1
|
Mi L, Yuan J, Jiang Y, Hu Y, Lv C, Xu Y, Liu M, Liu T, Liu X, Huang J, Jiang R, Quan W. Constructed transferrin receptor-targeted liposome for the delivery of fluvoxamine to improve prognosis in a traumatic brain injury mouse model. Drug Deliv 2025; 32:2486840. [PMID: 40230297 PMCID: PMC12001850 DOI: 10.1080/10717544.2025.2486840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/01/2025] [Accepted: 01/22/2025] [Indexed: 04/16/2025] Open
Abstract
The dysregulation of blood-brain barrier (BBB) activates pathological mechanisms such as neuroinflammation after traumatic brain injury (TBI), and glymphatic system dysfunction accelerates toxic waste accumulation after TBI. It is essential to find an effective way to inhibit inflammation and repair BBB and glymphatic system after TBI; however, effective and lasting drug therapy remains challenging because BBB severely prevents drugs from being delivered to central nervous system. Transferrin receptors (TfRs) are mainly expressed on brain capillary endothelial cells. Here, we report a TfR-targeted nanomedicine for TBI treatment by penetrating BBB and delivering fluvoxamine (Flv). The TfR-targeted polypeptide liposome loaded with Flv (TPL-Flv) implements cell targeting ability on human umbilical vein endothelial cells (HUVECs) in vitro detected by flow cytometry, and drug safety was proved through cell viability analysis and blood routine and biochemistry analysis. Afterwards, we established a controlled cortical impact model to explore TPL-Flv administration effects on TBI mice. We confirmed that TPL-Flv could stimulate CXCR4/SDF-1 signaling pathway, activate Treg cells, and inhibit inflammation after TBI. TPL-Flv treatment also alleviated BBB disruption and restored aquaporin-4 (AQP4) polarization, as well as reversed glymphatic dysfunction. Furthermore, TPL-Flv accomplished remarkable improvement of motor and cognitive functions. These findings demonstrate that TPL-Flv can effectively cross BBB and achieve drug delivery to cerebral tissue, validating its potential to improve therapeutic outcomes for TBI.
Collapse
Affiliation(s)
- Liang Mi
- Department of Neurosurgery, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxing Jiang
- Department of Neurosurgery, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqian Hu
- Department of Endoscopy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yongqiang Xu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan, China
| | - Mingqi Liu
- Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Tao Liu
- Department of Neurosurgery, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
- Faculty of Medicine, The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Xuanhui Liu
- Department of Neurosurgery, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinhao Huang
- Department of Neurosurgery, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Quan
- Department of Neurosurgery, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Yang XY, Wang HQ, Wang ZZ, Chen NH. Linking depression and neuroinflammation: Crosstalk between glial cells. Eur J Pharmacol 2025; 995:177408. [PMID: 39984011 DOI: 10.1016/j.ejphar.2025.177408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/09/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
The inflammatory hypothesis is one of the more widely accepted pathogenesis of depression. Glia plays an important immunomodulatory role in neuroinflammation, mediating interactions between the immune system and the central nervous system (CNS). Glial cell-driven neuroinflammation is not only an important pathological change in depression, but also a potential therapeutic target. This review discusses the association between depression and glial cell-induced neuroinflammation and elucidates the role of glial cell crosstalk in neuroinflammation. Firstly, we focus on the role of glial cells in neuroinflammation in depression and glial cell interactions; secondly, we categorize changes in different glial cells in animal models of depression and depressed patients, focusing on how glial cells mediate inflammatory responses and exacerbate depressive symptoms; Thirdly, we review how conventional and novel antidepressants affect the phenotype and function of glial cells, thereby exerting anti-inflammatory activity; finally, we discuss the role of the gut-brain axis in glial cell function and depression, and objectively analyze the problems that remain in current antidepressant therapy. This review aims to provide an objective analysis of how glial cell cross-talk may mediate neuroinflammation and thereby influence pathologic progression of depression. It is concluded that a novel therapeutic strategy may be to ameliorate glial cell-mediated inflammatory responses.
Collapse
Affiliation(s)
- Xue-Ying Yang
- Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hui-Qin Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; School of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center. Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; School of Pharmacy, Hunan University of Chinese Medicine & Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha, 410208, Hunan, China.
| |
Collapse
|
3
|
Bu J, Liu Y, Zhao Y, Liu L, Shen J, Li Y. Paroxetine ameliorates corticosterone-induced myelin damage by promoting the proliferation and differentiation of oligodendrocyte precursor cells. Neuroscience 2025; 573:344-354. [PMID: 40164278 DOI: 10.1016/j.neuroscience.2025.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Depression is frequently associated with demyelination in the prefrontal cortex (PFC), and promoting remyelination can improve neuronal signaling and alleviate depressive symptoms. Paroxetine, a classic selective serotonin reuptake inhibitor (SSRI), is known to exert its antidepressant effects by increasing serotonin levels. However, its potential to alleviate myelin damage in depression remains unclear. A corticosterone (CORT)-induced mouse model of depression was used in this study. Myelin staining and transmission electron microscopy (TEM) were employed to assess myelin damage in the PFC, while immunofluorescence and western blot were performed to evaluate the expression of myelin-associated proteins. The primary oligodendrocyte precursor cells (OPCs) were cultured in vitro. The results demonstrated that paroxetine significantly alleviated CORT-induced depressive-like behaviors, including increased sucrose preference and spontaneous activity in the open field, while reduced immobility time in the tail suspension and forced swimming tests. Paroxetine also increased myelin thickness and restoring myelin integrity in the PFC. Moreover, paroxetine upregulated the expression of MBP, MAG, and neurofilament light chain protein (NFEL). Immunofluorescence analysis that paroxetine significantly increased the number of OPC (Olig2+/NG2+) and promoted OL differentiation (Olig2+/CC-1+), as well as upregulating the expression of PDGFRα. BrdU assays further confirmed that paroxetine enhanced OPC proliferation. In vitro, paroxetine significantly increased the viability of primary OPCs and promoted their proliferation and differentiation, with the most potent effect observed at 20 nM. These findings suggest that paroxetine alleviates CORT-induced myelin damage and improves depressive-like behaviors by promoting OPC proliferation and differentiation, providing new insights into its antidepressant mechanisms.
Collapse
Affiliation(s)
- Jingjing Bu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuan Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yufang Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liming Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiduo Shen
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao in Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Pei Y, Liu H, Lang J, Chen Y, Zhang F, Hao R, Li J, Gu S, Peng Q, Song J, Zhang Z. rTMS ameliorates CUMS-induced anxiety-depression-like behaviour and cognitive dysfunction in rats by modulating the COX-2/PGE2 signalling pathway. J Psychiatr Res 2025; 186:116-128. [PMID: 40233438 DOI: 10.1016/j.jpsychires.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND rTMS is a safe and effective neuromodulation method for treating depression, but the specifics of its antidepressant effects and the underlying mechanisms remain uncertain. METHODS Male SD rats were randomly divided into four groups: control group, CUMS group, CUMS + rTMS (10 Hz) group, and CUMS + celecoxib (25 mg/kg, as a positive control) group. Depression-like behavior was assessed by weight change, SPT, and FST; anxiety by OFT and EPM; and cognitive function by the Y-maze. WB, IF, ELISA, and qPCR were used to observe changes in COX-2/PGE2 signaling pathway-related proteins, inflammatory factors, and the activation of astrocytes and microglia in the hippocampus of rats. RESULTS Compared to the control group, rats in the CUMS group exhibited significant anxiety-depression-like behavior and cognitive dysfunction. Compared to the CUMS group, rTMS and celecoxib interventions improved anxiety-depression-like behavior and cognitive dysfunction, reduced the expression of microglia and astrocytes, reversed the upregulation of pro-inflammatory factors (IL-1β, IL-6, TNF-α), and downregulated the expression of proteins related to the COX-2/PGE2 signaling pathway in CUMS-induced rats. CONCLUSIONS The study demonstrated that rTMS could improve anxiety-depression-like behavior and cognitive dysfunction in rats by modulating the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Yanjiao Pei
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Huanhuan Liu
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Jiqing Lang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Yuxin Chen
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Fuping Zhang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University, China
| | - Ran Hao
- Jinan Mental Health Center, Jinan, Shandong, 250309, China
| | - Jiao Li
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihai, Henan, 453100, China
| | - Shina Gu
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihai, Henan, 453100, China
| | - Qi Peng
- Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Jinggui Song
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China.
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihai, Henan, 453100, China.
| |
Collapse
|
5
|
Liu D, Guo P, Wang Y, Li W. Regulation of adult neurogenesis: the crucial role of astrocytic mitochondria. Front Mol Neurosci 2024; 17:1516119. [PMID: 39649104 PMCID: PMC11621070 DOI: 10.3389/fnmol.2024.1516119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024] Open
Abstract
Neurogenesis has emerged as a promising therapeutic approach for central nervous system disorders. The role of neuronal mitochondria in neurogenesis is well-studied, however, recent evidence underscores the critical role of astrocytic mitochondrial function in regulating neurogenesis and the underlying mechanisms remain incompletely understood. This review highlights the regulatory effects of astrocyte mitochondria on neurogenesis, focusing on metabolic support, calcium homeostasis, and the secretion of neurotrophic factors. The effect of astrocytic mitochondrial dysfunction in the pathophysiology and treatment strategies of Alzheimer's disease and depression is discussed. Greater attention is needed to investigate the mitochondrial autophagy, dynamics, biogenesis, and energy metabolism in neurogenesis. Targeting astrocyte mitochondria presents a potential therapeutic strategy for enhancing neural regeneration.
Collapse
Affiliation(s)
| | | | | | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Zhao Y, Lv X, Chen Y, Zhang C, Zhou D, Deng Y. Neuroinflammatory response on a newly combinatorial cell-cell interaction chip. Biomater Sci 2024; 12:2096-2107. [PMID: 38441146 DOI: 10.1039/d4bm00125g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Neuroinflammation is a common feature in various neurological disorders. Understanding neuroinflammation and neuro-immune interactions is of significant importance. However, the intercellular interactions in the inflammatory model are intricate. Microfluidic chips, with their complex micrometer-scale structures and real-time observation capabilities, offer unique advantages in tackling these complexities compared to other techniques. In this study, microfluidic chip technology was used to construct a microarray physical barrier structure with 15 μm spacing, providing well-defined cell growth areas and clearly delineated interaction channels. Moreover, an innovative hydrophilic treatment process on the glass surface facilitated long-term co-culture of cells. The developed neuroinflammation model on the chip revealed that SH-SY5Y cytotoxicity was predominantly influenced by co-cultured THP-1 cells. The co-culture model fostered complex interactions that may exacerbate cytotoxicity, including irregular morphological changes of cells, cell viability reduction, THP-1 cell migration, and the release of inflammatory factors. The integration of the combinatorial cell-cell interaction chip not only offers a clear imaging detection platform but also provides diverse data on cell migration distance, migration direction, and migration angle. Furthermore, the designed ample space for cell culture, along with microscale channels with fluid characteristics, allow for the study of inflammatory factor distribution patterns on the chip, offering vital theoretical data on biological relevance that conventional experiments cannot achieve. The fabricated user-friendly, reusable, and durable co-culture chip serves as a valuable in vitro tool, providing an intuitive platform for gaining insights into the complex mechanisms underlying neuroinflammation and other interacting models.
Collapse
Affiliation(s)
- Yimeng Zhao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Xuefei Lv
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yu Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Chen Zhang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Di Zhou
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
7
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
8
|
Yang Y, Yang J, Ma T, Yang X, Yuan Y, Guo Y. The role and mechanism of TGF-β1 in the antidepressant-like effects of tetrahydrocurcumin. Eur J Pharmacol 2023; 959:176075. [PMID: 37802279 DOI: 10.1016/j.ejphar.2023.176075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/08/2023]
Abstract
Astrocytes and the activation of inflammatory factors are associated with depression. Tetrahydrocurcumin (THC), the principal metabolite of natural curcumin, is renowned for its anti-inflammatory properties. In this research, we explored the impact of THC on the expression of inflammatory factors, neurotrophins, and transforming growth factor β1 (TGF-β1) in the prefrontal cortex after chronic restraint stress (CRS) in mice and in lipopolysaccharide (LPS)-induced TNC1 astrocytes. Our findings indicated that THC mitigated the anxiety and depression-like behaviours observed in CRS mice. It also influenced the expression of TGF-β1, p-SMAD3/SMAD3, sirtuin 1 (SIRT1), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), inducible nitric oxide synthase (iNOS), and tumour necrosis factor α (TNF-α). Specifically, THC augmented the expressions of TGF-β1, p-SMAD3/SMAD3, SIRT1, BDNF, and GDNF, whilst diminishing the expressions of iNOS and TNF-α in LPS-induced astrocytes. However, when pre-treated with SB431542, a TGF-β1 receptor inhibitor, it nullified the aforementioned effects of THC on astrocytes. Our results propose that THC delivers its anti-depressive effects through the activation of TGF-β1, enhancement of p-SMAD3/SMAD3 and SIRT1 expression, upregulation of BDNF and GDNF, and downregulation of iNOS and TNF-α. This research furnishes new perspectives on the anti-inflammatory mechanism that underpins the antidepressant-like impact of THC.
Collapse
Affiliation(s)
- Yan Yang
- Kunming Medical University, Kunming, China
| | | | | | - Xueke Yang
- Kunming Medical University, Kunming, China
| | - Yun Yuan
- Kunming Medical University, Kunming, China.
| | - Ying Guo
- Kunming Medical University, Kunming, China.
| |
Collapse
|
9
|
Jaramillo DN, Millán D, Guevara-Pulido J. Design, synthesis and cytotoxic evaluation of a selective serotonin reuptake inhibitor (SSRI) by virtual screening. Eur J Pharm Sci 2023; 183:106403. [PMID: 36758772 DOI: 10.1016/j.ejps.2023.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Depression is one of the most common mental illnesses, affecting almost 300 million people. According to the WHO, depression is one of the world's leading causes of disability and morbidity. People with this illness require both psychological and pharmaceutical treatment because severe depressive episodes often result in suicide. Selective serotonin reuptake inhibitors (SSRI) are widely used antidepressants that target the human serotonin transporter (hSERT). The crystallization of hSERT and the experimental data available allows cost and time-efficient computational tools like virtual screening (VS) to be utilized in the development of therapeutic agents. Here, we synthesized, characterized, and evaluated the biological activity of a novel SSRI analog of paroxetine, rationally designed by applying an artificial neural network-based QSAR model and a molecular docking analysis on hSERT. The analog N-substituted 18a showed higher affinity for the transporter (-10.2 kcal/mol), lower Ki value (1.19 nM) and a safer toxicological profile than paroxetine and was synthesized with a 71% yield. The in vitro cytotoxicity of the analog was evaluated using human glioblastoma (U87 MG), human neuroblastoma (SH SY5Y) and murine fibroblast (L929) cell lines. Also, the hemolytic ability of the compound was assessed on human erythrocytes. Results showed that analog 18a did not exhibit cytotoxic activity on the cell lines used and has no hemolytic activity at any of the concentrations tested, whereas with paroxetine, hemolysis was observed at 2.3, 1.29 y 0.67 mM. Based on these results, it is possible to suggest that analog 18a could be a promising new SSRI candidate for the treatment of this illness.
Collapse
Affiliation(s)
- Deissy N Jaramillo
- INQA, Applied Chemistry Research Group- Faculty of Chemistry, Universidad El Bosque, Bogotá, Colombia
| | - Diana Millán
- GIBAT, Basic and Traslational Research Group - Faculty of Medicine, Universidad El Bosque, Bogotá, Colombia
| | - James Guevara-Pulido
- INQA, Applied Chemistry Research Group- Faculty of Chemistry, Universidad El Bosque, Bogotá, Colombia.
| |
Collapse
|
10
|
Upadhyay M, Gupta S. Endoplasmic reticulum secretory pathway: Potential target against SARS-CoV-2. Virus Res 2022; 320:198897. [PMID: 35988898 PMCID: PMC9387115 DOI: 10.1016/j.virusres.2022.198897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently emerged throughout the world, resulting in more than 400 million cases and over 6 million deaths worldwide as of January 2022. Coronaviruses subvert or use certain aspects of the unfolded protein response in the endoplasmic reticulum to overcome protein translation shutdown to benefit their replication. New virions use the ER-Golgi intermediate compartment to assemble and gain transportation to the cell membrane. Extensive remodeling of the ER has been demonstrated during SARS-CoV-2 infection. In this review article, we discuss the role of the endoplasmic reticulum secretory pathway in the replication cycle of SARS-CoV-2. Currently, there is a dearth of therapeutic options for intervening with SARS-CoV-2 infection. To accelerate drug development, efforts around the globe have been focusing on repurposing drugs that have already been approved for clinical use by regulatory agencies. Targeting the ERS pathway is reasonable, as prior work has shown that SARS-CoV-2 egress is dependent on this pathway. Here we discuss the feasibility of off-patent, FDA-approved, pharmacological inhibitors of the ERS pathway to suppress the SARS-CoV-2 replication cycle, a promising approach that warrants investigation.
Collapse
Affiliation(s)
- Maarisha Upadhyay
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, Galway, Ireland
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, Galway, Ireland.
| |
Collapse
|
11
|
Hugon J. Long-COVID: Cognitive deficits (brain fog) and brain lesions in non-hospitalized patients. Presse Med 2022; 51:104090. [PMID: 34718113 PMCID: PMC8552626 DOI: 10.1016/j.lpm.2021.104090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jacques Hugon
- Centre de Neurologie Cognitive Université de Paris APHP Hôpital Lariboisière 75010 Paris France; Clinique de la Mémoire 16 rue de Téhéran 75008 Paris France.
| |
Collapse
|
12
|
Molecular Mechanism of Sevoflurane Preconditioning Based on Whole-transcriptome Sequencing of Lipopolysaccharide-induced Cardiac Dysfunction in Mice. J Cardiovasc Pharmacol 2022; 79:846-857. [PMID: 35266915 DOI: 10.1097/fjc.0000000000001259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Sevoflurane, a widely used inhalation anesthetic, has been shown to be cardioprotective in individuals with sepsis and myocardial dysfunction. However, the exact mechanism has not been completely explained. In this study, we performed whole-transcriptome profile analysis in the myocardium of lipopolysaccharide-induced septic mice after sevoflurane pretreatment. RNA transcriptome sequencing showed that 97 protein coding RNAs (mRNAs), 64 long noncoding RNAs (lncRNAs), and 27 microRNAs (miRNAs) were differentially expressed between the lipopolysaccharide and S_L groups. Functional enrichment analysis revealed that target genes for the differentially expressed mRNAs between the 2 groups participated in protein processing in the endoplasmic reticulum, antigen processing and presentation, and the mitogen-activated protein kinase signaling pathway. The bioinformatics study of differentially expressed mRNAs revealed that 13 key genes including Hsph1, Otud1, Manf, Gbp2b, Stip1, Gbp3, Hspa1b, Aff3, Med12, Kdm4a, Gatad1, Cdkn1a, and Ppp1r16b are related to the heart or inflammation. Furthermore, the competing endogenous RNA network revealed that 3 of the 13 key genes established the lncRNA-miRNA-mRNA network (ENSMUST00000192774 --- mmu-miR-7a-5p --- Hspa1b, TCONS_00188587 --- mmu-miR-204-3p --- Aff3 and ENSMUST00000138273 --- mmu-miR-1954 --- Ppp1r16b) may be associated with cardioprotection in septic mice. In general, the findings identified 11 potential essential genes (Hsph1, Otud1, Manf, Gbp2b, Stip1, Gbp3, Hspa1b, Aff3, Med12, Kdm4a, Gatad1, Cdkn1a, and Ppp1r16b) and mitogen-activated protein kinase signaling pathway involved in sevoflurane-induced cardioprotection in septic mice. In particular, sevoflurane may prevent myocardial injury by regulating the lncRNA-miRNA-mRNA network, including (ENSMUST00000192774-mmu-miR-7a-5p-Hspa1b, TCONS_00188587-mmu-miR-204-3p-Aff3, and ENSMUST00000138273-mmu-miR-1954-Ppp1r16b networks), which may be a novel mechanism of sevoflurane-induced cardioprotection.
Collapse
|
13
|
Shi M, Mi L, Li F, Li Y, Zhou Y, Chen F, Liu L, Chai Y, Yang W, Zhang JN, Chen X. Fluvoxamine confers neuroprotection via inhibiting infiltration of peripheral leukocytes and M1 polarization of microglia/macrophages in a mouse model of traumatic brain injury. J Neurotrauma 2022; 39:1240-1261. [PMID: 35502478 DOI: 10.1089/neu.2021.0355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is an important mediator of secondary injury pathogenesis which exerts dual beneficial and detrimental effects on pathophysiology of central nervous system (CNS) after traumatic brain injury (TBI). Fluvoxamine as a group of the Serotonin selective reuptake inhibitors (SSRIs) has been reported to have the anti-inflammatory properties. However, the mechanisms and therapeutic effects of Fluvoxamine in neuroinflammation after TBI have not be defined. In this study, we showed that Fluvoxamine inhibited peripheral immune cells infiltration and glia activation at 3 days in mice subjected to TBI. Fluvoxamine treatment promoted microglial/macrophages phenotypic transformation from pro-inflammatory M1-phenotype to anti-inflammatory M2-phenotype in vivo and vitro experiments. In addition, Fluvoxamine treatment attenuated neuronal apoptosis, blood-brain barrier disruption, cerebrovascular damage and posttraumatic edema formation, thereby improving neurological function of mice subjected to TBI. These findings support the clinical evaluation of Fluvoxamine as a neuroprotective therapy for TBI.
Collapse
Affiliation(s)
- Mingming Shi
- Tianjin Medical University General Hospital, 117865, No. 154, Anshan Road, Heping District, Tianjin, Tianjin, China, 300052;
| | - Liang Mi
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Fanjian Li
- Tianjin Medical University General Hospital 154 Anshan Road, 300052, Department of Neurosurgery, Tianjin, China;
| | - Ying Li
- Tianjin Neurological Institute, 230967, Tianjin, Tianjin, China;
| | | | - Fanglian Chen
- Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China;
| | | | - Yan Chai
- Tianjin Neurological Institute, 230967, Tianjin, China;
| | - Weidong Yang
- Tianjin Medical University General Hospital, 117865, Neurosurgery, Tianjin, Tianjin, China;
| | - Jian-Ning Zhang
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Department of Neurosurgery, #154, Anshan Rd., Heping Dist. Tianjin, China P.R., Tianjin, China, 300052;
| | - Xin Chen
- Tianjin Medical University General Hospital, 117865, Neurosurgery, 154 Anshan Road, Heping District, Tianjin, Tianjin, China, 300052.,Tianjin Neurological Institute, 230967, 154 Anshan Road, Heping District, Tianjin, China, 300052;
| |
Collapse
|
14
|
Meng N, Dong Y, Huo T, Song M, Jiang X, Xiao Y, Lv P. Past Exposure to Cigarette Smoke Aggravates Cognitive Impairment in a Rat Model of Vascular Dementia via Neuroinflammation. Cell Mol Neurobiol 2022; 42:1021-1034. [PMID: 33156450 PMCID: PMC11441291 DOI: 10.1007/s10571-020-00992-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Smoking is a risk factor for dementia. Cognitive function can be partially restored after quitting smoking, but still lower than never smoked group. The underlying mechanisms still remain unclear. The effects of smoking cessation combined with cerebral chronic hypoperfusion (CCH) on cognitive function have never been described. Here, we established a cigarette smoking cessation model, a CCH model, and a cigarette smoking cessation plus CCH model. We investigated cognitive function in these models and the mechanisms of the neuroinflammation, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3)/cysteine aspartate-specific proteinase (caspase-1)/interleukin- 1β (IL-1β) pathway, and eucaryotic initiation factor 2α (eIF2α) /autophagy pathway. We used morris water maze (MWM) and novel object recognition (NOR) test to evaluate cognitive function in rats. Nissl staining was performed to observe cell morphology in the hippocampal CA1 area. A neuroinflammatory marker (glial fibrillary acidic protein, GFAP) was assessed by Western blot analysis and immunohistochemistry staining. IL-1β levels were detected by ELISA. The protein levels of NLRP3/caspase-1/ IL-1β and eIF2α/autophagy pathway were evaluated by Western blot analysis. LC3 was assessed by immunofluorescence staining. CCH can affect cognitive function by influencing neuroinflammation, NLRP3/caspase-1/IL-1β pathway, and eIF2α/autophagy pathway. Past exposure to cigarette smoke can also affect cognitive function by influencing neuroinflammation and NLRP3/caspase-1/IL-1β pathway, which may be induced by smoking and may not be alleviated after smoking cessation. Past exposure to cigarette smoke does not influence autophagy, which may be increased by smoking and then decrease to normal levels after smoking cessation. Past exposure to smoking can further aggravate cognitive impairment and neuroinflammation in VaD animals: cognitive impairment induced by CCH via neuroinflammation, NLRP3/caspase-1/IL-1β, and eIF2α/autophagy pathway and cognitive impairment induced by past exposure to cigarette smoke via neuroinflammation and NLRP3/caspase-1/IL-1β pathway. The combined group had the worst cognitive impairment because of harmful reasons.
Collapse
Affiliation(s)
- Nan Meng
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Tiantian Huo
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Meiyi Song
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China
| | - Xin Jiang
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Yining Xiao
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, No. 361 Zhongshan East Road, Changan District, Shijiazhuang, 050017, Hebei Province, People's Republic of China.
- Department of Neurology, Hebei General Hospital, No. 348 Heping West Road, Xinhua District, Shijiazhuang, 050051, Hebei Province, People's Republic of China.
| |
Collapse
|
15
|
Elias E, Zhang AY, Manners MT. Novel Pharmacological Approaches to the Treatment of Depression. Life (Basel) 2022; 12:196. [PMID: 35207483 PMCID: PMC8879976 DOI: 10.3390/life12020196] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder is one of the most prevalent mental health disorders. Monoamine-based antidepressants were the first drugs developed to treat major depressive disorder. More recently, ketamine and other analogues were introduced as fast-acting antidepressants. Unfortunately, currently available therapeutics are inadequate; lack of efficacy, adverse effects, and risks leave patients with limited treatment options. Efforts are now focused on understanding the etiology of depression and identifying novel targets for pharmacological treatment. In this review, we discuss promising novel pharmacological targets for the treatment of major depressive disorder. Targeting receptors including N-methyl-D-aspartate receptors, peroxisome proliferator-activated receptors, G-protein-coupled receptor 39, metabotropic glutamate receptors, galanin and opioid receptors has potential antidepressant effects. Compounds targeting biological processes: inflammation, the hypothalamic-pituitary-adrenal axis, the cholesterol biosynthesis pathway, and gut microbiota have also shown therapeutic potential. Additionally, natural products including plants, herbs, and fatty acids improved depressive symptoms and behaviors. In this review, a brief history of clinically available antidepressants will be provided, with a primary focus on novel pharmaceutical approaches with promising antidepressant effects in preclinical and clinical studies.
Collapse
Affiliation(s)
| | | | - Melissa T. Manners
- Department of Biological Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, PA 19104, USA; (E.E.); (A.Y.Z.)
| |
Collapse
|
16
|
Ito N, Maruko A, Oshima K, Yoshida M, Honma K, Sugiyama C, Nagai T, Kobayashi Y, Odaguchi H, Okada N. Kampo formulas alleviate aging-related emotional disturbances and neuroinflammation in male senescence-accelerated mouse prone 8 mice. Aging (Albany NY) 2022; 14:109-142. [PMID: 34979499 PMCID: PMC8791223 DOI: 10.18632/aging.203811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
Aging-induced neuroinflammation, also known as neuroinflammaging, plays a pivotal role in emotional disturbances, including depression and anxiety, in older individuals, thereby leading to cognitive dysfunction. Although numerous studies have focused on therapeutic strategies for cognitive impairment in older individuals, little research has been performed on treating its preceding emotional disturbances. Here, we examined whether Kampo formulas (kososan [KS], nobiletin-rich kososan [NKS], and hachimijiogan [HJG]) can ameliorate aging-induced emotional disturbances and neuroinflammation in mice. The depression-like behaviors observed in SAMP8 mice, relative to normally aging SAMR1 mice, were significantly prevented by treatment with Kampo formulas for 13 weeks. Western blot analysis revealed that hippocampal neuroinflammation was significantly abrogated by Kampo formulas. KS and NKS also significantly attenuated the hippocampal neuroinflammatory priming induced by lipopolysaccharide (LPS, 0.33 mg/kg, i.p.) challenge in SAMP8 mice. Hippocampal IL-1β, IL-6, and MCP-1 levels were significantly decreased in NKS-treated SAMP8 mice. KS and NKS showed significantly reduced tau accumulation in the brains of SAMP8 mice. RNA-sequencing revealed that each Kampo formula led to unique dynamics of hippocampal gene expression and appeared to abrogate hippocampal inflammatory responses. HJG significantly blocked the LPS-induced increase in serum IL-6 and MCP-1. These results suggest that Kampo formulas would be useful for treating aging-induced depression, in part by regulating neuroinflammatory pathways. This finding may pave the way for the development of therapeutic strategies for aging-related emotional disturbances, which may contribute to the prevention of cognitive dysfunction in older individuals.
Collapse
Affiliation(s)
- Naoki Ito
- Oriental Medicine Research Center, Kitasato University, Tokyo 108-8642, Japan
| | - Akiko Maruko
- Laboratory of Genomics for Health and Longevity, School of Pharmacy, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Kenshiro Oshima
- Laboratory of Genomics for Health and Longevity, School of Pharmacy, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Masaaki Yoshida
- Research Laboratory, Kotaro Pharmaceutical Co., Ltd., Hakusan, Ishikawa 920-0201, Japan
| | - Kengo Honma
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8642, Japan
| | - Chika Sugiyama
- Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Takayuki Nagai
- Oriental Medicine Research Center, Kitasato University, Tokyo 108-8642, Japan.,Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8642, Japan.,Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8642, Japan
| | - Yoshinori Kobayashi
- Oriental Medicine Research Center, Kitasato University, Tokyo 108-8642, Japan.,Graduate School of Medical Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Hiroshi Odaguchi
- Oriental Medicine Research Center, Kitasato University, Tokyo 108-8642, Japan.,Department of Pharmacognosy, School of Pharmacy, Kitasato University, Minato-ku, Tokyo 108-8642, Japan
| | - Norihiro Okada
- Laboratory of Genomics for Health and Longevity, School of Pharmacy, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
17
|
MANF: A Novel Endoplasmic Reticulum Stress Response Protein-The Role in Neurological and Metabolic Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6467679. [PMID: 34745419 PMCID: PMC8568515 DOI: 10.1155/2021/6467679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
The mesencephalic astrocyte-derived neurotrophic factor (MANF), also named as arginine-rich protein (ARP) or arginine-rich mutated in early-stage tumors (ARMET), is a novel evolutionary conserved protein related to unfolded protein response. Growing evidence suggests that MANF critically involves in many ER stress-related diseases with a protective effect. Here, we review the function of MANF based on its structure in neurological and metabolic disorders and summarize its potential applications in disease diagnosis and therapies.
Collapse
|
18
|
Castillo E, Mocanu E, Uruk G, Swanson RA. Glucose availability limits microglial nitric oxide production. J Neurochem 2021; 159:1008-1015. [PMID: 34587283 DOI: 10.1111/jnc.15522] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
Metabolic intermediates influence inflammation not only through signaling effects, but also by fueling the production of pro-inflammatory molecules. Microglial production of nitric oxide (NO) requires the consumption of NADPH. NADPH consumed in this process is regenerated from NADP+ primarily through the hexose monophosphate shunt, which can utilize only glucose as a substrate. These factors predict that glucose availability can be rate-limiting for glial NO production. To test this prediction, cultured astrocytes and microglia were incubated with lipopolysaccharide and interferon-γ to promote expression of inducible nitric oxide synthase, and the rate of NO production was assessed at defined glucose concentrations. Increased NO production was detected only in cultures containing microglia. The NO production was markedly slowed at glucose concentrations below 0.5 mM, and comparably reduced by inhibition of the hexose monophosphate shunt with 6-aminonicotinamide. Reduced NO production caused by glucose deprivation was partly reversed by malate, which fuels NADPH production by malate dehydrogenase, and by NADPH itself. These findings highlight the role of the hexose monophosphate shunt in fueling NO synthesis and suggest that microglial NO production in the brain may be limited at sites of low glucose availability, such as abscesses or other compartmentalized infections.
Collapse
Affiliation(s)
- Erika Castillo
- Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Neurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| | - Ebony Mocanu
- Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Neurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| | - Gӧkhan Uruk
- Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Neurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| | - Raymond A Swanson
- Department of Neurology, University of California San Francisco, San Francisco, California, USA.,Neurology Service, San Francisco Veterans Affairs Health Care System, San Francisco, California, USA
| |
Collapse
|
19
|
Ling ZM, Wang Q, Ma Y, Xue P, Gu Y, Cao MH, Wei ZY. Astrocyte Pannexin 1 Suppresses LPS-Induced Inflammatory Responses to Protect Neuronal SH-SY5Y Cells. Front Cell Neurosci 2021; 15:710820. [PMID: 34475813 PMCID: PMC8406772 DOI: 10.3389/fncel.2021.710820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/16/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive astrogliosis is a key hallmark of inflammatory responses in the pathogenesis of brain injury, including Parkinson’s disease (PD), but its role and regulatory mechanisms are not fully understood. Pannexin 1 (Panx 1) is a membrane channel that mediates substance release in many neurodegenerative diseases. However, the role of astrocyte Panx 1 in the regulation of PD-like neuroinflammation remains elusive. Here, we characterized the expression of Panx 1 in isolated primary astrocytes and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model. The functions of Panx 1 in inflammatory cytokines expression and the viability of neuronal SH-SY5Y cells were examined in cultured cells treated with lipopolysaccharide (LPS) and 1-methyl-4-phenylpyridinium (MPP+). We found that Panx 1 expression was significantly increased under both LPS- and MPP+-treated conditions. Panx 1 downregulation suppressed LPS-induced pro-inflammatory cytokine expression but did not significantly affect MPP+-induced astrocyte apoptosis or inflammatory cytokine expression through treatment with the Panx 1 inhibitor carbenoxolone (CBX) and Panx 1 siRNA. Moreover, silencing Panx 1 in reactive astrocytes had a potentially protective effect on the viability of neuronal SH-SY5Y cells. Therefore, we propose that Panx 1 may serve as a key regulator in reactive astrocytes to intervene in the inflammatory response and maintain neuronal viability in the context of PD-like conditions.
Collapse
Affiliation(s)
- Zhuo-Min Ling
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Medical School of Nantong University, Nantong, China
| | - Qian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yu Ma
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Peng Xue
- Medical School of Nantong University, Nantong, China
| | - Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mao-Hong Cao
- Medical School of Nantong University, Nantong, China.,Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhong-Ya Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
20
|
Cannabidiol prevents lipopolysaccharide-induced sickness behavior and alters cytokine and neurotrophic factor levels in the brain. Pharmacol Rep 2021; 73:1680-1693. [PMID: 34218397 PMCID: PMC8254454 DOI: 10.1007/s43440-021-00301-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Background Major depressive disorder (MDD) affects millions of people worldwide. While the exact pathogenesis is yet to be elucidated, the role of neuro-immune signaling has recently emerged. Despite major advances in pharmacotherapy, antidepressant use is marred by limited efficacy and potential side effects. Cannabidiol (CBD), a phytocannabinoid, exerts antidepressant-like effects in experimental animals. This study investigated the impact of CBD on sickness behavior (SB), a measure of depressive-like response, and neuro-immune changes induced by lipopolysaccharides (LPS) in mice. Methods Socially isolated rodents were administered with LPS to trigger SB. and treated with CBD or its vehicle. Animals were submitted to forced swimming test, to evaluate depressive-like behavior, and to open field test, to evaluate locomotory activity. Immediately after behavioral analyses, animals were euthanized and had their hypothalamus, prefrontal cortex and hippocampus dissected, to proceed neurotrophins and cytokines analyses. ELISA was used to detect IL-1β, BDNF and NGF; and cytometric beads array to measure IL-2, IL-4, IL-6, IFN-γ, TNF-α and IL-10 levels. Results CBD effectively prevented SB-induced changes in the forced swim test without altering spontaneous locomotion. This phytocannabinoid also partially reversed LPS-evoked IL-6 increase in both the hypothalamus and hippocampus. In addition, CBD prevented endotoxin-induced increase in BDNF and NGF levels in the hippocampus of SB animals. Conclusions Apparently, CBD prevents both behavioral and neuro-immunological changes associated with LPS-induced SB, which reinforces its potential use as an antidepressant which modulates neuroinflammation. This opens up potentially new therapeutic avenues in MDD. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00301-8.
Collapse
|
21
|
Melnikov M, Sviridova A, Rogovskii V, Oleskin A, Boziki M, Bakirtzis C, Kesidou E, Grigoriadis N, Boykо A. Serotoninergic system targeting in multiple sclerosis: the prospective for pathogenetic therapy. Mult Scler Relat Disord 2021; 51:102888. [PMID: 33756440 DOI: 10.1016/j.msard.2021.102888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Serotonin (5-hydroxytryptamine) (5-HT) is a neurotransmitter, which mediates neuropsychological functions of the central nervous system (CNS). Recent studies have shown the modulatory effect of 5-HT on gut microbiota functions, which play an essential role in developing CNS inflammatory diseases. Finally, 5-HT is a direct mediator of neuroimmune interaction. The article reviews the literature data on the role of 5-HT in the regulation of neuroinflammation in multiple sclerosis (MS). The influence of 5-HT and selective serotonin reuptake inhibitors (SSRIs) on experimental autoimmune encephalomyelitis (EAE) and MS pathogenesis, as well as the therapeutic potential of serotoninergic drugs as a pathogenetic therapy of MS, are discussed.
Collapse
Affiliation(s)
- Mikhail Melnikov
- Department of Neuroimmunology, Federal Center of Brain research and Neurotechnology of the Federal Medical-Biological Agency of Russia; Department of Neurology, Neurosurgery and Medical Genetics and Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia; Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - Anastasiya Sviridova
- Department of Neuroimmunology, Federal Center of Brain research and Neurotechnology of the Federal Medical-Biological Agency of Russia; Department of Neurology, Neurosurgery and Medical Genetics and Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir Rogovskii
- Department of Neuroimmunology, Federal Center of Brain research and Neurotechnology of the Federal Medical-Biological Agency of Russia; Department of Neurology, Neurosurgery and Medical Genetics and Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander Oleskin
- General Ecology and Hydrobiology Department, School of Biology, Moscow State University, Moscow, Russia
| | - Marina Boziki
- 2nd Neurological University Department, Aristotle University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece
| | - Christos Bakirtzis
- 2nd Neurological University Department, Aristotle University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece
| | - Evangelia Kesidou
- 2nd Neurological University Department, Aristotle University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- 2nd Neurological University Department, Aristotle University of Thessaloniki, AHEPA General Hospital, Thessaloniki, Greece
| | - Alexey Boykо
- Department of Neuroimmunology, Federal Center of Brain research and Neurotechnology of the Federal Medical-Biological Agency of Russia; Department of Neurology, Neurosurgery and Medical Genetics and Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
22
|
He JH, Liu RP, Peng YM, Guo Q, Zhu LB, Lian YZ, Hu BL, Fan HH, Zhang X, Zhu JH. Differential and paradoxical roles of new-generation antidepressants in primary astrocytic inflammation. J Neuroinflammation 2021; 18:47. [PMID: 33602262 PMCID: PMC7890881 DOI: 10.1186/s12974-021-02097-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Background Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are commonly used new-generation drugs for depression. Depressive symptoms are thought to be closely related to neuroinflammation. In this study, we used up-to-date protocols of culture and stimulation and aimed to understand how astrocytes respond to the antidepressants. Methods Primary astrocytes were isolated and cultured using neurobasal-based serum-free medium. The cells were treated with a cytokine mixture comprising complement component 1q, tumor necrosis factor α, and interleukin 1α with or without pretreatments of antidepressants. Cell viability, phenotypes, inflammatory responses, and the underlying mechanisms were analyzed. Results All the SSRIs, including paroxetine, fluoxetine, sertraline, citalopram, and fluvoxamine, show a visible cytotoxicity within the range of applied doses, and a paradoxical effect on astrocytic inflammatory responses as manifested by the promotion of inducible nitric oxide synthase (iNOS) and/or nitric oxide (NO) and the inhibition of interleukin 6 (IL-6) and/or interleukin 1β (IL-1β). The SNRI venlafaxine was the least toxic to astrocytes and inhibited the production of IL-6 and IL-1β but with no impact on iNOS and NO. All the drugs had no regulation on the polarization of astrocytic A1 and A2 types. Mechanisms associated with the antidepressants in astrocytic inflammation route via inhibition of JNK1 activation and STAT3 basal activity. Conclusions The study demonstrated that the antidepressants possess differential cytotoxicity to astrocytes and function differently, also paradoxically for the SSRIs, to astrocytic inflammation. Our results provide novel pieces into understanding the differential efficacy and tolerability of the antidepressants in treating patients in the context of astrocytes. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02097-z.
Collapse
Affiliation(s)
- Jia-Hui He
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Neurology, The Second Affiliated Hospital, Zhejiang University Medical College, Hangzhou, 310009, Zhejiang, China
| | - Rong-Pei Liu
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi-Man Peng
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qing Guo
- Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lan-Bing Zhu
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yi-Zhi Lian
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Bei-Lei Hu
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Hui-Hui Fan
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiong Zhang
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Jian-Hong Zhu
- Department of Geriatrics & Neurology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China. .,Department of Preventive Medicine, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
23
|
Robust Dopaminergic Differentiation and Enhanced LPS-Induced Neuroinflammatory Response in Serum-Deprived Human SH-SY5Y Cells: Implication for Parkinson's Disease. J Mol Neurosci 2020; 71:565-582. [PMID: 32789724 DOI: 10.1007/s12031-020-01678-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/03/2020] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative condition characterized by motor symptoms such as bradykinesia, resting tremor, and rigidity. PD diagnosis is based on medical history, review of signs, symptoms, neurological and physical examinations. Unfortunately, by the time the disease is diagnosed, dopamine (DA) neuronal loss is often extended, thereby resulting in ineffective therapies. Recent evidence suggests that neuroinflammation may be pivotal during PD onset and progression. However, suitable cellular models and biomarkers to detect early signs of neuroinflammation are still missing. In this study, we developed a well-differentiated DAergic neuronal cell line where we triggered a neuroinflammatory response to assess the temporal expression of the tissue- and urokinase plasminogen activators (tPA and uPA) and their endogenous inhibitor (PAI-1) along with that of pro-inflammatory mediators and the neuronal marker nNOS. Human neuroblastoma cells SH-SY5Y were differentiated into DAergic neuronal-like cells using a combination of 12-O-tetradecanoylphorbol-13-acetate (TPA) and serum depletion. Terminally-differentiated neurons were then exposed to lipopolysaccharide (LPS) for short (up to 24 h) or long term (up to 10 days) to mimic acute or chronic inflammation. Results demonstrated that uPA protein expression was stably upregulated during chronic inflammation, whereas the expression of nNOS protein better reflected the cellular response to acute inflammation. Additional studies revealed that the temporal induction of uPA was associated with increased AKT phosphorylation, but did not seem to involve cAMP-responsive element-binding protein (CREB) activation, nor the mitogen-activated protein kinase (MAPK) pathway. In conclusion, our in vitro data suggests that nNOS and uPA may serve as viable candidate biomarkers of acute and chronic neuroinflammation.
Collapse
|