |
Collapse
|
3
|
Zhou X, He J, Song H, Zhao W, Li R, Han W, Li Q. Regulation of macrophage efferocytosis by the CLCF1/NF-κB pathway improves neurological and cognitive impairment following CO poisoning. Brain Behav Immun 2025; 127:126-146. [PMID: 40081779 DOI: 10.1016/j.bbi.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025] Open
Abstract
Severe carbon monoxide (CO) poisoning can induce structural and functional damage to the nervous system, resulting in persistent cognitive impairments. Properly terminating inflammation caused by neuronal damage is essential for tissue repair. Macrophages clear cell corpses and fragments through efferocytosis and produce cytokines to coordinate the immune response, thus promoting neuronal repair and regeneration. However, within the microenvironment of the CO-affected nervous system, macrophage efferocytosis is disrupted. Our study found that macrophages regulate efferocytosis by releasing Cardiotrophin-like cytokine factor 1 (CLCF1), which modulates the NF-κB pathway in both macrophages and microglia, thereby controlling inflammation and promoting nervous system repair. Furthermore, efferocytosis regulates the secretion of cytokines such as TNF-α, IL-1β, and IL-10, promoting M2 polarization of macrophages, which aids in neuronal repair and regeneration. Regulating macrophage CLCF1 expression also leads to improvements in the memory, learning, and motor abilities of rats poisoned with CO.
Collapse
Affiliation(s)
- Xudong Zhou
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China; The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Jingjing He
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Huiping Song
- Department of Traditional Chinese Medicine II, Rehabilitation University Qingdao Central Hospital, Qingdao, Shandong 266042, PR China
| | - Weiwei Zhao
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, PR China
| | - Rui Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Qin Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China; The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China.
| |
Collapse
|
4
|
Guo T, Lai Y, Wu S, Lin C, Zhou X, Lin P, Zheng M, Chen J, Lin F. IFI204 in microglia mediates traumatic brain injury-induced mitochondrial dysfunction and pyroptosis via SENP7 interaction. Cell Biol Toxicol 2025; 41:89. [PMID: 40407969 PMCID: PMC12102124 DOI: 10.1007/s10565-025-10032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/24/2025] [Indexed: 05/26/2025]
Abstract
OBJECTIVES Traumatic brain injury (TBI) is a primary contributor to chronic functional impairment in human populations, initiating complex neuroinflammatory cascades and neurodegeneration. Despite extensive research efforts, the precise pathophysiological pathways remain incompletely characterized. This investigation aims to establish a novel therapeutic strategy that targets critical molecular pathways post-injury, potentially addressing the current limitations in the clinical management of TBI patients. METHODS The single-cell data of cortical tissue from mice with TBI were obtained from public databases (GSE160763), which was utilized to identify alterations in in the composition of disease-associated cells and related molecules as the disease progresses. Functional and pathway enrichment analyses were conducted to elucidate the functional characteristics of microglia and astrocyte subpopulations. Trajectory analysis was employed to investigate cell differentiation characteristics. Subsequently, we examined the expression and function of microglia-specific molecules, such as IFI204, along with their underlying molecular mechanisms using Western blotting, immunofluorescence, co-immunoprecipitation (CO-IP), histopathology, behavioral tests, and molecular docking to assess binding status, as well as molecular dynamics simulations. Finally, we used molecular docking technology to find small molecule compounds that IFI204 can stably bind to. RESULTS We identified nine major cell populations, most of which undergo dynamic changes following TBI. Astrocytes and microglia were the predominant populations in each group, and further cluster analysis revealed that the proportions of interferon (IFN) and axonogenesis-related microglial subtypes increased after TBI. Trajectory inference analysis indicated that the expression of Ifi204 is upregulated in microglia during disease progression. Conditional microglial knockdown of IFI204 significantly improved neurological deficits in mice, and alleviated mitochondrial dysfunction and microglial pyroptosis. Mechanistically, SENP7, identified as a novel molecule, interacts with IFI204 in microglia, catalyzes the deSUMOylation of IFI204, and promotes STING signal activation, ultimately driving microglial pyroptosis and mitochondrial dysfunction. CONCLUSIONS The interaction between IFI204 and SENP7 promotes microglial pyroptosis and related mitochondrial dysfunction. Furthermore, in the case of TBI, we hypothesize that targeting IFI204 might yield therapeutic benefits.
Collapse
Affiliation(s)
- Ting Guo
- Department of Geriatric Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| | - Shuguang Wu
- Department of Anesthesiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Chunjin Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| | - Xinyu Zhou
- Department of Neurology, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Peiqiang Lin
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Mouwei Zheng
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fuzhou, China
| | - Jianhao Chen
- Department of Rehabilitation Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Fan Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
- Fujian Provincial Center for Geriatrics, Fuzhou, China.
| |
Collapse
|
5
|
Xing C, Fan X, Liu M, Chen Y, Jia J, Li W, Yu H, Zhou J. Liraglutide Inhibits Autophagy to Ameliorate Post-Cardiac Arrest Brain Injury and Ferroptosis in Rats. Neurochem Res 2025; 50:161. [PMID: 40349290 DOI: 10.1007/s11064-025-04412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
To investigate whether Liraglutide had a neuroprotective after cardiac arrest and return of spontaneous circulation (CA/ROSC) and explore its potential mechanisms. Adopting an 8-min asphyxial cardiac arrest model. Evaluate the neurological deficit score (NDS), observe pathological changes in hippocampal tissue with HE staining, and measure the expression level of proteins in hippocampal tissue with Western blot. Detection of hippocampal cell apoptosis using TUNEL (TdT-mediated dUTP Nick-End Labeling) method. Immunofluorescence staining was used to detect the expression of LC-3 in the hippocampus, and enzyme linked immunosorbent assay (ELISA) was used to detect the inflammatory factor TNF-α and IL-1β in serum and hippocampus. Autophagy and apoptosis were activated and the expressions of proteins reached significance at 24 h after CA/ROSC. Moreover, rapamycin enhanced apoptosis, ferroptosis and aggravated neuro-pathological damage while 3-methyladenine reduced that. Furthermore, liraglutide treatment improved the 7-day survival rate and NDS, reduced histological signs of injury and inhibited apoptosis, ferroptosis and inflammatory cytokines released after cardiac arrest, and these effects were offset by autophagy agonist. Liraglutide could exert a protective role against post-cardiac arrest brain injury, which could be partially mediated by inhibiting autophagy and ferroptosis. Results clearly indicate that liraglutide may attenuate post-cardiac arrest brain injury (PCABI) by anti-apoptotic and anti-inflammatory via inhibiting autophagy and ferroptosis.
Collapse
Affiliation(s)
- Chengjun Xing
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Luzhou, 646000, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, People's Republic of China
| | - Xin Fan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Luzhou, 646000, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, People's Republic of China
| | - Mudi Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Luzhou, 646000, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, People's Republic of China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, People's Republic of China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Luzhou, 646000, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, People's Republic of China
| | - Wei Li
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, People's Republic of China
- Department of Anesthesiology, He Jiang People's Hospital, Luzhou, 646200, People's Republic of China
| | - Hong Yu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Luzhou, 646000, Sichuan, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, People's Republic of China.
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Luzhou, 646000, Sichuan, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, People's Republic of China.
| |
Collapse
|
6
|
Shin J, Wu J, Park H, Kim SI, Shin N, Shin HJ, Ren G, Kim JA, Hwang PTJ, Jun HW, Lee SY, Lee S, Kim HG, Kim DW. Microglial pyroptosis drives neuropathic pain and targeting NLRP3 alleviates pain and neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167737. [PMID: 39971256 DOI: 10.1016/j.bbadis.2025.167737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Neuropathic pain is triggered by nerve damage or disease and involves chronic neuroinflammation driven by activated microglia releasing pro-inflammatory cytokines. PANoptosis, a complex cell death program encompassing apoptosis, pyroptosis, and necroptosis, has emerged as a key player in neuroinflammation. While individual PANoptosis pathway have been linked to pain, its systemic role in neuropathic pain remains unclear. This study explored the involvement of PANoptosis in microglia under neuropathic pain and its potential therapeutic targeting. After spinal nerve ligation (SNL), robust microglia activation and pro-inflammatory cytokines were increased in spinal dorsal horn. To figure out the major PANoptosis under neuropathic pain, bioinformatic analysis and protein analysis were explored by using spinal dorsal horn on 14 days of post injury. The results supported that pyroptosis was the dominant pathway after injury, and we further investigated pyroptosis-related markers on microglia specifically. Notably, pyroptosis marker (caspase-1) was elevated in microglia compared to apoptosis (cleaved caspase-3) and necroptosis (p-RIPK3) markers. This finding highlights microglia pyroptosis as a key driver of neuropathic pain development. To harness this knowledge therapeutically, we employed intrathecal injection of NLRP3 siRNA nanoparticles. NLRP3, a crucial component of the inflammasome complex triggering pyroptosis, served as our target. Strikingly, this intervention effectively alleviated mechanical allodynia, a hallmark of neuropathic pain, alongside reducing microgliosis and dampening microglial pyroptosis. Our findings reveal that microglia pyroptosis plays a key role in neuropathic pain and suggest NLRP3 siRNA nanoparticles as a promising therapeutic avenue for pain management.
Collapse
Affiliation(s)
- Juhee Shin
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Junhua Wu
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hyewon Park
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Song I Kim
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea; Department of Anatomy and Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Guang Ren
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Patrick T J Hwang
- Rowan-Virtua School of Translational Biomedical Engineering & Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, 806 Shelby, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Sun Yeul Lee
- Department of Anesthesia and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
| | - Hyeong-Geug Kim
- Nanoglia, Daejeon, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Dong Woon Kim
- Department of Oral Anatomy and Developmental Biology, Kyung Hee University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Wu C, Diao M, Yu S, Xi S, Zheng Z, Cao Y, Wang S, Zhu Y, Zhang M, Hu W. Gut Microbial Tryptophan Metabolism Is Involved in Post-Cardiac Arrest Brain Injury via Pyroptosis Modulation. CNS Neurosci Ther 2025; 31:e70381. [PMID: 40260682 PMCID: PMC12012640 DOI: 10.1111/cns.70381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
AIMS Post-cardiac arrest brain injury (PCABI) is a leading cause of death in cardiac arrest/cardiopulmonary resuscitation (CA/CPR) victims and long-term disability in CA/CPR survivors. Despite previous evidence indicating that the microbiota-gut-brain axis is critically involved in many neurological disorders, no research has hitherto established a connection between the gut microbiota and PCABI through this axis. This study aims to explore the biological roles of microbial tryptophan metabolites in the progression of PCABI. METHODS To achieve this, we pretreated rats with a cocktail of broad-spectrum antibiotics (Abx) to eradicate the gut microbiota before establishing a 7-min asphyxia-CA/CPR model. RESULTS Remarkably, the 24-h survival rate and neurological outcomes improved in Abx/CPR rats. Fecal 16s rDNA sequencing and PICRUSt2 analysis revealed that Abx reshaped the microbial community and elevated the proportion of microbial tryptophan metabolism in rats. Metabolomic profiling suggested that Abx shifted the phenotype of microbial tryptophan metabolism from the indole pathway to the kynurenine pathway, thereby increasing the levels of the neuroprotective metabolite kynurenine in the feces, circulation, and ultimately the brain. Furthermore, the hippocampal expression of aryl hydrocarbon receptor (AhR), an endogenous receptor of kynurenine, was upregulated in Abx/CPR rats. In vitro experiments further demonstrated that the neuroprotective effects of kynurenine are AhR-dependent and that AhR activation could negatively regulate the NLRP3 protein expression. Supporting this, results from qRT-PCR, immunohistochemistry, and immunofluorescence in the rat cerebral cortex exhibited that L-kynurenine inhibited NLRP3-induced pyroptosis. CONCLUSIONS Our study provides a direct clue to the essential participation of the microbiota-gut-brain axis in the progression of PCABI. It demonstrates that kynurenine might attenuate PCABI by inhibiting NLRP3-induced pyroptosis.
Collapse
Affiliation(s)
- Chenghao Wu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Anesthesia Center of Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Mengyuan Diao
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Shuhang Yu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
- Department of Intensive Care Unit, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Shaosong Xi
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Zhipeng Zheng
- Department of Pulmonary and Critical Care Medicine, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Yang Cao
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Shuai Wang
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Ying Zhu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Hu
- Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, School of MedicineWestlake UniversityHangzhouChina
| |
Collapse
|
8
|
Huang X, Niu M, Sun T, Li M, Jiang X, Duan H, Zhang T, Zhang J, Xie F, Song R, Yu A. X-ray irradiation reduces ATP-dependent activation of NLRP3 inflammasome by inhibiting TWIK2 activity in macrophages. Immunol Lett 2025; 272:106967. [PMID: 39732203 DOI: 10.1016/j.imlet.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/30/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND The spleen, as the body's largest peripheral immune organ and a crucial source of circulating monocytes, plays a significant role in the acute inflammatory response of spleen-derived macrophages to diseases. Therefore, studying the impact and mechanism of X-ray irradiation on spleen-derived macrophages' inflammatory responses is of great importance. METHOD Extracted and identified mice splenic macrophages were divided into four groups: control group, LPS and ATP co-stimulated non-irradiated group, LPS and ATP co-stimulated group irradiated after 6 h, and LPS and ATP co-stimulated group irradiated after 12 h In the LPS and ATP co-stimulated groups, LPS (1μg/ml) and ATP (5mmol/L) were added to establish an inflammatory model in mice splenic macrophages. The irradiated groups were exposed to a medical linear accelerator (Elekta Synergy), while the non-irradiated groups were placed under the light source for the same duration without irradiation. Protein extraction was performed in each group at 6 h and 12 h post-treatment for subsequent analysis using Western blot, ELISA, RT-qPCR and other relevant methods. RESULTS (1) Compared with the non-irradiated group, the cell activity in the groups irradiated for 6 h and 12 h at 8 Gy showed a significant increase (P<0.01). (2) In the LPS and ATP co-stimulated groups irradiated after 6 h and 12 h, the expression of NLRP3 mRNA and protein, IL-18 and IL-1β showed a notable decrease compared to the LPS and ATP co-stimulated non-irradiated group (P<0.05). Additionally, caspase-1 expression of caspase-1 mRNA and protein in the 12 h post-irradiation group also decreased considerably when compared with the LPS and ATP co-stimulated non-irradiated group (P < 0.05). In the groups irradiated after 6 h and 12 h, (3) there was a remarkable decrease in the expression of TWIK mRNA and TWIK2, (4) as well as Gq mRNA and protein, when compared to the LPS and ATP co-stimulated non-irradiated group (P < 0.05). Particularly, the 12 h post-irradiation group exhibited a notable reduction in PKC expression (P < 0.05). CONCLUSION X-ray irradiation is capable of inhibiting the activation of ATP-dependent NLRP3 inflammasomes in splenic macrophages.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Man Niu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China; Department of Emergency, Fourth Hospital of Shijiazhuang, 050035 Shijiazhuang, Hebei, China
| | - Tianjing Sun
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Mo Li
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Xuheng Jiang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Haizhen Duan
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Tianxi Zhang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Ji Zhang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Fangke Xie
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Renjie Song
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China.
| |
Collapse
|
9
|
Chang Y, Chen J, Peng Y, Zhang K, Zhang Y, Zhao X, Wang D, Li L, Zhu J, Liu K, Li Z, Pan S, Huang K. Gut-derived macrophages link intestinal damage to brain injury after cardiac arrest through TREM1 signaling. Cell Mol Immunol 2025; 22:437-455. [PMID: 39984674 PMCID: PMC11955566 DOI: 10.1038/s41423-025-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/19/2024] [Accepted: 01/20/2025] [Indexed: 02/23/2025] Open
Abstract
Brain injury is the leading cause of death and disability in survivors of cardiac arrest, where neuroinflammation triggered by infiltrating macrophages plays a pivotal role. Here, we seek to elucidate the origin of macrophages infiltrating the brain and their mechanism of action after cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Wild-type or photoconvertible Cd68-Cre:R26-LSL-KikGR mice were subjected to 10-min CA/CPR, and the migration of gut-derived macrophages into brain was assessed. Transcriptome sequencing was performed to identify the key proinflammatory signal of macrophages infiltrating the brain, triggering receptor expressed on myeloid cells 1 (TREM1). Upon drug intervention, the effects of TREM1 on post-CA/CPR brain injury were further evaluated. 16S rRNA sequencing was used to detect gut dysbiosis after CA/CPR. Through photoconversion experiments, we found that small intestine-derived macrophages infiltrated the brain and played a crucial role in triggering secondary brain injury after CA/CPR. The infiltrating peripheral macrophages showed upregulated TREM1 levels, and we further revealed the crucial role of gut-derived TREM1+ macrophages in post-CA/CPR brain injury through a drug intervention targeting TREM1. Moreover, a close correlation between upregulated TREM1 expression and poor neurological outcomes was observed in CA survivors. Mechanistically, CA/CPR caused a substantial expansion of Enterobacter at the early stage, which ignited intestinal TREM1 signaling via the activation of Toll-like receptor 4 on macrophages through the release of lipopolysaccharide. Our findings reveal essential crosstalk between the gut and brain after CA/CPR and underscore the potential of targeting TREM1+ small intestine-derived macrophages as a novel therapeutic strategy for mitigating post-CA/CPR brain injury.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiancong Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqin Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunxue Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuzhen Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolin Zhao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Di Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lei Li
- Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhentong Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.
| |
Collapse
|
10
|
Yu L, Sun L, Yu T, Guo A, Wu J, Chen J, Wang Q. CPCGI Alleviates Neural Damage by Modulating Microglial Pyroptosis After Traumatic Brain Injury. CNS Neurosci Ther 2025; 31:e70322. [PMID: 40059065 PMCID: PMC11890976 DOI: 10.1111/cns.70322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major global cause of mortality and long-term disability, with limited therapeutic options. Microglial pyroptosis, a form of programmed cell death associated with inflammation, has been implicated in exacerbating neuroinflammation and secondary injury following TBI. Compound porcine cerebroside ganglioside injection (CPCGI) has shown anti-inflammatory and antioxidant properties, but its effects on pyroptosis remain unexplored. This study investigates the role of CPCGI in TBI and its underlying mechanisms. METHODS A controlled cortical impact (CCI) model was utilized to establish TBI in vivo, while lipopolysaccharide (LPS) was used in vitro to induce microglial activation that mimicked TBI conditions. The effects of CPCGI on microglial pyroptosis and inflammatory cytokines were analyzed through immunofluorescence, flow cytometry, western blotting, and quantitative real-time PCR (qRT-PCR). The involvement of the NLRP3 inflammasome in CPCGI's mechanism was examined using NLRP3 overexpression or the NLRP3 agonist BMS-986299. A microglia-neuron interaction model was created, and neuronal injury was assessed with the Cell Counting Kit-8 and Fluoro-Jade C (FJC). RESULTS Treatment with CPCGI resulted in significant improvement in the neurobehavioral outcomes, reduced lesion volume, and decreased neuronal loss following TBI. Notably, TBI induced microglial pyroptosis and the release of pro-inflammatory cytokines, while CPCGI inhibited microglial pyroptosis, thereby mitigating the inflammatory response and reducing neuronal damage. Mechanistically, overexpression of NLRP3 in microglial cells reversed the inhibitory effects of CPCGI on microglial pyroptosis, indicating that CPCGI's inhibition of microglial pyroptosis may be mediated by the NLRP3 inflammasome. Furthermore, NLRP3 overexpression or administration of the NLRP3 agonist BMS-986299 negated the neuroprotective effects of CPCGI in vivo and in vitro. CONCLUSION These findings suggest that CPCGI provides neuroprotection in TBI by targeting NLRP3 inflammasome-mediated microglial pyroptosis, thereby improving the neuroinflammatory microenvironment and promoting neurological recovery. This underscores its potential as a promising candidate for TBI treatment.
Collapse
Affiliation(s)
- Lu‐Lu Yu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Lei Sun
- Department of NeurologyZhengzhou University People's HospitalZhengzhouChina
| | - Ting‐Ting Yu
- Department of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - An‐Chen Guo
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Drug and Device Research and Development for Cerebrovascular DiseasesBeijingChina
| | - Jian‐Ping Wu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Beijing Key Laboratory of Drug and Device Research and Development for Cerebrovascular DiseasesBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Jun‐Min Chen
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qun Wang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
11
|
Cai L, Fan Q, Pang R, Chen C, Zhang Y, Xie H, Huang J, Wang Y, Li P, Huang D, Jin X, Zhou Y, Li Y. Microglia programmed cell death in neurodegenerative diseases and CNS injury. Apoptosis 2025; 30:446-465. [PMID: 39656359 PMCID: PMC11799081 DOI: 10.1007/s10495-024-02041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 02/06/2025]
Abstract
Programmed cell death (PCD) has emerged as a critical regulatory mechanism in the initiation and progression of various pathological conditions. PCD in microglia, including necroptosis, pyroptosis, apoptosis, ferroptosis, and autophagy, occurs in a variety of central nervous system (CNS) diseases. Dysregulation of microglia can lead to excessive tissue damage or neuronal death in CNS injury. Various injury stimuli trigger aberrant activation of the PCD pathway of microglia, which then further leads to inflammatory cascades that exacerbates CNS pathology in a vicious cycle. Therefore, targeting PCD in microglia is considered an important avenue for the treatment of various neurodegenerative diseases and CNS injury. In this review, we summarize the major and recent findings focusing on the mechanisms of PCD in microglia modulating functions in neurodegenerative diseases and CNS injury and provide a systematic overview of the current inhibitors targeting various PCD pathways, which may provide important therapeutic targets that merit further investigation.
Collapse
Affiliation(s)
- Ling Cai
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyue Fan
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Pang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Chen
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyi Xie
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Jin
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuxi Zhou
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Anesthesiology, Key Laboratory of the Ministry of Education, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2025; 62:1840-1881. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
13
|
Chang Y, He Y, Wang D, Zhang K, Zhang Y, Li Z, Zeng S, Xiao S, Pan S, Huang K. ROS-regulated SUR1-TRPM4 drives persistent activation of NLRP3 inflammasome in microglia after whole-brain radiation. Acta Neuropathol Commun 2025; 13:16. [PMID: 39871308 PMCID: PMC11771008 DOI: 10.1186/s40478-025-01932-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/18/2025] [Indexed: 01/29/2025] Open
Abstract
Delayed radiation-induced brain injury (RIBI) characterized by progressive cognitive decline significantly impacts patient outcomes after radiotherapy. The activation of NLRP3 inflammasome within microglia after brain radiation is involved in the progression of RIBI by mediating inflammatory responses. We have previously shown that sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) mediates microglial NLRP3-related inflammation following global brain ischemia. However, the role of SUR1-TRPM4 in RIBI remains unclear. Here, we found that whole-brain radiation induced up-regulation and assembly of SUR1-TRPM4, which further activated the NLRP3 inflammasome in microglia and caused persistent neuroinflammation in mice. Blocking SUR1-TRPM4 by glibenclamide or gene deletion of Trpm4 effectively prevented NLRP3-mediated neuroinflammation and alleviated RIBI. Utilizing the mouse model of RIBI and irradiated BV2 cells, we further demonstrated that irradiation caused mitochondrial damage to microglia, leading to violent release of reactive oxygen species (ROS), which enhanced the transcription of SUR1, TRPM4, and NLRP3 inflammasome-related molecules. Moreover, ROS up-regulated ten-eleven translocation 2 (TET2) to enhance TRPM4 expression by mediating the demethylation of the gene promoter, thereby facilitating the assembly of SUR1-TRPM4 in microglia. In summary, this study deciphers that SUR1-TRPM4 crucially mediates the persistent activation of microglial NLRP3 inflammasome under the action of ROS after whole-brain radiation, offering novel therapeutic strategies for delayed RIBI as well as other NLRP3-related neurological disorders involving excessive ROS production.
Collapse
Affiliation(s)
- Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihua He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Di Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Kunxue Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuzhen Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhentong Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuxin Zeng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng Xiao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Neurology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, China.
| |
Collapse
|
14
|
El Gazzar WB, Farag AA, Samir M, Bayoumi H, Youssef HS, Marei YM, Mohamed SK, Marei AM, Abdelfatah RM, Mahmoud MM, Aboelkomsan EAF, Khalfallah EKM, Anwer HM. Berberine chloride loaded nano-PEGylated liposomes attenuates imidacloprid-induced neurotoxicity by inhibiting NLRP3/Caspase-1/GSDMD-mediated pyroptosis. Biofactors 2025; 51:e2107. [PMID: 39074847 DOI: 10.1002/biof.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Concerns have been expressed about imidacloprid (IMI), one of the most often used pesticides, and its potential neurotoxicity to non-target organisms. Chronic neuroinflammation is central to the pathology of several neurodegenerative disorders. Hence, exploring the molecular mechanism by which IMI would trigger neuroinflammation is particularly important. This study examined the neurotoxic effects of oral administration of IMI (45 mg/kg/day for 30 days) and the potential neuroprotective effect of berberine (Ber) chloride loaded nano-PEGylated liposomes (Ber-Lip) (10 mg/kg, intravenously every other day for 30 days) using laboratory rat. The histopathological changes, anti-oxidant and oxidative stress markers (GSH, SOD, and MDA), proinflammatory cytokines (IL1β and TNF-α), microglia phenotype markers (CD86 and iNOS for M1; CD163 for M2), the canonical pyroptotic pathway markers (NLRP3, caspase-1, GSDMD, and IL-18) and Alzheimer's disease markers (Neprilysin and beta amyloid [Aβ] deposits) were assessed. Oral administration of IMI resulted in apparent cerebellar histopathological alterations, oxidative stress, predominance of M1 microglia phenotype, significantly upregulated NLRP3, caspase-1, GSDMD, IL-18 and Aβ deposits and significantly decreased Neprilysin expression. Berberine reduced the IMI-induced aberrations in the measured parameters and improved the IMI-induced histopathological and ultrastructure alterations brought on by IMI. This study highlights the IMI neurotoxic effect and its potential contribution to the development of Alzheimer's disease and displayed the neuroprotective effect of Ber-Lip.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Mohamed Samir
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharqia, Egypt
- School of Science, Faculty of Engineering and Science, University of Greenwich, Kent, UK
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Heba S Youssef
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Yasmin Mohammed Marei
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| | - Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Azza M Marei
- Department of Zoology, Faculty of Science, Benha University, Benha City, Qalyubia, Egypt
| | - Reham M Abdelfatah
- Department of Pesticides, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | | | | | - Eman Kamel M Khalfallah
- Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt
| | - Hala Magdy Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Qalyubia, Egypt
| |
Collapse
|
15
|
Chen C, Xia Z, Zhang M, Cao Y, Chen Q, Cao Q, Li X, Jiang F. Molecular mechanism of HDAC6-mediated pyroptosis in neurological function recovery after cardiopulmonary resuscitation in rats. Brain Res 2024; 1843:149121. [PMID: 38997102 DOI: 10.1016/j.brainres.2024.149121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Brain injury after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) is the leading cause of neurological dysfunction and death. This study aimed to explore the mechanism of histone deacetylase 6 (HDAC6) in neurofunctional recovery following CA/CPR in rats. A rat model was established by CA/CPR treatment. Adenovirus-packaged sh-HDAC6 was injected into the tail vein. To evaluate the neurofunction of rats, survival time, neurofunctional scores, serum NSE/S100B, and brain water content were measured and Morris water maze test was performed. HDAC6, microRNA (miR)-138-5p, Nod-like receptor protein 3 (NLRP3), and pyroptotic factor levels were determined by real-time quantitative polymerase chain reaction or Western blot assay. HDAC6 and H3K9ac enrichment on miR-138-5p promoter were examined by chromatin immunoprecipitation. miR-138-5p-NLRP3 binding was analyzed by dual-luciferase reporter assay. NLRP3 inflammasome was activated with nigericin sodium salt. After CPR treatment, HDAC6 was highly expressed, while miR-138-5p was downregulated. HDAC6 downregulation improved neurofunction and reduced pyroptosis. HDAC6 enrichment on the miR-138-5p promoter deacetylated H3K9ac, inhibiting miR-138-5p, and promoting NLRP3-mediated pyroptosis. Downregulating miR-138-5p partially reversed the protective effect of HDAC6 inhibition after CPR. In Conclusion, HDAC6 enrichment on miR-138-5p promoter deacetylated H3K9ac, inhibiting miR-138-5p expression and promoting NLRP3-mediated pyroptosis, worsening neurological dysfunction in rats after CPR.
Collapse
Affiliation(s)
- Chunyan Chen
- Department of Infectious Diseases, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Zhuye Xia
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Min Zhang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Qingling Chen
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Qinglian Cao
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Xiang Li
- Department of Critical Care Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Fan Jiang
- Department of Emergency Medicine, Minhang Hospital, Fudan University, Shanghai 201199, China.
| |
Collapse
|
16
|
Sekhon MS, Stukas S, Hirsch-Reinshagen V, Thiara S, Schoenthal T, Tymko M, McNagny KM, Wellington C, Hoiland R. Neuroinflammation and the immune system in hypoxic ischaemic brain injury pathophysiology after cardiac arrest. J Physiol 2024; 602:5731-5744. [PMID: 37639379 DOI: 10.1113/jp284588] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Hypoxic ischaemic brain injury after resuscitation from cardiac arrest is associated with dismal clinical outcomes. To date, most clinical interventions have been geared towards the restoration of cerebral oxygen delivery after resuscitation; however, outcomes in clinical trials are disappointing. Therefore, alternative disease mechanism(s) are likely to be at play, of which the response of the innate immune system to sterile injured tissue in vivo after reperfusion has garnered significant interest. The innate immune system is composed of three pillars: (i) cytokines and signalling molecules; (ii) leucocyte migration and activation; and (iii) the complement cascade. In animal models of hypoxic ischaemic brain injury, pro-inflammatory cytokines are central to propagation of the response of the innate immune system to cerebral ischaemia-reperfusion. In particular, interleukin-1 beta and downstream signalling can result in direct neural injury that culminates in cell death, termed pyroptosis. Leucocyte chemotaxis and activation are central to the in vivo response to cerebral ischaemia-reperfusion. Both parenchymal microglial activation and possible infiltration of peripherally circulating monocytes might account for exacerbation of an immunopathological response in humans. Finally, activation of the complement cascade intersects with multiple aspects of the innate immune response by facilitating leucocyte activation, further cytokine release and endothelial activation. To date, large studies of immunomodulatory therapies have not been conducted; however, lessons learned from historical studies using therapeutic hypothermia in humans suggest that quelling an immunopathological response might be efficacious. Future work should delineate the precise pathways involved in vivo in humans to target specific signalling molecules.
Collapse
Affiliation(s)
- Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- International Centre for Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for REsearching BRain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
| | - Sophie Stukas
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for REsearching BRain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Veronica Hirsch-Reinshagen
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- International Centre for Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for REsearching BRain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sonny Thiara
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for REsearching BRain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
| | - Tison Schoenthal
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for REsearching BRain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
| | - Michael Tymko
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for REsearching BRain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl Wellington
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- International Centre for Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for REsearching BRain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Hoiland
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Collaborative Entity for REsearching BRain Ischemia (CEREBRI), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Ren Y, Wu K, He Y, Zhang H, Ma J, Li C, Ruan Y, Zhang J, Wen Y, Wu X, Chen S, Qiu H, Zhang Y, Zhou L, Ou Z, Liang J, Wang Z. The role of NLRP3 inflammasome-mediated neuroinflammation in chronic noise-induced impairment of learning and memory ability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117183. [PMID: 39437517 DOI: 10.1016/j.ecoenv.2024.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Noise pollution pervades daily working and living environment, becoming a serious public health problem. In addition to causing auditory impairment, noise independently contributes to cognitive decline as a risk factor. Though neuroinflammation plays an important role in noise-induced cognitive deficits, the mechanisms underlying noise-induced neuroinflammation in the hippocampus are still poorly understood. Glial hyperactivation of the NLRP3 inflammasome contributes to various neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). However, whether the NLRP3 inflammasome plays a role in noise-induced cognitive impairment remains to be further investigated. METHODS Adult male Wistar rats were exposed to 100 dB white noise (4 h/day) for 30 days with or without injection of the NLRP3 inhibitor MCC950 (10 mg/kg/day). The Morris water maze (MWM) test and the open field test (OFT) were performed to evaluate learning and memory ability of rats. HE staining was used to explore hippocampal pathological changes, while immunohistochemical staining was employed to evaluate the number and morphology of microglia and astrocytes. The mRNA levels of the NLRP3 inflammasome in the hippocampus were examined by Real-time PCR. The protein levels of NLRP3 inflammasome, inflammatory cytokines, p-Tau-S396, and amyloid-β (Aβ) 42 in the hippocampus were examined by Western blot. Immunofluorescence was used to observe the distribution of NLRP3 in glial cells and neurons, and the assembly of the NLRP3 inflammasome. RESULTS We found that noise exposure induced learning and memory impairment in rats, mainly related to the activation of microglia and astrocytes in hippocampus region. Noise exposure increased the protein levels of p-Tau-S396, Aβ42, ionized calcium binding adapter molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), interleukin (IL)-1β, IL-18, and tumor necrosis factor-α (TNF-α) in hippocampus. Furthermore, the hippocampus of noise-exposed rats showed elevated protein levels of NLRP3, ASC and cleaved caspase-1. The co-labeled immunofluorescence levels of Iba-1 or GFAP with NLRP3 significantly increased in the dentate gyrus (DG) region of the hippocampus. NLRP3 inhibitor MCC950 intervention reversed chronic noise-induced activation of NLRP3 inflammasome, AD-like pathologies and impairment of learning and memory in rats. CONCLUSIONS The NLRP3 inflammasome-mediated neuroinflammation played an essential role in chronic noise-induced cognitive dysfunction. These results provide novel strategies for the prevention and treatment of cognitive deficits caused by chronic noise.
Collapse
Affiliation(s)
- Yixian Ren
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Kangyong Wu
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Yongke He
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Hangqian Zhang
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Jialao Ma
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Caixia Li
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yanmei Ruan
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Jinwei Zhang
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Ying Wen
- Institute of Pediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xian Wu
- Health Management Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Siran Chen
- School of Basic Medicine and Public Health, Jinan University, Guangzhou, China
| | - Heng Qiu
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Yifan Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Liping Zhou
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China
| | - Zejin Ou
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Jiabin Liang
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Occupational Disease Prevention and Treatment Hospital, Guangzhou, China; Institute of Occupational and Environmental Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Li X, Luo L, Duan P, Bi Y, Meng Y, Zhang X, Feng W, Jin Z, Zuo K, Zhao X, Zhang B. Nicotinamide N-oxide Inhibits Microglial Pyroptosis by Upregulating Mitophagy and Alleviates Neural Damage in Rats after TBI. Inflammation 2024. [DOI: 10.1007/s10753-024-02171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 01/03/2025]
|
19
|
Zhan Y, Zhang L, Sun J, Yao H, Chen J, Tian M. ADSC-derived exosomes provide neuroprotection in sepsis-associated encephalopathy by regulating hippocampal pyroptosis. Exp Neurol 2024; 380:114900. [PMID: 39059736 DOI: 10.1016/j.expneurol.2024.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
AIMS Adipose-derived stem cell (ADSC)-derived exosomes have been recognized for their neuroprotective effects in various neurological diseases. This study investigates the potential neuroprotective effects of ADSC-derived exosomes in sepsis-associated encephalopathy (SAE). METHODS Behavioral cognitive functions were evaluated using the open field test, Y-maze test, and novel object recognition test. Brain activity was assessed through functional magnetic resonance imaging (fMRI). Pyroptosis was measured using immunofluorescence staining and western blotting. RESULTS Our findings indicate that ADSC-derived exosomes mitigate cognitive impairment, improve survival rates, and prevent weight loss in SAE mice. Additionally, exosomes protect hippocampal function in SAE mice, as demonstrated by fMRI evaluations. Furthermore, SAE mice exhibit neuronal damage and infiltration of inflammatory cells in the hippocampus, conditions which are reversed by exosome treatment. Moreover, our study highlights the downstream regulatory role of the NLRP3/caspase-1/GSDMD signaling pathway as a crucial mechanism in alleviating hippocampal inflammation. CONCLUSION ADSC-derived exosomes confer neuroprotection in SAE models by mediating the NLRP3/caspase-1/GSDMD pathway, thereby ameliorating cognitive impairment.
Collapse
Affiliation(s)
- Yunliang Zhan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210002, Jiangsu Province, China
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Nanjing 210008, China.
| | - Mi Tian
- Department of Anesthesiology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210002, Jiangsu Province, China.
| |
Collapse
|
20
|
Perkins GD, Neumar R, Hsu CH, Hirsch KG, Aneman A, Becker LB, Couper K, Callaway CW, Hoedemaekers CWE, Lim SL, Meurer W, Olasveengen T, Sekhon MS, Skrifvars M, Soar J, Tsai MS, Vengamma B, Nolan JP. Improving Outcomes After Post-Cardiac Arrest Brain Injury: A Scientific Statement From the International Liaison Committee on Resuscitation. Resuscitation 2024; 201:110196. [PMID: 38932555 DOI: 10.1016/j.resuscitation.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This scientific statement presents a conceptual framework for the pathophysiology of post-cardiac arrest brain injury, explores reasons for previous failure to translate preclinical data to clinical practice, and outlines potential paths forward. Post-cardiac arrest brain injury is characterized by 4 distinct but overlapping phases: ischemic depolarization, reperfusion repolarization, dysregulation, and recovery and repair. Previous research has been challenging because of the limitations of laboratory models; heterogeneity in the patient populations enrolled; overoptimistic estimation of treatment effects leading to suboptimal sample sizes; timing and route of intervention delivery; limited or absent evidence that the intervention has engaged the mechanistic target; and heterogeneity in postresuscitation care, prognostication, and withdrawal of life-sustaining treatments. Future trials must tailor their interventions to the subset of patients most likely to benefit and deliver this intervention at the appropriate time, through the appropriate route, and at the appropriate dose. The complexity of post-cardiac arrest brain injury suggests that monotherapies are unlikely to be as successful as multimodal neuroprotective therapies. Biomarkers should be developed to identify patients with the targeted mechanism of injury, to quantify its severity, and to measure the response to therapy. Studies need to be adequately powered to detect effect sizes that are realistic and meaningful to patients, their families, and clinicians. Study designs should be optimized to accelerate the evaluation of the most promising interventions. Multidisciplinary and international collaboration will be essential to realize the goal of developing effective therapies for post-cardiac arrest brain injury.
Collapse
|
21
|
Zhou C, Qiu SW, Wang FM, Liu YC, Hu W, Yang ML, Liu WH, Li H. Gasdermin D could be lost in the brain parenchyma infarct core and a pyroptosis-autophagy inhibition effect of Jie-Du-Huo-Xue decoction after stroke. Front Pharmacol 2024; 15:1449452. [PMID: 39139639 PMCID: PMC11320715 DOI: 10.3389/fphar.2024.1449452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Background The Chinese ethnic medicine Jie-Du-Huo-Xue Decoction (JDHXD) is used to alleviate neuroinflammation in cerebral ischemia (CI). Our previous studies have confirmed that JDHXD can inhibit microglial pyroptosis in CI. However, the pharmacological mechanism of JDHXD in alleviating neuroinflammation and pyroptosis needs to be further elucidated. New research points out that there is an interaction between autophagy and inflammasome NLRP3, and autophagy can help clear NLRP3. The NLRP3 is a key initiator of pyroptosis and autophagy. The effect of JDHXD promoting autophagy to clear NLRP3 to inhibit pyroptosis on cerebral ischemia-reperfusion inflammatory injury is currently unknown. We speculate that JDHXD can inhibit pyroptosis in CI by promoting autophagy to clear NLRP3. Methods Chemical characterization of JDHXD was performed using LC-MS. Model of middle cerebral artery occlusion/reperfusion (MCAO/R) was established in SD rats. Neurological deficits, neuron damage, and cerebral infarct volume were evaluated. Western Blot and immunofluorescence were used to detect neuronal pyroptosis and autophagy. Results 30 possible substance metabolites in JDHXD medicated serum were analyzed by LC-MS (Composite Score > 0.98). Furthermore, JDHXD protects rat neurological function and cerebral infarct size after CI. JDHXD inhibited the expression of pyroptosis and autophagy after CI. Our western blot and immunofluorescence results showed that JDHXD treatment can reduce the expression of autophagy-related factors ULK1, beclin1, and LC3-Ⅱ. The expression of NLRP3 protein was lower in the JDHXD group than in the I/R group. Compared with the I/R group, the expressions of pyroptosis-related factors caspase-1 P 10, GSDMD-NT, IL-18, and IL-1β decreased in the JDHXD group. Furthermore, we observed an unexpected result: immunofluorescence demonstrated that Gasdermin D (GSDMD) was significantly absent in the infarct core, and highly expressed in the peri-infarct and contralateral cerebral hemispheres. This finding challenges the prevailing view that GSDMD is elevated in the ischemic cerebral hemisphere. Conclusion JDHXD inhibited pyroptosis and autophagy after MCAO/R. JDHXD suppressed pyroptosis and autophagy by inhibiting NLRP3, thereby alleviating CI. In addition, we present a different observation from previous studies that the expression of GSDMD in the infarct core was lower than that in the peri-infarct and contralateral non-ischemic hemispheres on day 3 of CI.
Collapse
Affiliation(s)
- Chang Zhou
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, Hunan, China
| | - Shi-wei Qiu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Feng-ming Wang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yu-chen Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wei Hu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mei-lan Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang-hua Liu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation & Medicated Diet and Dietotherapy, University of Chinese Medicine, Changsha, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua Li
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
22
|
Xu Y, Ren Y, Zou W, Ji S, Shen W. Neutrophil extracellular traps promote erectile dysfunction in rats with diabetes mellitus by enhancing NLRP3-mediated pyroptosis. Sci Rep 2024; 14:16457. [PMID: 39014129 PMCID: PMC11252272 DOI: 10.1038/s41598-024-67281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Erectile dysfunction (ED) is the most prevalent consequences in men with diabetes mellitus (DM). Recent studies demonstrates that neutrophil extracellular traps (NETs) play important roles in DM and its complications. Nevertheless, whether NETs are involved in ED remains unknown. This work intended to explore the role and mechanisms of NETs in ED in the context of DM. Here, we observed that NET generation and pyroptosis were promoted in DM rats with ED compared with controls. Mechanistically, NETs facilitated NLRP3 inflammasome activation and subsequently triggered pyroptosis under high glucose stress, ultimately leading to ED. Intriguingly, DNase I (a NET degrading agent) alleviated ED and corpus cavernosum injury in DM rats. Overall, NETs might induce ED in DM by promoting NLRP3-mediated pyroptosis in the corpus cavernosum.
Collapse
Affiliation(s)
- Ying Xu
- Department of Urology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Ren
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wenli Zou
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Shuiyu Ji
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wei Shen
- Department of Nephrology, Urology and Nephrology Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
23
|
Jin J, Kang DH, Lee GH, Kim WM, Choi JI. Intrathecal gastrodin alleviates allodynia in a rat spinal nerve ligation model through NLRP3 inflammasome inhibition. BMC Complement Med Ther 2024; 24:213. [PMID: 38835032 PMCID: PMC11149323 DOI: 10.1186/s12906-024-04519-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Gastrodin (GAS), a main bioactive component of the herbal plant, Gastrodia elata Blume, has shown to have beneficial effects on neuroinflammatory diseases such as Alzheimer's disease in animal studies and migraine in clinical studies. Inflammasome is a multimeric protein complex having a core of pattern recognition receptor and has been implicated in the development of neuroinflammatory diseases. Gastrodin has shown to modulate the activation of nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. This study investigated the effects of GAS on the intensity of mechanical allodynia and associated changes in NLRP3 inflammasome expression at the spinal level using L5/6 spinal nerve ligation model (SNL) in rats. METHODS Intrathecal (IT) catheter implantation and SNL were used for drug administration and pain model in male Sprague-Dawley rats. The effect of gastrodin or MCC950 (NLRP3 inflammasome inhibitor) on mechanical allodynia was measured by von Frey test. Changes in NLRP3 inflammasome components and interleukin-1β (IL-1β) and cellular expression were examined in the spinal cord and dorsal root ganglion. RESULTS The expression of NLRP3 inflammasome components was found mostly in the neurons in the spinal cord and dorsal root ganglion. The protein and mRNA levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and IL-1β were upregulated in SNL animals compared to Sham animals. IT administration of GAS significantly attenuated the expression of NLRP3 inflammasome and the intensity of SNL-induced mechanical allodynia. NLRP3 inflammasome inhibitor, MCC950, also attenuated the intensity of allodynia, but the effect is less strong and shorter than that of GAS. CONCLUSIONS Expression of NLRP3 inflammasome and IL-1β is greatly increased and mostly found in the neurons at the spinal level in SNL model, and IT gastrodin exerts a significant anti-allodynic effect in SNL model partly through suppressing the expression of NLRP3 inflammasome.
Collapse
Affiliation(s)
- JunXiu Jin
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dong Ho Kang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
| | - Geon Hui Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
| | - Woong Mo Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Korea
| | - Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea.
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Korea.
| |
Collapse
|
24
|
Ju YN, Zou ZW, Jia BW, Liu ZY, Sun XK, Qiu L, Gao W. Ac2-26 activated the AKT1/GSK3β pathway to reduce cerebral neurons pyroptosis and improve cerebral function in rats after cardiopulmonary bypass. BMC Cardiovasc Disord 2024; 24:266. [PMID: 38773462 PMCID: PMC11106860 DOI: 10.1186/s12872-024-03909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/29/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) results in brain injury, which is primarily caused by inflammation. Ac2-26 protects against ischemic or hemorrhage brain injury. The present study was to explore the effect and mechanism of Ac2-26 on brain injury in CPB rats. METHODS Forty-eight rats were randomized into sham, CPB, Ac, Ac/AKT1, Ac/GSK3βi and Ac/AKT1/GSK3βa groups. Rats in sham group only received anesthesia and in the other groups received standard CPB surgery. Rats in the sham and CPB groups received saline, and rats in the Ac, Ac/AKT1, Ac/GSK3βi and Ac/AKT1/GSK3βa groups received Ac2-26 immediately after CPB. Rats in the Ac/AKT1, Ac/GSK3βi and Ac/AKT1/GSK3βa groups were injected with shRNA, inhibitor and agonist of GSK3β respectively. The neurological function score, brain edema and histological score were evaluated. The neuronal survival and hippocampal pyroptosis were assessed. The cytokines, activity of NF-κB, S100 calcium-binding protein β(S100β) and neuron-specific enolase (NSE), and oxidative were tested. The NLRP3, cleaved-caspase-1 and cleaved-gadermin D (GSDMD) in the brain were also detected. RESULTS Compared to the sham group, all indicators were aggravated in rats that underwent CPB. Compared to the CPB group, Ac2-26 significantly improved neurological scores and brain edema and ameliorated pathological injury. Ac2-26 reduced the local and systemic inflammation, oxidative stress response and promoted neuronal survival. Ac2-26 reduced hippocampal pyroptosis and decreased pyroptotic proteins in brain tissue. The protection of Ac2-26 was notably lessened by shRNA and inhibitor of GSK3β. The agonist of GSK3β recovered the protection of Ac2-26 in presence of shRNA. CONCLUSIONS Ac2-26 significantly improved neurological function, reduced brain injury via regulating inflammation, oxidative stress response and pyroptosis after CPB. The protective effect of Ac2-26 primarily depended on AKT1/ GSK3β pathway.
Collapse
Affiliation(s)
- Ying-Nan Ju
- Department of Intensive Care Unit, Hainan General Hospital (Hainan Affiliated Hosptial of Hainan Medical University), Clinical College, Hainan Medical University, Haikou, 570311, China
| | - Zi-Wei Zou
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Bao-Wei Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Zi-Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Xi-Kun Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Lin Qiu
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150081, China
| | - Wei Gao
- Department of Anesthesiology, Hainan General Hospital (Hainan Affiliated Hosptial of Hainan Medical University), Clinical College, Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
25
|
Marasini S, Jia X. Neuroprotective Approaches for Brain Injury After Cardiac Arrest: Current Trends and Prospective Avenues. J Stroke 2024; 26:203-230. [PMID: 38836269 PMCID: PMC11164592 DOI: 10.5853/jos.2023.04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 06/06/2024] Open
Abstract
With the implementation of improved bystander cardiopulmonary resuscitation techniques and public-access defibrillation, survival after out-of-hospital cardiac arrest (OHCA) has increased significantly over the years. Nevertheless, OHCA survivors have residual anoxia/reperfusion brain damage and associated neurological impairment resulting in poor quality of life. Extracorporeal membrane oxygenation or targeted temperature management has proven effective in improving post-cardiac arrest (CA) neurological outcomes, yet considering the substantial healthcare costs and resources involved, there is an urgent need for alternative treatment strategies that are crucial to alleviate brain injury and promote recovery of neurological function after CA. In this review, we searched PubMed for the latest preclinical or clinical studies (2016-2023) utilizing gas-mediated, pharmacological, or stem cell-based neuroprotective approaches after CA. Preclinical studies utilizing various gases (nitric oxide, hydrogen, hydrogen sulfide, carbon monoxide, argon, and xenon), pharmacological agents targeting specific CA-related pathophysiology, and stem cells have shown promising results in rodent and porcine models of CA. Although inhaled gases and several pharmacological agents have entered clinical trials, most have failed to demonstrate therapeutic effects in CA patients. To date, stem cell therapies have not been reported in clinical trials for CA. A relatively small number of preclinical stem-cell studies with subtle therapeutic benefits and unelucidated mechanistic explanations warrant the need for further preclinical studies including the improvement of their therapeutic potential. The current state of the field is discussed and the exciting potential of stem-cell therapy to abate neurological dysfunction following CA is highlighted.
Collapse
Affiliation(s)
- Subash Marasini
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Zhao J, Lu N, Qu Y, Liu W, Zhong H, Tang N, Li J, Wang L, Xi D, He F. Calcium-sensing receptor-mediated macrophage polarization improves myocardial remodeling in spontaneously hypertensive rats. Exp Biol Med (Maywood) 2024; 249:10112. [PMID: 38715976 PMCID: PMC11075494 DOI: 10.3389/ebm.2024.10112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/13/2023] [Indexed: 06/04/2024] Open
Abstract
Chronic inflammation is a key element in the progression of essential hypertension (EH). Calcium plays a key role in inflammation, so its receptor, the calcium-sensing receptor (CaSR), is an essential mediator of the inflammatory process. Compelling evidence suggests that CaSR mediates inflammation in tissues and immune cells, where it mediates their activity and chemotaxis. Macrophages (Mφs) play a major role in the inflammatory response process. This study provided convincing evidence that R568, a positive regulator of CaSR, was effective in lowering blood pressure in spontaneously hypertensive rats (SHRs), improving cardiac function by alleviating cardiac hypertrophy and fibrosis. R568 can increase the content of CaSR and M2 macrophages (M2Mφs, exert an anti-inflammatory effect) in myocardial tissue, reduce M1 macrophages (M1Mφs), which have a pro-inflammatory effect in this process. In contrast, NPS2143, a negative state regulator of CaSR, exerted the opposite effect in all of the above experiments. Following this study, R568 increased CaSR content in SHR myocardial tissue, lowered blood pressure, promoted macrophages to M2Mφs and improved myocardial fibrosis, but interestingly, both M1Mφs and M2Mφs were increased in the peritoneal cavity of SHRs, the number of M2Mφs remained lower than M1Mφs. In vitro, R568 increased CaSR content in RAW264.7 cells (a macrophage cell line), regulating intracellular Ca2+ ([Ca2+]i) inhibited NOD-like receptor family protein 3 (NLRP3) inflammasome activation and ultimately prevented its conversion to M1Mφs. The results showed that a decrease in CaSR in hypertensive rats causes further development of hypertension and cardiac damage. EH myocardial remodeling can be improved by CaSR overexpression by suppressing NLRP3 inflammasome activation and macrophage polarization toward M1Mφs and increasing M2Mφs.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ning Lu
- School of Medicine, Tarim University, Alaer, Xinjiang, China
| | - Yuanyuan Qu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Wei Liu
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Hua Zhong
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Na Tang
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jiayi Li
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Lamei Wang
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Dongmei Xi
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Fang He
- Key Laboratory of Education Ministry of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory for Prevention and Treatment of Central Asia High Incidence Diseases, Department of Pathophysiology, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
27
|
Liu XY, Zhang LY, Wang XY, Li SC, Hu YY, Zhang JG, Xian XH, Li WB, Zhang M. STAT4-Mediated Klotho Up-Regulation Contributes to the Brain Ischemic Tolerance by Cerebral Ischemic Preconditioning via Inhibiting Neuronal Pyroptosis. Mol Neurobiol 2024; 61:2336-2356. [PMID: 37875707 DOI: 10.1007/s12035-023-03703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Our previous study has proved that the Klotho up-regulation participated in cerebral ischemic preconditioning (CIP)-induced brain ischemic tolerance. However, the exact neuroprotective mechanism of Klotho in CIP remains unclear. We explored the hypothesis that STAT4-mediated Klotho up-regulation contributes to the CIP-induced brain ischemic tolerance via inhibiting neuronal pyroptosis. Firstly, the expressions of pyroptosis-associated proteins (i.e., NLRP3, GSDMD, pro-caspase-1, and cleaved caspase-1) in hippocampal CA1 region were determined during the process of brain ischemic tolerance. We found the expression of pyroptosis-associated proteins was significantly up-regulated in the ischemic insult (II) group, and showed no significant changes in the CIP group. The expression level of each pyroptosis-associated proteins was lower in the CIP + II group than that in the II group. Inhibition of Klotho expression increased the expression of pyroptosis-associated proteins in the CIP + II group and blocked the CIP-induced brain ischemic tolerance. Injection of Klotho protein decreased the expression of pyroptosis-associated proteins in the II group, and protected neurons from ischemic injury. Secondly, the transcription factor STAT4 of Klotho was identified by bioinformatic analysis. Double luciferase reporter gene assay and chromatin immunoprecipitation assay showed STAT4 can bind to the site between nt - 881 and - 868 on the Klotho promoter region and positively regulates Klotho expression. Moreover, we found CIP significantly enhanced the expression of STAT4. Knockdown STAT4 suppressed Klotho up-regulation after CIP and blocked the CIP-induced brain ischemic tolerance. Collectively, it can be concluded that STAT4-mediated the up-regulation of Klotho contributed to the brain ischemic tolerance induced by CIP via inhibiting pyroptosis.
Collapse
Affiliation(s)
- Xi-Yun Liu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Ling-Yan Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Xiao-Yu Wang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Shi-Chao Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Yu-Yan Hu
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Jing-Ge Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Xiao-Hui Xian
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, People's Republic of China.
| |
Collapse
|
28
|
Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W, Zhong T, Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front Cell Neurosci 2024; 18:1359453. [PMID: 38515787 PMCID: PMC10955106 DOI: 10.3389/fncel.2024.1359453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Globally, millions of individuals are impacted by neurodegenerative disorders including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Although a great deal of energy and financial resources have been invested in disease-related research, breakthroughs in therapeutic approaches remain elusive. The breakdown of cells usually happens together with the onset of neurodegenerative diseases. However, the mechanism that triggers neuronal loss is unknown. Lipid peroxidation, which is iron-dependent, causes a specific type of cell death called ferroptosis, and there is evidence its involvement in the pathogenic cascade of neurodegenerative diseases. However, the specific mechanisms are still not well known. The present article highlights the basic processes that underlie ferroptosis and the corresponding signaling networks. Furthermore, it provides an overview and discussion of current research on the role of ferroptosis across a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangsheng Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Xia
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
29
|
Fukuda N, Toriuchi K, Mimoto R, Aoki H, Kakita H, Suzuki Y, Takeshita S, Tamura T, Yamamura H, Inoue Y, Hayashi H, Yamada Y, Aoyama M. Hypothermia Attenuates Neurotoxic Microglial Activation via TRPV4. Neurochem Res 2024; 49:800-813. [PMID: 38112974 DOI: 10.1007/s11064-023-04075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.
Collapse
Affiliation(s)
- Naoya Fukuda
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Rina Mimoto
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiroki Kakita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Satoru Takeshita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tetsuya Tamura
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumasa Yamada
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
30
|
Lu X, Zhan L, Chai G, Chen M, Sun W, Xu E. Hypoxic Preconditioning Attenuates Neuroinflammation via Inhibiting NF-κB/NLRP3 Axis Mediated by p-MLKL after Transient Global Cerebral Ischemia. Mol Neurobiol 2024; 61:1080-1099. [PMID: 37682454 DOI: 10.1007/s12035-023-03628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Hypoxic preconditioning (HPC) has been reported to alleviate neuronal damage and microglial activation in hippocampal CA1 after transient global cerebral ischemia (tGCI). However, the molecular mechanism is unclear. Recent studies identified that nuclear factor-kappa-B (NF-κB)/oligomerization domain-like receptors protein (NLRP) 3 inflammasome pathway is mainly involved in the activation of microglia and that phosphorylated (p)-mixed lineage kinase domain-like (MLKL) is related to the regulation of NF-κB/NLRP3 axis. Hence, in this study, we set out to investigate whether HPC attenuates neuronal damage and microglial activation through inhibiting NF-κB/NLRP3 axis mediated by p-MLKL after tGCI in CA1 of male rats. We found that HPC decreased NLRP3 inflammasome in microglia and inhibited M1 polarization of microglia in CA1 after tGCI. Mechanistically, HPC inhibited the activation of NF-κB signaling pathway and reduced the mRNA and protein levels of NLRP3 inflammasome after tGCI. Additionally, the knockdown of p-MLKL by short hairpin RNA (shRNA) administration inhibited the activation of the NF-κB signaling pathway and reduced the formation of NLRP3 inflammasome, thus attenuating M1 polarization of microglia and decreasing the release of interleukin 1 beta (IL-1β) and necrosis factor alpha (TNF-α) in CA1 post ischemia. We consider that p-MLKL in microglia may be derived from necroptotic neurons after tGCI. In conclusion, the new finding in this study is that HPC-induced neuroprotection against tGCI through inhibiting NF-κB/NLRP3 pathway mediated by p-MLKL.
Collapse
Affiliation(s)
- Xiaomei Lu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixuan Zhan
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guorong Chai
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Meiyan Chen
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Sun
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - En Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
31
|
Xia X, Chen Y, Qu H, Cao J, Wang H. The high-expression programming of SR-B1 mediates adrenal dysfunction in female offspring induced by prenatal caffeine exposure and its cholesterol accumulation mechanism. Food Funct 2024; 15:716-731. [PMID: 38113052 DOI: 10.1039/d3fo03561a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The cholesterol metabolism and homeostasis of adrenal are important for steroidogenesis. Our previous studies found that prenatal caffeine exposure (PCE) can inhibit adrenal steroidogenesis in offspring, but whether the mechanism is related to local imbalance of cholesterol metabolism remains unknown. Here, we found that PCE inhibited adrenal steroidogenesis and increased the expression of cell pyroptosis and inflammatory-related indicators (NLRP3, caspase-1 and IL-1β) in female adult offspring rats, and at the same time, the cholesterol levels in serum and adrenal gland also significantly increased. In vitro, the high level of cholesterol could inhibit adrenal corticosteroid synthesis through pyroptosis and an inflammatory response. It suggested that the low adrenal steroidogenesis in PCE female adult offspring is related to local cholesterol accumulation-mediated pyroptosis and inflammation. Furthermore, dating back to the intrauterine period, PCE increased the serum CORT level in female fetal rats, and increased the expression of the adrenal cholesterol intake gene SR-B1, which persisted after birth and even into adulthood. At the cellular level, silencing SR-B1 could reverse the increase of intracellular cholesterol content caused by high levels of cortisol in NCI-H295R cells. Finally, we confirmed that high concentrations of glucocorticoids increased the expression and H3K14ac level of the promoter region in SR-B1 by upregulating the GR/SREBP1/p300 pathway in vivo and in vitro. In conclusion, we clarified that the high-expression programming of SR-B1 mediates adrenal dysfunction in PCE female offspring and its cholesterol accumulation mechanism, which provided a favorable basis for finding novel targets to prevent and treat fetal-originated diseases.
Collapse
Affiliation(s)
- Xuan Xia
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Qu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Jiangang Cao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
32
|
Li M, Jiang P, Yang Y, Xiong L, Wei S, Wang J, Li C. The role of pyroptosis and gasdermin family in tumor progression and immune microenvironment. Exp Hematol Oncol 2023; 12:103. [PMID: 38066523 PMCID: PMC10704735 DOI: 10.1186/s40164-023-00464-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/29/2023] [Indexed: 06/29/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, distinguishes itself from apoptosis and necroptosis and has drawn increasing attention. Recent studies have revealed a correlation between the expression levels of many pyroptosis-related genes and both tumorigenesis and progression. Despite advancements in cancer treatments such as surgery, radiotherapy, chemotherapy, and immunotherapy, the persistent hallmark of cancer enables malignant cells to elude cell death and develop resistance to therapy. Recent findings indicate that pyroptosis can overcome apoptosis resistance amplify treatment-induced tumor cell death. Moreover, pyroptosis triggers antitumor immunity by releasing pro-inflammatory cytokines, augmenting macrophage phagocytosis, and activating cytotoxic T cells and natural killer cells. Additionally, it transforms "cold" tumors into "hot" tumors, thereby enhancing the antitumor effects of various treatments. Consequently, pyroptosis is intricately linked to tumor development and holds promise as an effective strategy for boosting therapeutic efficacy. As the principal executive protein of pyroptosis, the gasdermin family plays a pivotal role in influencing pyroptosis-associated outcomes in tumors and can serve as a regulatory target. This review provides a comprehensive summary of the relationship between pyroptosis and gasdermin family members, discusses their roles in tumor progression and the tumor immune microenvironment, and analyses the underlying therapeutic strategies for tumor treatment based on pyroptotic cell death.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Ping Jiang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Yuhan Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Liting Xiong
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| | - Chunxiao Li
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
33
|
Wang Y, Jia L, Wei M, Lyu J, Sheng M, Sun Y, Dong Z, Han W, Ren Y, Weng Y, Yu W. Circulating Exosomes Mediate Neurodegeneration Following Hepatic Ischemia-reperfusion Through Inducing Microglial Pyroptosis in the Developing Hippocampus. Transplantation 2023; 107:2364-2376. [PMID: 37291725 PMCID: PMC10593148 DOI: 10.1097/tp.0000000000004664] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Poor neurodevelopmental outcomes after pediatric liver transplantation seriously affect the long-term quality of life of recipients, in whom hepatic ischemia reperfusion (HIR) is considered to play a pivotal role. However, the link between HIR and brain injury remains unclear. Because circulating exosomes are considered as the key mediators of information transmission over long distances, we aimed to assess the role of circulating exosomes in HIR-induced hippocampal injury in young rats. METHODS We administered exosomes extracted from the sera of HIR model rats to normal young rats via the tail vein. Western blotting, enzyme-linked immunosorbent assay, histological examination, and real-time quantitative polymerase chain reaction were used to evaluate the role of exosomes in neuronal injury and activation of microglial pyroptosis in the developing hippocampus. Primary microglial cells were cocultured with exosomes to further assess the effect of exosomes on microglia. To further explore the potential mechanism, GW4869 or MCC950 was used to block exosome biogenesis or nod-like receptor family protein 3, respectively. RESULTS Serum-derived exosomes played a crucial role in linking HIR with neuronal degeneration in the developing hippocampus. Microglia were found to be the target cells of ischemia-reperfusion derived exosomes (I/R-exosomes). I/R-exosomes were taken up by microglia and promoted the occurrence of microglial pyroptosis in vivo and in vitro. Moreover, the exosome-induced neuronal injury was alleviated by suppressing the occurrence of pyroptosis in the developing hippocampus. CONCLUSIONS Microglial pyroptosis induced by circulating exosomes plays a vital role in developing hippocampal neuron injury during HIR in young rats.
Collapse
Affiliation(s)
- Yidan Wang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Min Wei
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Jingshu Lyu
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Ying Sun
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Zhonglan Dong
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Wenhui Han
- School of Medicine, Nankai University, Tianjin, China
| | - Yinghui Ren
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
34
|
Zhu K, Zhu X, Yu J, Chen L, Liu S, Yan M, Yang W, Sun Y, Zhang Z, Li J, Shen T, Hei M. Effects of HMGB1/RAGE/cathespin B inhibitors on alleviating hippocampal injury by regulating microglial pyroptosis and caspase activation in neonatal hypoxic-ischemic brain damage. J Neurochem 2023; 167:410-426. [PMID: 37753942 DOI: 10.1111/jnc.15965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Microglia play a crucial role in regulating neuroinflammation in the pathogenesis of neonatal hypoxic-ischemic brain damage (HIBD). Pyroptosis, an inflammatory form of programmed cell death, has been implicated in HIBD; however, its underlying mechanism remains unclear. We previously demonstrated that high-mobility group box 1 protein (HMGB1) mediates neuroinflammation and microglial damage in HIBD. In this study, we aimed to investigate the association between HMGB1 and microglial pyroptosis and elucidate the mechanism involved in rats with HIBD (both sexes were included) and in BV2 microglia subjected to oxygen-glucose deprivation. Our results showed that HMGB1 inhibition by glycyrrhizin (20 mg/kg) reduced the expression of microglial pyroptosis-related proteins, including caspase-1, the N-terminus fragment of gasdermin D (N-GSDMD), and pyroptosis-related inflammatory factors, such as interleukin (IL) -1β and IL-18. Moreover, HMGB1 inhibition resulted in reduced neuronal damage in the hippocampus 72 h after HIBD and ultimately improved neurobehavior during adulthood, as evidenced by reduced escape latency and path length, as well as increased time and distance spent in the target quadrant during the Morris water maze test. These results revealed that HIBD-induced pyroptosis is mediated by HMGB1/receptor for advanced glycation end products (RAGE) signaling (inhibition by FPS-ZM1, 1 mg/kg) and the activation of cathespin B (cat B). Notably, cat B inhibition by CA074-Me (5 mg/kg) also reduced hippocampal neuronal damage by suppressing microglial pyroptosis, thereby ameliorating learning and memory impairments caused by HIBD. Lastly, we demonstrated that microglial pyroptosis may contribute to neuronal damage through the HMGB1/RAGE/cat B signaling pathway in vitro. In conclusion, these results suggest that HMGB1/RAGE/cat B inhibitors can alleviate hippocampal injury by regulating microglial pyroptosis and caspase activation in HIBD, thereby reducing the release of proinflammatory mediators that destroy hippocampal neurons and induce spatial memory impairments.
Collapse
Affiliation(s)
- Kaiyi Zhu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xing Zhu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jie Yu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lu Chen
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shiqi Liu
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Mingjing Yan
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yanyan Sun
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhe Zhang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Jian Li
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Tao Shen
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Mingyan Hei
- Department of Neonatology, Neonatal Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
35
|
Zhang Q, Chen X, Hu Y, Zhou T, Du M, Xu R, Chen Y, Tang P, Chen Z, Li J. BIRC5 Inhibition Is Associated with Pyroptotic Cell Death via Caspase3-GSDME Pathway in Lung Adenocarcinoma Cells. Int J Mol Sci 2023; 24:14663. [PMID: 37834111 PMCID: PMC10572361 DOI: 10.3390/ijms241914663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a prevalent type of thoracic cancer with a poor prognosis and high mortality rate. However, the exact pathogenesis of this cancer is still not fully understood. One potential factor that can contribute to the development of lung adenocarcinoma is DNA methylation, which can cause changes in chromosome structure and potentially lead to the formation of tumors. The baculoviral IAP repeat containing the 5 (BIRC5) gene encodes the Survivin protein, which is a multifunctional gene involved in cell proliferation, migration, and invasion of tumor cells. This gene is elevated in various solid tumors, but its specific role and mechanism in lung adenocarcinoma are not well-known. To identify the potential biomarkers associated with lung adenocarcinoma, we screened the methylation-regulated differentially expressed genes (MeDEGs) of LUAD via bioinformatics analysis. Gene ontology (GO) process and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to investigate the biological function and pathway of MeDEGs. A protein-protein interaction (PPI) network was employed to explore the key module and screen hub genes. We screened out eight hub genes whose products are aberrantly expressed, and whose DNA methylation modification level is significantly changed in lung adenocarcinoma. BIRC5 is a bona fide marker which was remarkably up-regulated in tumor tissues. Flow cytometry analysis, lactate dehydrogenase release (LDH) assay and Micro-PET imaging were performed in A549 cells and a mouse xenograft tumor to explore the function of BIRC5 in cell death of lung adenocarcinoma. We found that BIRC5 was up-regulated and related to a high mortality rate in lung adenocarcinoma patients. Mechanically, the knockdown of BIRC5 inhibited the proliferation of A549 cells and induced pyroptosis via caspase3/GSDME signaling. Our findings have unraveled that BIRC5 holds promise as a novel biomarker and therapeutic target for lung adenocarcinoma. Additionally, we have discovered a novel pathway in which BIRC5 inhibition can induce pyroptosis through the caspase3-GSDME pathway in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Qingwei Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin 150081, China
| | - Ximing Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yingying Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Menghan Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Run Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yongchao Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Pingping Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhouxiu Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiamin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
36
|
Yang L, Gao Y, Huang J, Yang H, Zhao P, Li C, Yang Z. LncRNA Gm44206 Promotes Microglial Pyroptosis Through NLRP3/Caspase-1/GSDMD Axis and Aggravate Cerebral Ischemia-Reperfusion Injury. DNA Cell Biol 2023; 42:554-562. [PMID: 37566540 DOI: 10.1089/dna.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Inhibition of the inflammatory response triggered by microglial pyroptosis inflammatory activation may be one of the effective ways to alleviate cerebral ischemia-reperfusion injury, the specific mechanism of which remains unclear. In this study, BV-2 microglia with or without oxygen-glucose deprivation/reoxygenation (OGD/R) or long noncoding RNA (lncRNA) Gm44206 knockdown were used as cell models to conduct an in vitro study. Detection of lactate dehydrogenase release and pyroptosis-related protein levels was performed using a corresponding kit and western blotting, respectively. Proliferation of microglia was evaluated by CCK8 assay. Enzyme-linked immunosorbent assay was applied for measuring levels of proinflammatory cytokines. This study verified the involvement of microglial pyroptosis as well as upregulation of NLRP3, Caspase-1, GSDMD, and Apoptosis-associated Speck-like protein containing a C-terminal caspase-recruitment domain (ASC) in cerebral ischemia-reperfusion injury. Moreover, knockdown of lncRNA Gm44206 could alleviate OGD/R-induced microglial pyroptosis and cell proliferation inhibition through the NLRP3/Caspase-1/GSDMD pathway, thus decreasing the release of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-18, and tumor necrosis factor-alpha. In conclusion, this study established a correlation between microglial pyroptosis and cerebral ischemia-reperfusion injury and identified lncRNA Gm44206 as a potential regulator of NLRP3/Caspase-1/GSDMD axis-mediated microglial pyroptosis, which could be considered a promising therapeutic target.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinlong Huang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hantao Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Puyuan Zhao
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Li
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhigang Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine of China, Shanghai, China
| |
Collapse
|
37
|
Zhou Y, Zhang X, Yang H, Chu B, Zhen M, Zhang J, Yang L. Mechanism of cAMP Response Element-binding Protein 1/Death-associated Protein Kinase 1 Axis-mediated Hippocampal Neuron Apoptosis in Rat Brain Injury After Cardiopulmonary Resuscitation. Neuroscience 2023; 526:175-184. [PMID: 37406926 DOI: 10.1016/j.neuroscience.2023.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Brain injury represents a leading cause of deaths following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). This study explores the role of CREB1 (cAMP responsive element binding protein 1)/DAPK1 (death associated protein kinase 1) axis in brain injury after CPR. CA was induced by asphyxia in rats, followed by CPR. After CREB1 over-expression, the survival rate and neurological function score of rats were measured. Nissl and TUNEL staining evaluated the pathological condition of hippocampus and apoptosis of hippocampal neurons respectively. H19-7 cells were subjected to OGD/R and infected with oe-CREB1. CCK-8 assay and flow cytometry measured the cell viability and apoptosis. CREB1, DAPK1, and cleaved Caspase-3 expressions were examined using Western blot. The binding between CREB1 and DAPK1 was determined using ChIP and dual-luciferase reporter assays. CREB1 was poorly expressed while DAPK1 was highly expressed in rat hippocampus after CPR. CREB1 overexpression improved rat neurological function, repressed neuron apoptosis, and reduced cleaved Caspase-3 expression. CREB1 was enriched on the DAPK1 promoter and suppressed DAPK1 expression. DAPK1 overexpression reversed the inhibition of OGD/R-insulted apoptosis by CREB1 overexpression. To conclude, CREB1 suppresses hippocampal neuron apoptosis and mitigates brain injury after CPR by inhibiting DAPK1 expression.
Collapse
Affiliation(s)
- Yadong Zhou
- Department of Critical Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Xianjing Zhang
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Hui Yang
- Department of Critical Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Bo Chu
- Department of Emergency, Taian City Central Hospital, Taian, Shandong 271000, China
| | - Maochuan Zhen
- Department of Critical Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Junli Zhang
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Lin Yang
- Department of Hospital Infection Management, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| |
Collapse
|
38
|
Xu Y, Cao L, Zou W, Yu R, Shen W. Panax notoginseng saponins inhibits NLRP3 inflammasome-mediated pyroptosis by downregulating lncRNA-ANRIL in cardiorenal syndrome type 4. Chin Med 2023; 18:50. [PMID: 37158944 PMCID: PMC10165771 DOI: 10.1186/s13020-023-00756-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVE Cardiorenal syndrome type 4 (CRS4) is a complication of chronic kidney disease. Panax notoginseng saponins (PNS) have been confirmed to be efficient in cardiovascular diseases. Our study aimed to explore the therapeutic role and mechanism of PNS in CRS4. METHODS CRS4 model rats and hypoxia-induced cardiomyocytes were treated with PNS, with and without pyroptosis inhibitor VX765 and ANRIL overexpression plasmids. Cardiac function and cardiorenal function biomarkers levels were measured by echocardiography and ELISA, respectively. Cardiac fibrosis was detected by Masson staining. Cell viability was determined by cell counting kit-8 and flow cytometry. Expression of fibrosis-related genes (COL-I, COL-III, TGF-β, α-SMA) and ANRIL was examined using RT-qPCR. Pyroptosis-related protein levels of NLRP3, ASC, IL-1β, TGF-β1, GSDMD-N, and caspase-1 were measured by western blotting or immunofluorescence staining. RESULTS PNS improved cardiac function, and inhibited cardiac fibrosis and pyroptosis in a dose-dependent manner in model rats and injured H9c2 cells (p < 0.01). The expression of fibrosis-related genes (COL-I, COL-III, TGF-β, α-SMA) and pyroptosis-related proteins (NLRP3, ASC, IL-1β, TGF-β1, GSDMD-N, and caspase-1) was inhibited by PNS in injured cardiac tissues and cells (p < 0.01). Additionally, ANRIL was upregulated in model rats and injured cells, but PNS reduced its expression in a dose-dependent manner (p < 0.05). Additionally, the inhibitory effect of PNS on pyroptosis in injured H9c2 cells was enhanced by VX765 and reversed by ANRIL overexpression, respectively (p < 0.05). CONCLUSION PNS inhibits pyroptosis by downregulating lncRNA-ANRIL in CRS4.
Collapse
Affiliation(s)
- Ying Xu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luxi Cao
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wenli Zou
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Rizhen Yu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Wei Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, No. 158, Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
39
|
Wang SS, Xie SS, Meng YX, Zhang XY, Liu YC, Wang LL, Wang YF. [Protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:193-201. [PMID: 36854697 PMCID: PMC9979392 DOI: 10.7499/j.issn.1008-8830.2208010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/20/2022] [Indexed: 03/02/2023]
Abstract
OBJECTIVES To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism. METHODS A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats. RESULTS Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05). CONCLUSIONS Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Obstetrics and Gynecology, First Hospital Affiliated to Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Shuang-Shuang Xie
- Department of Obstetrics and Gynecology, First Hospital Affiliated to Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Yue-Xiu Meng
- Department of Obstetrics and Gynecology, First Hospital Affiliated to Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Xiang-Yun Zhang
- Department of Obstetrics and Gynecology, First Hospital Affiliated to Hebei North University, Zhangjiakou, Hebei 075000, China
| | - Yun-Chun Liu
- Department of Obstetrics and Gynecology, First Hospital Affiliated to Hebei North University, Zhangjiakou, Hebei 075000, China
| | | | | |
Collapse
|
40
|
Traub J, Frey A, Störk S. Chronic Neuroinflammation and Cognitive Decline in Patients with Cardiac Disease: Evidence, Relevance, and Therapeutic Implications. Life (Basel) 2023; 13:life13020329. [PMID: 36836686 PMCID: PMC9962280 DOI: 10.3390/life13020329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acute and chronic cardiac disorders predispose to alterations in cognitive performance, ranging from mild cognitive impairment to overt dementia. Although this association is well-established, the factors inducing and accelerating cognitive decline beyond ageing and the intricate causal pathways and multilateral interdependencies involved remain poorly understood. Dysregulated and persistent inflammatory processes have been implicated as potentially causal mediators of the adverse consequences on brain function in patients with cardiac disease. Recent advances in positron emission tomography disclosed an enhanced level of neuroinflammation of cortical and subcortical brain regions as an important correlate of altered cognition in these patients. In preclinical and clinical investigations, the thereby involved domains and cell types of the brain are gradually better characterized. Microglia, resident myeloid cells of the central nervous system, appear to be of particular importance, as they are extremely sensitive to even subtle pathological alterations affecting their complex interplay with neighboring astrocytes, oligodendrocytes, infiltrating myeloid cells, and lymphocytes. Here, we review the current evidence linking cognitive impairment and chronic neuroinflammation in patients with various selected cardiac disorders including the aspect of chronic neuroinflammation as a potentially druggable target.
Collapse
Affiliation(s)
- Jan Traub
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
- Correspondence: ; Tel.: +4993120139216
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
41
|
Yu S, Wu C, Zhu Y, Diao M, Hu W. Rat model of asphyxia-induced cardiac arrest and resuscitation. Front Neurosci 2023; 16:1087725. [PMID: 36685224 PMCID: PMC9846144 DOI: 10.3389/fnins.2022.1087725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Neurologic injury after cardiopulmonary resuscitation is the main cause of the low survival rate and poor quality of life among patients who have experienced cardiac arrest. In the United States, as the American Heart Association reported, emergency medical services respond to more than 347,000 adults and more than 7,000 children with out-of-hospital cardiac arrest each year. In-hospital cardiac arrest is estimated to occur in 9.7 per 1,000 adult cardiac arrests and 2.7 pediatric events per 1,000 hospitalizations. Yet the pathophysiological mechanisms of this injury remain unclear. Experimental animal models are valuable for exploring the etiologies and mechanisms of diseases and their interventions. In this review, we summarize how to establish a standardized rat model of asphyxia-induced cardiac arrest. There are four key focal areas: (1) selection of animal species; (2) factors to consider during modeling; (3) intervention management after return of spontaneous circulation; and (4) evaluation of neurologic function. The aim was to simplify a complex animal model, toward clarifying cardiac arrest pathophysiological processes. It also aimed to help standardize model establishment, toward facilitating experiment homogenization, convenient interexperimental comparisons, and translation of experimental results to clinical application.
Collapse
|
42
|
Tian HL, Wang W, Gong QY, Cai L, Jing Y, Yang DX, Yuan F, Chen H. Knockout of Sirt2 alleviates traumatic brain injury in mice. Neural Regen Res 2023; 18:350-356. [PMID: 35900429 PMCID: PMC9396492 DOI: 10.4103/1673-5374.346457] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sirtuin 2 (SIRT2) inhibition or Sirt2 knockout in animal models protects against the development of neurodegenerative diseases and cerebral ischemia. However, the role of SIRT2 in traumatic brain injury (TBI) remains unclear. In this study, we found that knockout of Sirt2 in a mouse model of TBI reduced brain edema, attenuated disruption of the blood-brain barrier, decreased expression of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, reduced the activity of the effector caspase-1, reduced neuroinflammation and neuronal pyroptosis, and improved neurological function. Knockout of Sirt2 in a mechanical stretch injury cell model in vitro also decreased expression of the NLRP3 inflammasome and pyroptosis. Our findings suggest that knockout of Sirt2 is neuroprotective against TBI; therefore, Sirt2 could be a novel target for TBI treatment.
Collapse
|
43
|
Wang J, Lu S, Yuan Y, Huang L, Bian M, Yu J, Zou J, Jiang L, Meng D, Zhang J. Inhibition of Schwann Cell Pyroptosis Promotes Nerve Regeneration in Peripheral Nerve Injury in Rats. Mediators Inflamm 2023; 2023:9721375. [PMID: 37144237 PMCID: PMC10154099 DOI: 10.1155/2023/9721375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/14/2022] [Accepted: 03/24/2023] [Indexed: 05/06/2023] Open
Abstract
Background Peripheral nerve injury (PNI) is one of the most debilitating injuries, but therapies for PNI are still far from satisfactory. Pyroptosis, a recently identified form of cell death, has been demonstrated to participate in different diseases. However, the role of pyroptosis of Schwann cells in PNI remains unclear. Methods We established a rat PNI model, and western blotting, transmission electron microscopy, and immunofluorescence staining were used to confirm pyroptosis of Schwann cells in PNI in vivo. In vitro, pyroptosis of Schwann cells was induced by lipopolysaccharides (LPS)+adenosine triphosphate disodium (ATP). An irreversible inhibitor of pyroptosis, acetyl (Ac)-Tyr-Val-Ala-Asp-chloromethyl ketone (Ac-YVAD-cmk), was used to attenuate Schwann cell pyroptosis. Moreover, the influence of pyroptotic Schwann cells on the function of dorsal root ganglion neurons (DRGns) was analyzed by a coculture system. Finally, the rat PNI model was intraperitoneally treated with Ac-YVAD-cmk to observe the effect of pyroptosis on nerve regeneration and motor function. Results Schwann cell pyroptosis was notably observed in the injured sciatic nerve. LPS+ATP treatment effectively induced Schwann cell pyroptosis, which was largely attenuated by Ac-YVAD-cmk. Additionally, pyroptotic Schwann cells inhibited the function of DRGns by secreting inflammatory factors. A decrease in pyroptosis in Schwann cells promoted regeneration of the sciatic nerve and recovery of motor function in rats. Conclusion Given the role of Schwann cell pyroptosis in PNI progression, inhibition of Schwann cell pyroptosis might be a potential therapeutic strategy for PNI in the future.
Collapse
Affiliation(s)
- Jiayi Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shunyi Lu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ya Yuan
- Department of Rehabilitation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Huang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengxuan Bian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieqin Yu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiapeng Zou
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dehua Meng
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Xin Y, Wang W, Mao E, Yang H, Li S. Targeting NLRP3 Inflammasome Alleviates Synovitis by Reducing Pyroptosis in Rats with Experimental Temporomandibular Joint Osteoarthritis. Mediators Inflamm 2022; 2022:2581151. [PMID: 36466156 PMCID: PMC9712023 DOI: 10.1155/2022/2581151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/29/2022] [Accepted: 10/29/2022] [Indexed: 11/14/2023] Open
Abstract
The mechanism of temporomandibular joint osteoarthritis (TMJOA), which leads to the final erosion of cartilage and subchondral bone, has been widely demonstrated, but still not clearly elucidated. Many studies have pointed that NLRP3-mediated inflammation played a vital role in degenerative diseases. However, its interaction with synovitis of TMJOA has remained poorly investigated. In our study, we explored the role of NLRP3 inflammasome in TMJOA synovitis and the therapeutic potential of caspase-1 and NLRP3 inhibitors. By establishing a rat TMJOA model, we found that NLRP3 was upregulated in synovial tissue of TMJOA. It was involved in the progress of a programmed cell death called pyroptosis, which was caspase-1 dependent and ultimately triggered inflammatory mediator interleukin IL-1β release. Treatment with Ac-YVAD-cmk and MCC950, inhibitors targeting caspase-1 and NLRP3, respectively, significantly suppressed pyroptosis in TMJOA synovial tissue. Then, a macrophage- and fibroblast-like synoviocyte (FLS) cocultured model further verified the above results. Macrophage somehow promoted FLS pyroptosis in this study. Our results suggested that the NLRP3 inflammasome-mediated pyroptosis participated in synovial inflammation of TMJOA. Interfering with the progress could be a potential option for controlling TMJOA development.
Collapse
Affiliation(s)
- Yinzi Xin
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Wei Wang
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Enyu Mao
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Hefeng Yang
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| | - Song Li
- Department of Orthodontics, Kunming Medical University School and Hospital of Stomatology, Kunming 650106, China
- Yunnan Key Laboratory of Stomatology, Kunming 650106, China
| |
Collapse
|
45
|
Ye D, Xu Y, Shi Y, Fan M, Lu P, Bai X, Feng Y, Hu C, Cui K, Tang X, Liao J, Huang W, Xu F, Liang X, Huang J. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res 2022; 73:e12828. [PMID: 36031799 DOI: 10.1111/jpi.12828] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Acute ocular hypertension (AOH) is the most important characteristic of acute glaucoma, which can lead to retinal ganglion cell (RGC) death and permanent vision loss. So far, approved effective therapy is still lacking in acute glaucoma. PANoptosis (pyroptosis, apoptosis, and necroptosis), which consists of three key modes of programmed cell death-apoptosis, necroptosis, and pyroptosis-may contribute to AOH-induced RGC death. Previous studies have demonstrated that melatonin (N-acetyl-5-methoxytryptamine) exerts a neuroprotective effect in many retinal degenerative diseases. However, whether melatonin is anti-PANoptotic and neuroprotective in the progression of acute glaucoma remains unclear. Thus, this study aimed to explore the role of melatonin in AOH retinas and its underlying mechanisms. The results showed that melatonin treatment attenuated the loss of ganglion cell complex thickness, retinal nerve fiber layer thickness, and RGC after AOH injury, and improved the amplitudes of a-wave, b-wave, and oscillatory potentials in the electroretinogram. Additionally, the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells was decreased, and the upregulation of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 and p-Bad were inhibited after melatonin administration. Meanwhile, both the expression and activation of MLKL, RIP1, and RIP3, along with the number of PI-positive cells, were reduced in melatonin-treated mice, and p-RIP3 was in both RGC and microglia/macrophage after AOH injury. Furthermore, melatonin reduced the expression of NLRP3, ASC, cleaved caspase-1, gasdermin D (GSDMD), and cleaved GSDMD, and decreased the number of Iba1/interleukin-1β-positive cells. In conclusion, melatonin ameliorated retinal structure, prevented retinal dysfunction after AOH, and exerted a neuroprotective effect via inhibition of PANoptosis in AOH retinas.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Wei Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
46
|
Ding Z, Zhong Z, Wang J, Zhang R, Shao J, Li Y, Wu G, Tu H, Yuan W, Sun H, Wang Q. Inhibition of Dectin-1 Alleviates Neuroinflammatory Injury by Attenuating NLRP3 Inflammasome-Mediated Pyroptosis After Intracerebral Hemorrhage in Mice: Preliminary Study Results. J Inflamm Res 2022; 15:5917-5933. [PMID: 36274828 PMCID: PMC9579968 DOI: 10.2147/jir.s384020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Neuroinflammation plays an important role following intracerebral hemorrhage (ICH). NLRP3 inflammasome-mediated pyroptosis contributes to the mechanism of neuroinflammation. It has been reported that dendritic cell-associated C-type lectin-1 (Dectin-1) activation triggers inflammation in neurological diseases. However, the role of Dectin-1 on NLRP3 inflammasome-mediated pyroptosis after ICH remains unclear. Here, we aimed to explore the effect of Dectin-1 on NLRP3 inflammasome-mediated pyroptosis and neuroinflammation after ICH. METHODS Adult male C57BL/6 mice were used to establish the ICH model. Laminarin, an inhibitor of Dectin-1, was administered for intervention. Expression of Dectin-1 was evaluated by Western blot and immunofluorescence. Brain water content and neurobehavioral function were tested to assess brain edema and neurological performance. Western blot was conducted to evaluate the level of GSDMD-N. ELISA kits were used to measure the levels of IL-1β and IL-18. qRT-PCR and Western blot were performed to evaluate the expressions of NLRP3 inflammasome, IL-1β, and IL-18. RESULTS The expression of Dectin-1 increased following ICH, and Dectin-1 was expressed on microglia. In addition, inhibition of Dectin-1 by laminarin decreased brain edema and neurological impairment after ICH. Moreover, inhibition of Dectin-1 decreased the expression of pyroptosis-related protein, GSDMD-N, and inflammatory cytokines (IL-1β and IL-18). Mechanistically, Dectin-1 blockade inhibits NLRP3 inflammasome activation, thereby alleviating neuroinflammatory injury by attenuating NLRP3 inflammasome-mediated pyroptosis both in vivo and in vitro. CONCLUSION Our study indicates that the inhibition of Dectin-1 alleviates neuroinflammation by attenuating NLRP3 inflammasome-mediated pyroptosis after ICH.
Collapse
Affiliation(s)
- Zhiquan Ding
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhenzhong Zhong
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jun Wang
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Run Zhang
- Neurosurgery Center, Department of Neuro-oncological Surgery, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jinlian Shao
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yulong Li
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Guiwei Wu
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Huiru Tu
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wen Yuan
- Laboratory Animal Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Haitao Sun
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China,Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qinghua Wang
- Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China,Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China,Correspondence: Qinghua Wang; Haitao Sun, Neurosurgery Center, Department of Neurotrauma and Neurocritical Care Medicine, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China, Email ;
| |
Collapse
|
47
|
He Y, Chang Y, Peng Y, Zhu J, Liu K, Chen J, Wu Y, Ji Z, Lin Z, Wang S, Gupta S, Zang N, Pan S, Huang K. Glibenclamide Directly Prevents Neuroinflammation by Targeting SUR1-TRPM4-Mediated NLRP3 Inflammasome Activation In Microglia. Mol Neurobiol 2022; 59:6590-6607. [PMID: 35972671 DOI: 10.1007/s12035-022-02998-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
Glibenclamide (GLB) reduces brain edema and improves neurological outcome in animal experiments and preliminary clinical studies. Recent studies also suggested a strong anti-inflammatory effect of GLB, via inhibiting nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation. However, it remains unknown whether the anti-inflammatory effect of GLB is independent of its role in preventing brain edema, and how GLB inhibits the NLRP3 inflammasome is not fully understood. Sprague-Dawley male rats underwent 10-min asphyxial cardiac arrest and cardiopulmonary resuscitation or sham-operation. The Trpm4 siRNA and GLB were injected to block sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) channel in rats. Western blotting, quantitative real-time polymerase chain reaction, behavioral analysis, and histological examination were used to evaluate the role of GLB in preventing NLRP3-mediated neuroinflammation through inhibiting SUR1-TRPM4, and corresponding neuroprotective effect. To further explore the underlying mechanism, BV2 cells were subjected to lipopolysaccharides, or oxygen-glucose deprivation/reperfusion. Here, in rat model of cardiac arrest with brain edema combined with neuroinflammation, GLB significantly alleviated neurocognitive deficit and neuropathological damage, via the inhibition of microglial NLRP3 inflammasome activation by blocking SUR1-TRPM4. Of note, the above effects of GLB could be achieved by knockdown of Trpm4. In vitro under circumstance of eliminating distractions from brain edema, SUR1-TRPM4 and NLRP3 inflammasome were also activated in BV2 cells subjected to lipopolysaccharides, or oxygen-glucose deprivation/reperfusion, which could be blocked by GLB or 9-phenanthrol, a TRPM4 inhibitor. Importantly, activation of SUR1-TRPM4 in BV2 cells required the P2X7 receptor-mediated Ca2+ influx, which in turn magnified the K+ efflux via the Na+ influx-driven opening of K+ channels, leading to the NLRP3 inflammasome activation. These findings suggest that GLB has a direct anti-inflammatory neuroprotective effect independent of its role in preventing brain edema, through inhibition of SUR1-TRPM4 which amplifies K+ efflux and promotes NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yihua He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Yuqin Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Jiancong Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Zhenzhou Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Shengnan Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Sohan Gupta
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Nailiang Zang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China.
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou North Avenue 1838#, 510515, Guangzhou, China.
| |
Collapse
|
48
|
Research progress of targeting NLRP3 inflammasome in peripheral nerve injury and pain. Int Immunopharmacol 2022; 110:109026. [DOI: 10.1016/j.intimp.2022.109026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 01/08/2023]
|
49
|
Xia P, Marjan M, Liu Z, Zhou W, Zhang Q, Cheng C, Zhao M, Tao Y, Wang Z, Ye Z. Chrysophanol postconditioning attenuated cerebral ischemia-reperfusion injury induced NLRP3-related pyroptosis in a TRAF6-dependent manner. Exp Neurol 2022; 357:114197. [PMID: 35932799 DOI: 10.1016/j.expneurol.2022.114197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/04/2022]
Abstract
Individuals who suffer from post-CA (cardiac arrest) brain injury experience higher mortality and more severe functional disability. Neuroinflammation has been identified as a vital factor in cerebral ischemia-reperfusion injury (CIRI) following CA. Pyroptosis induces neuronal death by triggering an excessive inflammatory injury. Chrysophanol possesses robust anti-inflammatory features, and it is protective against CIRI. The purpose of this research was to assess the effect of Chrysophanol postconditioning on CIRI-induced pyroptotic cell death, and to explore its underlying mechanisms. CIRI was induced in rats by CA and subsequent cardiopulmonary resuscitation, and PC12 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to imitate CIRI in vitro. It was found that post-CA brain injury led to a notable cerebral damage revealed by histopathological changes and neurological outcomes. The existence of pyroptosis was also confirmed in in vivo and in vitro CIRI models. Moreover, we further confirmed that Chrysophanol, the main bioactive ingredient of Rhubarb, significantly suppressed expressions of pyroptosis-associated proteins, e.g., NLRP3, ASC, cleaved-caspase-1 and N-terminal GSDMD, and inhibited the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6). Furthermore, NLRP3 overexpression neutralized the neuroprotection of Chrysophanol postconditioning, suggesting that pyroptosis was the major neuronal death pathway modulated by Chrysophanol postconditioning in OGD/R. Additionally, the neuroprotection of Chrysophanol postconditioning was also abolished by gain-of-function analyses of TRAF6. Finally, the results demonstrated that Chrysophanol postconditioning suppressed the interaction between TRAF6 and NLRP3. Taken together, our findings revealed that Chrysophanol postconditioning was protective against CIRI by inhibiting NLRP3-related pyroptosis in a TRAF6-dependent manner.
Collapse
Affiliation(s)
- Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan Province, China
| | - Murat Marjan
- Department of Anesthesiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 Xinjiang, Uygur Autonomous Region, China
| | - Zhuoyi Liu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan Province, China
| | - Wanqing Zhou
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Qian Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Chen Cheng
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Minxi Zhao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Yuanyuan Tao
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | - Zhihua Wang
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha 410008, Hunan Province, China.
| |
Collapse
|
50
|
Wu X, Wan T, Gao X, Fu M, Duan Y, Shen X, Guo W. Microglia Pyroptosis: A Candidate Target for Neurological Diseases Treatment. Front Neurosci 2022; 16:922331. [PMID: 35937897 PMCID: PMC9354884 DOI: 10.3389/fnins.2022.922331] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to its profound implications in the fight against cancer, pyroptosis have important role in the regulation of neuronal injury. Microglia are not only central members of the immune regulation of the central nervous system (CNS), but are also involved in the development and homeostatic maintenance of the nervous system. Under various pathological overstimulation, microglia pyroptosis contributes to the massive release of intracellular inflammatory mediators leading to neuroinflammation and ultimately to neuronal damages. In addition, microglia pyroptosis lead to further neurological damage by decreasing the ability to cleanse harmful substances. The pathogenic roles of microglia in a variety of CNS diseases such as neurodegenerative diseases, stroke, multiple sclerosis and depression, and many other neurological disorders have been gradually unveiled. In the context of different neurological disorders, inhibition of microglia pyroptosis by targeting NOD-like receptor family pyrin domain containing (NLRP) 3, caspase-1 and gasdermins (GSDMs) by various chemical agents as well as natural products significantly improve the symptoms or outcome in animal models. This study will provide new ideas for immunomodulatory treatment of CNS diseases.
Collapse
Affiliation(s)
- Xian Wu
- The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Teng Wan
- Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Yunfeng Duan
- The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Xiangru Shen
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Xiangru Shen
| | - Weiming Guo
- Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|