1
|
Shi D, Bai Y, Long R, Xia J, Xu W, Qin D, Yang X, Ding M, Hou XY. Neuronal LAMP2A-mediated reduction of adenylyl cyclases induces acute neurodegenerative responses and neuroinflammation after ischemic stroke. Cell Death Differ 2025; 32:337-352. [PMID: 39341961 PMCID: PMC11802923 DOI: 10.1038/s41418-024-01389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Lysosomes regulate cellular metabolism to maintain cell survival, but the mechanisms whereby they determine neuronal cell fate after acute metabolic stress are unknown. Neuron-enriched lysosomal membrane protein LAMP2A is involved in selective chaperone-mediated autophagy and exosome loading. This study demonstrates that abnormalities in the neuronal LAMP2A-lysosomal pathway cause neurological deficits following ischemic stroke and that this is an early inducer of the PANoptosis-like molecular pathway and neuroinflammation, simultaneously inducing upregulation of FADD, RIPK3, and MLKL after ischemia. Quantitative proteomic and pharmacological analysis showed that after acute metabolic stress, the neuronal LAMP2A pathway induced acute synaptic degeneration and PANoptosis-like responses involving downregulation of protein kinase A (PKA) signaling. LAMP2A directed post-stroke lysosomal degradation of adenylyl cyclases (ADCY), including ADCY1 and ADCY3 in cortical neurons. Post-stroke treatment with cAMP mimetic or ADCY activator salvaged cortical neurons from PANoptosis-like responses and neuroinflammation, suggesting that the neuronal ADCY-cAMP-PKA axis is an upstream arrester of the pathophysiological process following an ischemic stroke. This study demonstrates that the neuronal LAMP2A-lysosmal pathway drives intricate acute neurodegenerative and neuroinflammatory responses after brain metabolic stress by downregulating the ADCY-PKA signaling cascade, and highlights the therapeutic potential of PKA signal inducers for improving stroke outcomes.
Collapse
Affiliation(s)
- Dingfang Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yunhao Bai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ruiling Long
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jing Xia
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenxuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Dongshen Qin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xuejun Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ming Ding
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Xiao-Yu Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Li J, Wang Y, Yang Y, Ren X, Qiang Y, Zhang L, Guo L, Liu K. Reactive astrogliosis induced by TNF-α is associated with upregulated AEG-1 together with activated NF-κB pathway in vitro. Neurosci Lett 2024; 837:137899. [PMID: 39019146 DOI: 10.1016/j.neulet.2024.137899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Astrocyte-elevated gene-1 (AEG-1/MTDH/LYRIC) has garnered signficant attention in cancer research, yet, its role in inflammation-associated astrogliosis remains underexplored. This study aims to elucidate the effects of AEG-1 on reactive astrogliosis, including proliferation, migration, and glutamate uptake in primary astrocytes derived from rats. We first confirmed the effect of AEG-1 on these parameters. Subsequently, we investigated whether AEG-1 plays a role in the process of pro-inflammation factors such as tumor necrosis factor-alpha (TNF-α) induced astrogliosis. Our findings revealed that AEG-1-lentivirus infection led to hypertrophic cell bodies and enhanced expression of astrogliosis markers, including glial fibrillary acidic protein (GFAP) and vimentin. Additionally, AEG-1 was found to upregulate the mRNA and protein expression levels of EAAT2, a major glutamate transporter in the brain predominantly expressed by astrocytes and responsible for 90% of glutamate clearance. Furthermore, TNF-α was shown to promote astrogliosis, as well as astrocyte proliferation and migration, by upregulating AEG-1 expression through the NF-κB pathway. Collectively, these results suggest a potential role for AEG-1 in inflammation-related astrogliosis.
Collapse
Affiliation(s)
- Juanjuan Li
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Yahe Wang
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Yong Yang
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiaofan Ren
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Lianxiang Zhang
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| | - Le Guo
- School of Laboratory Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Kunmei Liu
- Ningxia Key Laboratory of Craniocerebral Disease, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
3
|
Rahman MS, Islam R, Bhuiyan MIH. Ion transporter cascade, reactive astrogliosis and cerebrovascular diseases. Front Pharmacol 2024; 15:1374408. [PMID: 38659577 PMCID: PMC11041382 DOI: 10.3389/fphar.2024.1374408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Cerebrovascular diseases and their sequalae, such as ischemic stroke, chronic cerebral hypoperfusion, and vascular dementia are significant contributors to adult disability and cognitive impairment in the modern world. Astrocytes are an integral part of the neurovascular unit in the CNS and play a pivotal role in CNS homeostasis, including ionic and pH balance, neurotransmission, cerebral blood flow, and metabolism. Astrocytes respond to cerebral insults, inflammation, and diseases through unique molecular, morphological, and functional changes, collectively known as reactive astrogliosis. The function of reactive astrocytes has been a subject of debate. Initially, astrocytes were thought to primarily play a supportive role in maintaining the structure and function of the nervous system. However, recent studies suggest that reactive astrocytes may have both beneficial and detrimental effects. For example, in chronic cerebral hypoperfusion, reactive astrocytes can cause oligodendrocyte death and demyelination. In this review, we will summarize the (1) roles of ion transporter cascade in reactive astrogliosis, (2) role of reactive astrocytes in vascular dementia and related dementias, and (3) potential therapeutic approaches for dementing disorders targeting reactive astrocytes. Understanding the relationship between ion transporter cascade, reactive astrogliosis, and cerebrovascular diseases may reveal mechanisms and targets for the development of therapies for brain diseases associated with reactive astrogliosis.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | | | - Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
4
|
Ojo OB, Amoo ZA, Olaleye MT, Jha SK, Akinmoladun AC. Time and Brain Region-Dependent Excitatory Neurochemical Alterations in Bilateral Common Carotid Artery Occlusion Global Ischemia Model. Neurochem Res 2023; 48:96-116. [PMID: 36006597 DOI: 10.1007/s11064-022-03732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Strict metabolic regulation in discrete brain regions leads to neurochemical changes in cerebral ischemia. Accumulation of extracellular glutamate is one of the early neurochemical changes that take place during cerebral ischemia. Understanding the sequential neurochemical processes involved in cerebral ischemia-mediated excitotoxicity before the clinical intervention of revascularization and reperfusion may greatly influence future therapeutic strategies for clinical stroke recovery. This study investigated the influence of time and brain regions on excitatory neurochemical indices in the bilateral common carotid artery occlusion (BCCAO) model of global ischemia. Male Wistar rats were subjected to BCCAO for 15 and 60 min to evaluate the effect of ischemia duration on excitatory neurochemical indices (dopamine level, glutamine synthetase, glutaminase, glutamate dehydrogenase, aspartate aminotransferase, monoamine oxidase, acetylcholinesterase, and Na+ K+ ATPase activities) in the discrete brain regions (cortex, striatum, cerebellum, and hippocampus). BCCAO without reperfusion caused marked time and brain region-dependent alterations in glutamatergic, glutaminergic, dopaminergic, monoaminergic, cholinergic, and electrogenic homeostasis. Prolonged BCCAO decreased cortical, striatal, and cerebellar glutamatergic, glutaminergic, dopaminergic, cholinergic, and electrogenic activities; increased hippocampal glutamatergic, glutaminergic, dopaminergic, and cholinergic activities, increased cortical and striatal monoaminergic activity; decreased cerebellar and hippocampal monoaminergic activity; and decreased hippocampal electrogenic activity. This suggests that excitatory neurotransmitters play a major role in the tissue-specific metabolic plasticity and reprogramming that takes place between the onset of cardiac arrest-mediated global ischemia and clinical intervention of recanalization. These tissue-specific neurochemical indices may serve as diagnostic and therapeutic strategies for mitigating the progression of ischemic damage before revascularization.
Collapse
Affiliation(s)
- Olubukola Benedicta Ojo
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, PMB 704, 340110, Akure, Nigeria. .,Sleep Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India.
| | - Zainab Abiola Amoo
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, PMB 704, 340110, Akure, Nigeria
| | - Mary Tolulope Olaleye
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, PMB 704, 340110, Akure, Nigeria
| | - Sushil Kumar Jha
- Sleep Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Afolabi Clement Akinmoladun
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, PMB 704, 340110, Akure, Nigeria.
| |
Collapse
|
5
|
Harada R, Furumoto S, Kudo Y, Yanai K, Villemagne VL, Okamura N. Imaging of Reactive Astrogliosis by Positron Emission Tomography. Front Neurosci 2022; 16:807435. [PMID: 35210989 PMCID: PMC8862631 DOI: 10.3389/fnins.2022.807435] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Many neurodegenerative diseases are neuropathologically characterized by neuronal loss, gliosis, and the deposition of misfolded proteins such as β-amyloid (Aβ) plaques and tau tangles in Alzheimer’s disease (AD). In postmortem AD brains, reactive astrocytes and activated microglia are observed surrounding Aβ plaques and tau tangles. These activated glial cells secrete pro-inflammatory cytokines and reactive oxygen species, which may contribute to neurodegeneration. Therefore, in vivo imaging of glial response by positron emission tomography (PET) combined with Aβ and tau PET would provide new insights to better understand the disease process, as well as aid in the differential diagnosis, and monitoring glial response disease-specific therapeutics. There are two promising targets proposed for imaging reactive astrogliosis: monoamine oxidase-B (MAO-B) and imidazoline2 binding site (I2BS), which are predominantly expressed in the mitochondrial membranes of astrocytes and are upregulated in various neurodegenerative conditions. PET tracers targeting these two MAO-B and I2BS have been evaluated in humans. [18F]THK-5351, which was originally designed to target tau aggregates in AD, showed high affinity for MAO-B and clearly visualized reactive astrocytes in progressive supranuclear palsy (PSP). However, the lack of selectivity of [18F]THK-5351 binding to both MAO-B and tau, severely limits its clinical utility as a biomarker. Recently, [18F]SMBT-1 was developed as a selective and reversible MAO-B PET tracer via compound optimization of [18F]THK-5351. In this review, we summarize the strategy underlying molecular imaging of reactive astrogliosis and clinical studies using MAO-B and I2BS PET tracers.
Collapse
Affiliation(s)
- Ryuichi Harada
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Ryuichi Harada,
| | - Shozo Furumoto
- Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Yukitsuka Kudo
- Department of New Therapeutics Innovation for Alzheimer’s and Dementia, Institute of Development and Aging, Tohoku University, Sendai, Japan
| | - Kazuhiko Yanai
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Victor L. Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Nobuyuki Okamura,
| |
Collapse
|
6
|
Huang KL, Hsiao IT, Chang TY, Yang SY, Chang YJ, Wu HC, Liu CH, Wu YM, Lin KJ, Ho MY, Lee TH. Neurodegeneration and Vascular Burden on Cognition After Midlife: A Plasma and Neuroimaging Biomarker Study. Front Hum Neurosci 2022; 15:735063. [PMID: 34970128 PMCID: PMC8712753 DOI: 10.3389/fnhum.2021.735063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objectives: Neurodegeneration and vascular burden are the two most common causes of post-stroke cognitive impairment. However, the interrelationship between the plasma beta-amyloid (Aβ) and tau protein, cortical atrophy and brain amyloid accumulation on PET imaging in stroke patients is undetermined. We aimed to explore: (1) the relationships of cortical thickness and amyloid burden on PET with plasma Aβ40, Aβ42, tau protein and their composite scores in stroke patients; and (2) the associations of post-stroke cognitive presentations with these plasma and neuroimaging biomarkers. Methods: The prospective project recruited first-ever ischemic stroke patients around 3 months after stroke onset. The plasma Aβ40, Aβ42, and total tau protein were measured with the immunomagnetic reduction method. Cortical thickness was evaluated on MRI, and cortical amyloid plaque deposition was evaluated by 18F-florbetapir PET. Cognition was evaluated with Mini-Mental State Examination (MMSE), Geriatric Depression Scale (GDS), Dementia Rating Scale-2 (DRS-2). Results: The study recruited 24 stroke patients and 13 normal controls. The plasma tau and tau*Aβ42 levels were correlated with mean cortical thickness after age adjustment. The Aβ42/Aβ40 ratio was correlated with global cortical 18F-florbetapir uptake value. The DRS-2 and GDS scores were associated with mean cortical thickness and plasma biomarkers, including Aβ42/Aβ40, tau, tau*Aβ42, tau/Aβ42, and tau/Aβ40 levels, in stroke patients. Conclusion: Plasma Aβ, tau, and their composite scores were associated with cognitive performance 3 months after stroke, and these plasma biomarkers were correlated with corresponding imaging biomarkers of neurodegeneration. Further longitudinal studies with a larger sample size are warranted to replicate the study results.
Collapse
Affiliation(s)
- Kuo-Lun Huang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ing-Tsung Hsiao
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yu Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Yeu-Jhy Chang
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiu-Chuan Wu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Hung Liu
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ming Wu
- Department of Radiology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Yang Ho
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Hai Lee
- Department of Neurology, Linkou Chang Gung Memorial Hospital, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
7
|
Lee KP, Chang AYW, Sung PS. Association between Blood Pressure, Blood Pressure Variability, and Post-Stroke Cognitive Impairment. Biomedicines 2021; 9:773. [PMID: 34356837 PMCID: PMC8301473 DOI: 10.3390/biomedicines9070773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
After stroke, dynamic changes take place from necrotic-apoptotic continuum, inflammatory response to poststroke neurogenesis, and remodeling of the network. These changes and baseline brain pathology such as small vessel disease (SVD) and amyloid burden may be associated with the occurrence of early or late poststroke cognitive impairment (PSCI) or dementia (PSD), which affect not only stroke victims but also their families and even society. We reviewed the current concepts and understanding of the pathophysiology for PSCI/PSD and identified useful tools for the diagnosis and the prediction of PSCI in serological, CSF, and image characteristics. Then, we untangled their relationships with blood pressure (BP) and blood pressure variability (BPV), important but often overlooked risk factors for PSCI/PSD. Finally, we provided evidence for the modifying effects of BP and BPV on PSCI as well as pharmacological and non-pharmacological interventions and life style modification for PSCI/PSD prevention and treatment.
Collapse
Affiliation(s)
- Kang-Po Lee
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Neurology, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Alice Y. W. Chang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pi-Shan Sung
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|