1
|
Attia GM, Ali LS, Eldesoqui M, Elsaed WM, Mostafa SA, Albadawi EA, Elmansy RA, Elhassan YH, Berika M, Badawy AA, El-Nabalaway M, Dawood AF, Seleem HS. Neuroprotective effects of granulocyte colony-stimulating factor against tramadol-induced cerebellar neurotoxicity. Tissue Cell 2025; 94:102832. [PMID: 40048827 DOI: 10.1016/j.tice.2025.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Tramadol (TRM) is a centrally acting synthetic opioid and serotonin/norepinephrine reuptake inhibitor. Despite being a potent painkiller, long-term use can induce permanent neurotoxicity. Granulocyte colony-stimulating factor (G-CSF) is a cytokine that helps to mobilize stem cells and facilitate their integration over injured neurons. AIM This work aims to study the histopathological, biochemical, and molecular alterations in the cerebellar cortex induced by TRM in comparison to the postulated protective effect of G-CSF versus TRM withdrawal. METHODS 32 adult male albino rats were equally divided into four groups: control, TRM, TRM+G-CSF-treated, and TRM withdrawal groups. The TRM group received a daily dose of 80 mg/kg body weight orally via gastric tube for 12 weeks. The TRM+G-CSF-treated group received subcutaneous injections of 100 μg/kg body weight of G-CSF for seven consecutive days, then TRM from the 8th day. The TRM withdrawal group received TRM for 12 weeks; then, the rats were left without TRM administration for a further 12 weeks. The structural, biochemical, and molecular changes of the cerebellum were measured. RESULTS The study revealed that TRM not only induced cerebellar atrophy but also triggered microgliosis, neuroinflammation, and apoptotic indicators, all while suppressing autophagy. However, G-CSF and TRM withdrawal reversed these alterations with superiority to G-CSF. CONCLUSION The current investigation shows that G-CSF may improve behavioral, neurochemical, immunohistochemical, and molecular metrics in the rat cerebellum after tramadol-induced injury. G-CSF exhibits a superior protective effect compared to tramadol withdrawal. This is achieved through its antioxidant, anti-apoptotic, and autophagic enhancement properties, as well as its ability to reduce cerebellar gliosis.
Collapse
Affiliation(s)
- Ghalia Mahfouz Attia
- Department of Medical Histology and Cell Biology, Faculty of Medicine Mansoura University, Egypt; Department of Medical Histology and Cell Biology, Faculty of Medicine Horus University, Egypt.
| | - Lashin S Ali
- Department of Basic Medical Science-Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan; Physiology Department-Mansoura Faculty of Medine-Mansoura University, Mansoura, Egypt.
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia.
| | - Wael M Elsaed
- Department of Human Anatomy and Embryology, Faculty of Medicine Mansoura University, Egypt; Basic Sciences Department, Riyadh Elm University, Riyadh, Saudi Arabia.
| | - Sally Abdallah Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Mansoura University, Egypt.
| | - Emad A Albadawi
- Department of Basic Medical Sciences, College of Medicine, Taibah University, KSA.
| | - Rasha Ahmed Elmansy
- Anatomy Unit, Department of Basic Medical Sciences, College of Medicine, Qassim University, Buraydah, Saudi Arabia; Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - Mohamed Berika
- Department of Human Anatomy and Embryology, Faculty of Medicine Mansoura University, Egypt; Rehabilitation Science Department, College of Applied Medical Sciences, King Saud University, KSA.
| | - Abdelnaser A Badawy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Mohammad El-Nabalaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Mansoura University, Egypt.
| | - Amal Fahmy Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hanan Said Seleem
- Department of Histology & Cell Biology, Faculty of Medicine, Menoufia University, Shebin ElKoum, Menofia, Egypt.
| |
Collapse
|
2
|
Mounissamy P, Premraj A, Chanadrashekar S, Jeyaraman N, Ramasubramanian S, Jeyaraman M. Effect of granulocyte colony-stimulating factor (G-CSF) in functional outcome of acute spinal cord injury patients: A single-blinded randomized controlled trial. J Orthop 2025; 64:97-101. [PMID: 39691645 PMCID: PMC11648636 DOI: 10.1016/j.jor.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/24/2024] [Indexed: 12/19/2024] Open
Abstract
Background Spinal Cord Injury (SCI) is a major public health issue causing significant disability and economic burden. Current treatments primarily focus on mitigating secondary injury, with limited effective therapies available. This study explores the efficacy of the Granulocyte Colony-Stimulating Factor (G-CSF) in improving functional outcomes in acute SCI patients. Materials and methods This single-blinded randomized control trial was conducted at JIPMER's orthopedic department. Patients with acute spinal cord injury (SCI) were enrolled based on specific inclusion and exclusion criteria. Participants were divided into two groups: Group A (n = 16) received a G-CSF injection whereas Group B (n = 18) received a placebo (normal saline) injection. The primary evaluation was based on the changes in the ASIA impairment scale at 1-, 3-, and 6-months post-injury. Results The study involved 34 participants, predominantly male. Initial assessments showed significant differences in ASIA scores between the groups. Group A demonstrated marked improvement in neurological status at 1, 3, and 6 months post-treatment compared to Group B. The frequency of adverse events was comparable between the two groups. Conclusion G-CSF showed significant improvement in ASIA scores at various time points post-administration compared to placebo. These findings suggest G-CSF as a potential therapeutic agent in acute SCI treatment. However, due to the small sample size, further research is necessary to confirm these results.
Collapse
Affiliation(s)
- Prabu Mounissamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - A.C. Premraj
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Sushma Chanadrashekar
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, 605006, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, 600077, Chennai, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, 600002, Chennai, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, 600077, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Yadav RK, Johnson AO, Peeples ES. The dynamic duo: Decoding the roles of hypoxia-inducible factors in neonatal hypoxic-ischemic brain injury. Exp Neurol 2025; 386:115170. [PMID: 39884332 DOI: 10.1016/j.expneurol.2025.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) results in considerable mortality and neurodevelopmental disability, with a particularly high disease burden in low- and middle-income countries. Improved understanding of the pathophysiology underlying this injury could allow for improved diagnostic and therapeutic options. Specifically, hypoxia-inducible factors (HIF-1α and HIF-2α) likely play a key role, but that role is complex and remains understudied. This review analyses the recent findings seeking to uncover the impacts of HIF-1α and HIF-2α in neonatal hypoxic-ischemic brain injury (HIBI), focusing on their cell specific expression, time-dependant activities, and potential therapeutic implications. Recent findings have revealed temporal patterns of HIF-1α and HIF-2α expression following hypoxic-ischemic injury, with distinct functions for HIF-1α versus HIF-2α within the neonatal brain. Ongoing studies aimed at further revealing the relationship between HIF isoforms and developing targeted interventions offer promising avenues for therapeutic management which could improve long-term neurological outcomes in affected newborns.
Collapse
Affiliation(s)
- Rajnish Kumar Yadav
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America; Child Health Research Institute, Omaha, NE, United States of America
| | - Amanda O Johnson
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America; Child Health Research Institute, Omaha, NE, United States of America
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States of America; Child Health Research Institute, Omaha, NE, United States of America; Division of Neonatology, Children's Nebraska, Omaha, NE, United States of America.
| |
Collapse
|
4
|
Yang M, Wang K, Liu B, Shen Y, Liu G. Hypoxic-Ischemic Encephalopathy: Pathogenesis and Promising Therapies. Mol Neurobiol 2025; 62:2105-2122. [PMID: 39073530 DOI: 10.1007/s12035-024-04398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a brain lesion caused by inadequate blood supply and oxygen deprivation, often occurring in neonates. It has emerged as a grave complication of neonatal asphyxia, leading to chronic neurological damage. Nevertheless, the precise pathophysiological mechanisms underlying HIE are not entirely understood. This paper aims to comprehensively elucidate the contributions of hypoxia-ischemia, reperfusion injury, inflammation, oxidative stress, mitochondrial dysfunction, excitotoxicity, ferroptosis, endoplasmic reticulum stress, and apoptosis to the onset and progression of HIE. Currently, hypothermia therapy stands as the sole standard treatment for neonatal HIE, albeit providing only partial neuroprotection. Drug therapy and stem cell therapy have been explored in the treatment of HIE, exhibiting certain neuroprotective effects. Employing drug therapy or stem cell therapy as adjunctive treatments to hypothermia therapy holds great significance. This article presents a systematic review of the pathogenesis and treatment strategies of HIE, with the goal of enhancing the effect of treatment and improving the quality of life for HIE patients.
Collapse
Affiliation(s)
- Mingming Yang
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Guangliang Liu
- Department of Pediatrics, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
5
|
Al-Ward H, Chen W, Gao W, Zhang C, Yang X, Xiong Y, Wang X, Agila R, Xu H, Sun YE. Can miRNAs in MSCs-EVs Offer a Potential Treatment for Hypoxic-ischemic Encephalopathy? Stem Cell Rev Rep 2025; 21:236-253. [PMID: 39503828 DOI: 10.1007/s12015-024-10803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 01/26/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition resulting from impaired oxygen and blood flow to the brain during birth, leading to neuroinflammation, neuronal apoptosis, and long-term neurological deficits. Despite the use of therapeutic hypothermia, current treatments remain inadequate in fully preventing brain damage. Recent advances in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) offer a novel, cell-free therapeutic approach, as these EVs can cross the blood-brain barrier (BBB) and deliver functional microRNAs (miRNAs) to modulate key pathways involved in inflammation and neuroprotection. This review examines how specific miRNAs encapsulated in MSC-EVs-including miR-21, miR-124, miR-146, and the miR-17-92 cluster-target the complex inflammatory responses that drive HIE pathology. By modulating pathways such as NF-κB, STAT3, and PI3K/Akt, these miRNAs influence neuroinflammatory processes, reduce neuronal apoptosis, and promote tissue repair. The aim is to assess the therapeutic potential of miRNA-loaded MSC-EVs in mitigating inflammation and neuronal damage, thus addressing the limitations of current therapies like therapeutic hypothermia.
Collapse
Affiliation(s)
- Hisham Al-Ward
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenxia Gao
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunxue Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xueyan Yang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yao Xiong
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyi Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rafeq Agila
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
6
|
Tang X, Deng P, Li L, He Y, Wang J, Hao D, Yang H. Advances in genetically modified neural stem cell therapy for central nervous system injury and neurological diseases. Stem Cell Res Ther 2024; 15:482. [PMID: 39696712 DOI: 10.1186/s13287-024-04089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neural stem cells (NSCs) have increasingly been recognized as the most promising candidates for cell-based therapies for the central nervous system (CNS) injuries, primarily due to their pluripotent differentiation capabilities, as well as their remarkable secretory and homing properties. In recent years, extensive research efforts have been initiated to explore the therapeutic potential of NSC transplantation for CNS injuries, yielding significant advancements. Nevertheless, owing to the formation of adverse microenvironment at post-injury leading to suboptimal survival, differentiation, and integration within the host neural network of transplanted NSCs, NSC-based transplantation therapies often fall short of achieving optimal therapeutic outcomes. To address this challenge, genetic modification has been developed an attractive strategy to improve the outcomes of NSC therapies. This is mainly attributed to its potential to not only enhance the differentiation capacity of NSCs but also to boost a range of biological activities, such as the secretion of bioactive factors, anti-inflammatory effects, anti-apoptotic properties, immunomodulation, antioxidative functions, and angiogenesis. Furthermore, genetic modification empowers NSCs to play a more robust neuroprotective role in the context of nerve injury. In this review, we will provide an overview of recent advances in the roles and mechanisms of NSCs genetically modified with various therapeutic genes in the treatment of neural injuries and neural disorders. Also, an update on current technical parameters suitable for NSC transplantation and functional recovery in clinical studies are summarized.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Deng
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lin Li
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing He
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinchao Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
7
|
Lu L, Pang M, Chen T, Hu Y, Chen L, Tao X, Chen S, Zhu J, Fang M, Guo X, Lin Z. Protopine Exerts Neuroprotective Effects on Neonatal Hypoxic-Ischemic Brain Damage in Rats via Activation of the AMPK/PGC1α Pathway. Drug Des Devel Ther 2024; 18:4975-4992. [PMID: 39525050 PMCID: PMC11549892 DOI: 10.2147/dddt.s484969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Neonatal hypoxic-ischemic encephalopathy (HIE), caused by perinatal asphyxia, is characterized by high morbidity and mortality, but there are still no effective therapeutic drugs. Mitochondrial biogenesis and apoptosis play key roles in the pathogenesis of HIE. Protopine (Pro), an isoquinoline alkaloid, has anti-apoptotic and neuro-protective effects. However, the protective roles of Pro on neonatal hypoxic-ischemic brain injury remain unclear. Methods In this study, we established a CoCl2-induced PC12 cell model in vitro and a neonatal rat hypoxic-ischemic (HI) brain damage model in vivo to explore the neuro-protective effects of Pro and try to elucidate the potential mechanisms. Results Our results showed that Pro significantly reduced cerebral infarct volume, alleviated brain edema, inhibited glia activation, improved mitochondrial biogenesis, relieved neuron cell loss, decreased cell apoptosis and reactive oxygen species (ROS) after HI damage. In addition, Pro intervention upregulated the levels of p-AMPK/AMPK and PGC1α as well as the downstream mitochondrial biogenesis related factors, such as nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM), but the AMPK inhibitor compound c (CC) could significantly reverse these effects of Pro. Discussion Pro may exert neuroprotective effects on neonatal hypoxic-ischemic brain damage via activation of the AMPK/PGC1α pathway, suggesting that Pro may be a promising therapeutic candidate for HIE, and our study firstly demonstrate the neuro-protective roles of Pro in HIE models.
Collapse
Affiliation(s)
- Liying Lu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Mengdan Pang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Tingting Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yingying Hu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Likai Chen
- Elson S. Floyd College of Medicine at Washington State University, Spokane, WA, USA
| | - Xiaoyue Tao
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Shangqin Chen
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Mingchu Fang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - XiaoLing Guo
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
8
|
Shabanov PD, Urakov AL, Urakova NA. Assessment of fetal resistance to hypoxia using the Stange test as an adjunct to Apgar scale assessment of neonatal health status. MEDICAL ACADEMIC JOURNAL 2023; 23:89-102. [DOI: 10.17816/maj568979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
It has been established that the cause of biological death of fetuses in stillbirths and the cause of neonatal encephalopathies in live births is hypoxic brain cell damage in fetuses. Timely cesarean section remains the most effective way to preserve fetal life and health in the face of lethal intrauterine hypoxia. However, there is no universally recognized methodology for assessing fetal adaptation reserves to hypoxia and no methodology for selecting the type of delivery in order to perform a timely cesarean section if necessary. The Apgar score, which has been used since 1952, allows assessment of neonatal health at 1 and 5 minutes after birth, but this assessment is made without taking into account the health of the fetus before delivery. In recent years, it has been established that the outcome of fetal hypoxia is determined not only by its duration, but also by the amount of adaptive reserves available in the fetus to hypoxia. It was found that the duration of fetal immobility during apnea of a pregnant woman is an indicator of fetal resistance to hypoxia. In 2011, a method of assessing fetal resistance to intrauterine hypoxia based on the Stange test was developed in Russia. It has been found that the maximum duration of fetal immobility during maternal apnea is normally more than 30 seconds, while in the presence of fetal signs of fetoplacental insufficiency it does not reach 30 seconds, and in the presence of signs of severe fetoplacental insufficiency it does not reach 10 seconds. Therefore, it was proposed to consider good fetal resistance to hypoxia as an indication for vaginal delivery, and poor fetal resistance to hypoxia as an indication for cesarean section. A technique for assessing fetal resistance to hypoxia is described that has been developed for independent use by every pregnant woman. It is shown that it is sufficient for her to have a stopwatch and to be able to record the maximum period of fetal immobility during voluntary apnea. It is hoped that a measure of fetal resistance to hypoxia could be a meaningful complement to the Apgar score of neonatal health. It is envisioned that the use of a modified Stange test could help physicians prevent stillbirths and neonatal encephalopathies.
Collapse
|
9
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
10
|
Zheng Y, Zhu T, Chen B, Fang Y, Wu Y, Feng X, Pang M, Wang H, Zhu J, Lin Z. Diallyl disulfide attenuates pyroptosis via NLRP3/Caspase-1/IL-1β signaling pathway to exert a protective effect on hypoxic-ischemic brain damage in neonatal rats. Int Immunopharmacol 2023; 124:111030. [PMID: 37844463 DOI: 10.1016/j.intimp.2023.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a perinatal brain disease caused by hypoxia in neonates. It is one of the leading causes of neonatal death in the perinatal period, as well as disability beyond the neonatal period. Due to the lack of a unified and comprehensive treatment strategy for HIE, research into its pathogenesis is essential. Diallyl disulfide (DADS) is an allicin extract, with detoxifying, antibacterial, and cardiovascular disease protective effects. This study aimed to determine whether DADS can alleviate HIE induced brain damage in rats and oxygen-glucose deprivation (OGD)-induced pyroptosis in PC12 cells, as well as whether it can inhibit pyroptosis via the NLRP3/Caspase-1/IL-1β signaling pathway. In vivo, DADS significantly reduced the cerebral infarction volume, alleviated inflammatory reaction, reduced astrocyte activation, promoted tissue structure recovery, improved pyroptosis caused by HIE and improved the prognosis following HI injury. In vitro findings indicated that DADS increased cell activity, decreased LDH activity and reduced the expression of pyroptosis-related proteins, including IL-1β, IL-18, and certain inflammatory factors in PC12 cells caused by OGD. Mechanistically, DADS inhibited pyroptosis and protected against HIE via the NLRP3/Caspase-1/IL-1β pathway. The specific inhibitor of caspase-1, VX-765, inhibited caspase-1 activation, and IL-1β expression was determined. Additionally, the overexpression of NLRP3 reversed the protective effect of allicin against OGD-induced pyroptosis. In conclusion, these findings demonstrated that DADS inhibits the NLRP3/Caspase-1/IL-1β signaling pathway and decreases HI brain damage.
Collapse
Affiliation(s)
- Yihui Zheng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Tingyu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Binwen Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Yu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Yiqing Wu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Xiaoli Feng
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Mengdan Pang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Hongzeng Wang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China
| | - Jianghu Zhu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang, China; School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
11
|
Gürkan G, Atasoy Ö, Çini N, Sever İH, Özkul B, Yaprak G, Şirin C, Uyanıkgil Y, Kızmazoğlu C, Erdoğan MA, Erbaş O. Reparative, Neuroprotective and Anti-neurodegenerative Effects of Granulocyte Colony Stimulating Factor in Radiation-Induced Brain Injury Model. J Korean Neurosurg Soc 2023; 66:511-524. [PMID: 37165625 PMCID: PMC10483164 DOI: 10.3340/jkns.2023.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVE This animal model aimed to compare the rat group that received brain irradiation and did not receive additional treatment (only saline) and the rat group that underwent brain irradiation and received Granulocyte colony stimulating factor (G-CSF) treatment. In addition, the effects of G-CSF on brain functions were examined by magnetic resonance (MR) imaging and histopathologically. METHODS This study used 24 female Wistar albino rats. Drug administration (saline or G-CSF) was started at the beginning of the study and continued for 15 days after whole-brain radiotherapy (WBRT). WBRT was given on day 7 of the start of the study. At the end of 15 days, the behavioral tests, including the three-chamber sociability test, open field test, and passive avoidance learning test, were done. After the behavioral test, the animals performed the MR spectroscopy procedure. At the end of the study, cervical dislocation was applied to all animals. RESULTS G-CSF treatment positively affected the results of the three-chamber sociability test, open-space test and passive avoidance learning test, cornu Ammonis (CA) 1, CA3, and Purkinje neuron counts, and the brain levels of brain-derived neurotrophic factor and postsynaptic density protein-95. However, G-CSF treatment reduced the glial fibrillary acidic protein immunostaining index and brain levels of malondialdehyde, tumor necrosis factor-alpha, nuclear factor kappa-B, and lactate. In addition, on MR spectroscopy, G-CSF had a reversible effect on brain lactate levels. CONCLUSION In this first designed brain irradiation animal model, which evaluated G-CSF effects, we observed that G-CSF had reparative, neuroprotective and anti-neurodegenerative effects and had increased neurotrophic factor expression, neuronal counts, and morphology changes. In addition, G-CSF had a proven lactate-lowering effect in MR spectroscopy and brain materials.
Collapse
Affiliation(s)
- Gökhan Gürkan
- Department of Neurosurgery, Izmir Katip Celebi University Atatürk Training and Research Hospital, Izmir, Turkey
| | - Özüm Atasoy
- Department of Radiation Oncology, Kartal City Hospital, Istanbul, Turkey
| | - Nilsu Çini
- Department of Radiation Oncology, Kartal City Hospital, Istanbul, Turkey
| | | | - Bahattin Özkul
- Department of Radiology, Istanbul Atlas University, Istanbul, Turkey
| | - Gökhan Yaprak
- Department of Radiation Oncology, Lutfi Kirdar Kartal Education and Research Hospital, Istanbul, Turkey
| | - Cansın Şirin
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ceren Kızmazoğlu
- Department of Neurosurgery, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Oytun Erbaş
- Department of Physiology, Demiroğlu Bilim University, Istanbul, Turkey
| |
Collapse
|
12
|
Zhang P, Gong S, Li S, Yuan Z. PVT1 alleviates hypoxia-induced endothelial apoptosis by enhancing autophagy via the miR-15b-5p/ATG14 and miR-424-5p/ATG14 axis. Biochem Biophys Res Commun 2023; 671:1-9. [PMID: 37290278 DOI: 10.1016/j.bbrc.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Endothelial dysfunction plays a crucial role in the pathogenesis of vascular disease. Long noncoding RNA (lncRNA) and microRNA (miRNA) play important roles in various cellular processes and are involved in several vascular endothelial cells (VECs) biological processes, including cell growth, migration, autophagy, and apoptosis. The functions of plasmacytoma variant translocation 1 (PVT1) in VECs have been progressively investigated in recent years, mainly with regard to proliferation and migration of endothelial cells (ECs). However, the mechanism underlying the regulation of autophagy and apoptosis in human umbilical vein endothelial cells (HUVEC) by PVT1 remains unclear. The present study showed that PVT1 knockdown accelerated apoptosis induced by oxygen and glucose deprivation (OGD) through suppression of cellular autophagy. Bioinformatic prediction of PVT1 target miRNAs revealed that PVT1 interacts with miR-15b-5p and miR-424-5p. The study further showed that miR-15b-5p and miR-424-5p inhibit the functions of autophagy related 14 (ATG14) and suppress cellular autophagy. The results showed that PVT1 can function as a competing endogenous RNA (ceRNA) of miR-15b-5p and miR-424-5p and promote cellular autophagy by competitive binding, which down-regulates apoptosis. The results showed that PVT1 can function as a competing endogenous RNA (ceRNA) of miR-15b-5p and miR-424-5p and promote cellular autophagy through competitive binding, which down-regulates apoptosis. The study provides insight into a novel therapeutic target that may be explored in the future for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ping Zhang
- Hengyang Medical College, University of South China, 421001, Hengyang, Hunan, China; The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Shenghui Gong
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China
| | - Shuoshuo Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China; School of Life Science, Beijing University of Chinese Medicine, 100105, Beijing, China.
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, 100850, Beijing, China.
| |
Collapse
|
13
|
Hu Q, Zhang Y, Liu M, Wang B, Wang X, Wang T. Neonatal cytokines associated with infant overweight and obesity at 1 year of age. Obes Res Clin Pract 2023; 17:102-107. [PMID: 36935337 DOI: 10.1016/j.orcp.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVE The incidence of childhood overweight and obesity has been increasing in recent years. Immune dysregulation has been demonstrated as a condition related to childhood obesity. Whether the neonatal immune status is related to infant overweight and obesity at 1 year of age is unclear. METHODS To explore the relationship between neonatal cytokines and infant overweight and obesity, we conducted a prospective study in Suzhou Municipal Hospital Affiliated to Nanjing Medical University from 2015 to 2016. 514 neonates were recruited and their dried blood spots were collected after birth. Infants were grouped into normal size groups and overweight and obesity groups based on BMI at 1 year of age. 27 neonatal cytokines levels were compared between the two groups. RESULTS 370 infants were included in final analysis. Granulocyte colony stimulating factor (GCSF), interleukin-17A (IL17A) and platelet derived growth factor-BB (PDGF-BB) levels were independently associated with childhood overweight and obesity (OR =1.27, 95%CI 1.03, 1.57; OR =1.29, 95%CI: 1.06, 1.60; OR =0.69, 95%CI: 0.49, 0.96). Additionally, neonatal GCSF and IL17A levels were positively associated with increased BMI (β = 0.11, 95%CI: 0.02, 0.19; β = 0.07, 95%CI 0.01, 013) and BMI z-scores (β = 0.10, 95%CI: 0.02, 0.18; β = 0.06, 95%CI 0.01, 0.13). Neonatal PDGF-BB levels were negatively associated with BMI (β = -0.12, 95%CI: -0.23, -0.01) and BMI z-scores (β = -0.12, 95%CI: -0.23, -0.01). The inverse probability weighting (IPW) was performed to account for potential selection bias of this study, and the results were consistent with the above mentioned findings. CONCLUSIONS Neonatal GCSF, IL17A and PDGF-BB levels were correlated with infant overweight and obesity at 1 year of age, suggesting that early life immune status play a significant role of late obesity.
Collapse
Affiliation(s)
- Qi Hu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Beilun District Center for Disease Control and Prevention, Ningbo 315899, China
| | - Yuqing Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Minjuan Liu
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Benjing Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Xu Wang
- Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
14
|
Wang J, Hua M, Li H, Xu D, Li F, Xu F. Circ_0007706 downregulation ameliorates neonatal hypoxic ischemic encephalopathy via regulating the miR-579-3p/TRAF6 axis. Brain Res Bull 2023; 194:90-99. [PMID: 36720318 DOI: 10.1016/j.brainresbull.2023.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/14/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Neonatal hypoxic ischemic encephalopathy (HIE) is a main factor of neonatal death and permanent neurologic deficit. This study sought to investigate the functional role of hsa_circ_0007706 (circ_0007706) in modulating neonatal HIE. METHODS In vitro HIE cell model was established in hBMVECs under the condition of oxygen‑glucose deprivation/reperfusion (OGD/R) treatment. qRT-PCR analysis was utilized for detecting the level of circ_0007706, microRNA-579-3p (miR-579-3p) and TNF receptor-associated factor 6 (TRAF6). RNase R treatment and Oligo (dT) 18 primers were employed to verify the features of circ_0007706, and nucleocytoplasmic separation was conducted for determining the location of circ_0007706. CCK-8 assay, EdU assay, and flow cytometry were carried out to measure cell proliferation and apoptosis, respectively. The protein expression of Bax, Bcl-2 and TRAF6 was detected using western blot. Meanwhile, the levels of the pro-inflammatory factors were determined via ELISA. SOD activity and MDA level were assessed via the respective kits. Besides, dual-luciferase reporter assay and RNA pull-down were used to identify the association between miR-579-3p and circ_0007706 or TRAF6. RESULTS Circ_0007706 was elevated in HIE newborns and OGD/R cell model. Knockdown of circ_0007706 greatly alleviated OGD/R-induced injury, inflammatory response and oxidative stress. We found that miR-579-3p was a direct target of circ_0007706, and miR-579-3p inhibitor could reverse the impact of circ_0007706 knockdown on OGD/R-caused cell damage in hBMVECs. In addition, miR-579-3p directly interacted with TRAF6, and the protective effects of miR-579-3p on OGD/R-induced injury in hBMVECs were harbored by TRAF6 overexpression. Our data indicated that circ_0007706 knockdown could downregulate the expression of TRAF6 by sponging miR-579-3p in OGD/R-treated hBMVECs. CONCLUSION This study demonstrated that circ_0007706 knockdown assuaged HIE-induced injury by decreasing TRAF6 expression via targeting miR-579-3p.
Collapse
Affiliation(s)
- Jinguang Wang
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Minmin Hua
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Huixin Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Dan Xu
- Department of Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Fangfang Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Falin Xu
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
15
|
Liu G, Cheng S, Wan L, Li Y, Zhao Q, Liu J, Jiang X. Correlation analysis of NT-proBNP (N-terminal probrain natriuretic peptide), 25-Hydroxyvitamin D, HMGB1(High-mobility group box 1), ACTA (endogenous activin A), blood glucose level, and electrolyte level with developmental quotient scores in neonates with hypoxic-ischemic encephalopathy. BMC Pediatr 2022; 22:739. [PMID: 36577981 PMCID: PMC9795784 DOI: 10.1186/s12887-022-03606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND To investigate the correlation between N-terminal probrain natriuretic peptide (NT-proBNP), 25-hydroxyvitamin D (25-(OH) D), high-mobility group box 1(HMGB1), endogenous activin A (ACTA), blood glucose level, electrolyte levels and developmental quotient (DQ) scores of Hypoxic-ischemic encephalopathy (HIE). METHODS In this retrospective study, a total of 90 neonates diagnosed with HIE who were admitted to our hospital from January 2018 to June 2021 were retrospectively enrolled, and 40 healthy full-term neonates born in our hospital during the same period were randomly selected. Neonates with HIE and healthy conditions were set as the study group and control group, respectively. Neonates with HIE are divided into three subgroups, mild, moderate, and severe, based on the severity of HIE. The Gesell Developmental Scale (GDS) was used to assess neural development of neonates at 9 to 12 months postnatal. Biomarkers of peripheral venous blood were measured and collected in all neonates, including NT-proBNP, (25-(OH) D), HMGB1, ACTA, electrolyte levels and blood glucose levels. General demographic information and Apgar score were compared between the two groups. The differences between the two groups of biomarkers were compared and the correlation between these biomarkers and DQ scores was evaluated. RESULTS There was no significant difference in gestational age, maternal age, gender, way of birth, birth weight, gestational age and whether the mother was a primipara between the two groups (P>0.05). The 10 min Apgar score of the study group (5.87±0.36) was lower than that of the control group (9.37±0.32) with significant difference (P<0.05). The levels of NT-proBNP, HMGB1, and ACTA in the study group were higher than that in the control group (243.87±21.29 pmol/L vs. 116.98±22.19 pmol/L; 8.92±1.87 μg/L vs. 3.28±1.08 μg/L; 23.78±0.89 ng/ml vs. 2.98±0.38 ng/ml), while the levels of 25-(OH) D and electrolyte levels were lower than that in the control group (24.28±1.87 vs. 31.29±1.93; K+: 4.49±0.23 mmol/L vs. 4.73±0.21 mmol/L; Na+: 118.76±13.02 mmol/L vs. 134.28±12.29 mmol/L; Ca2+: 1.77±0.23 mmol/L vs. 2.35±0.26 mmol/L; Mg2+: 0.61±0.17 mmol/L vs. 0.91±0.17 mmol/L), with statistically significant differences (P<0.001). The levels of NT-probNP, HMGB1, ACTA and the incidence of hypoglycemia were the highest in the severe group, which were significantly higher than those in the moderate group and mild group (P<0.05). The levels of NT-probNP, HMGB1, ACTA and the incidence of hypoglycemia were the lowest in the mild group. The 25-(OH) D level, the incidence of hyperglycemia and electrolyte levels were the lowest in the severe group, which were significantly lower than those in the moderate and mild groups (all P<0.05). Meanwhile, the 25-(OH) D level, the incidence of hyperglycemia and electrolyte levels in the moderate group were lower than those in the mild group, and the differences were statistically significant (all P<0.05). The incidence of hyperglycemia in severe group (16 cases) was the lowest, significantly lower than that in moderate group (17 cases) and mild group (22 cases), and the difference was statistically significant (all P<0.05). The DQ scores of HIE neonates were negatively correlated with NT-proBNP, HMGB1, and ACTA (r=-0.671, -0.421, -0.518, all P< 0.001). The DQ scores was positively correlated with levels of 25-(OH) D and blood glucose level (r =0.621, 0.802, all P< 0.001). The DQ scores was also positively correlated with levels of potassium, sodium, calcium and magnesium (0.367, 0.782, 0.218, 0.678, all P<0.001). CONCLUSION The NT-proBNP, HMGB1, ACTA, 25-(OH) D, blood glucose levels and electrolyte levels are correlated with the severity of HIE, and developmental quotient scores in neonates with HIE. These biomarkers are suggestive for assessing the prognosis of neonate with HIE.
Collapse
Affiliation(s)
- Guiling Liu
- grid.452458.aDepartment of Pediatrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031 China
| | - Sisi Cheng
- grid.452458.aDepartment of Pediatrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031 China
| | - Li Wan
- Shijiazhuang Center for Disease Control and Prevention institute of Epidemic Diseases, Shijiazhuang, China
| | - Yanyan Li
- grid.452458.aDepartment of Pediatrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031 China
| | - Qian Zhao
- grid.452458.aDepartment of Pediatrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031 China
| | - Jianxin Liu
- grid.452458.aDepartment of Pediatrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031 China
| | - Xiufang Jiang
- grid.452458.aDepartment of Pediatrics, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Yuhua District, Shijiazhuang, 050031 China
| |
Collapse
|
16
|
Wang M, Yang X, Zhou Q, Guo Y, Chen Y, Song L, Yang J, Li L, Luo L. Neuroprotective Mechanism of Icariin on Hypoxic Ischemic Brain Damage in Neonatal Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1330928. [PMID: 36425058 PMCID: PMC9681555 DOI: 10.1155/2022/1330928] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024]
Abstract
Objective Our previous results showed that icariin (ICA) could inhibit apoptosis and provide neuroprotection against hypoxic-ischemic brain damage (HIBD) in neonatal mice, but the specific mechanism of its neuroprotective effect remains unknown. This study aims at exploring whether ICA plays a neuroprotective role in apoptosis inhibition by regulating autophagy through the estrogen receptor α (ERα)/estrogen receptor β (ERβ) pathway in neonatal mice with HIBD. Methods A neonatal mouse model of HIBD was constructed in vivo, and an oxygen and glucose deprivation (OGD) model in HT22 cells from the hippocampal neuronal system was constructed in vitro. The effects of ICA pretreatment on autophagy and the expression of ERα and ERβ were detected in vitro and in vivo, respectively. ICA pretreatment was also supplemented with the autophagy inhibitor 3-methyladenine (3-MA), ERα inhibitor methylpiperidino pyrazole (MPP), and ERβ inhibitor 4-(2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyramidin-3-yl) phenol (PHTPP) to further detect whether ICA pretreatment can activate the ERα/ERβ pathway to promote autophagy and reduce HIBD-induced apoptosis to play a neuroprotective role against HIBD in neonatal mice. Results ICA pretreatment significantly promoted autophagy in HIBD mice. Treatment with 3-MA significantly inhibited the increase in autophagy induced by ICA pretreatment, reversed the neuroprotective effect of ICA pretreatment, and promoted apoptosis. Moreover, ICA pretreatment significantly increased the expression levels of the ERα and ERβ proteins in HIBD newborn mice. Both MPP and PHTPP administration significantly inhibited the expression levels of the ERα and ERβ proteins activated by ICA pretreatment, reversed the neuroprotective effects of ICA pretreatment, inhibited the increase in autophagy induced by ICA pretreatment, and promoted apoptosis. Conclusion ICA pretreatment may promote autophagy by activating the ERα and ERβ pathways, thus reducing the apoptosis induced by HIBD and exerting a neuroprotective effect on neonatal mice with HIBD.
Collapse
Affiliation(s)
- Mengxia Wang
- Intensive Care Unit, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiaoxia Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Zhou
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingqi Guo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingxiu Chen
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Linyang Song
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixia Li
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Medical Association, Guangzhou 510180, China
| |
Collapse
|
17
|
Kozole J, Heydn R, Wirkert E, Küspert S, Aigner L, Bruun TH, Bogdahn U, Peters S, Johannesen S. Direct Potential Modulation of Neurogenic Differentiation Markers by Granulocyte-Colony Stimulating Factor (G-CSF) in the Rodent Brain. Pharmaceutics 2022; 14:pharmaceutics14091858. [PMID: 36145606 PMCID: PMC9504319 DOI: 10.3390/pharmaceutics14091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
The hematopoietic granulocyte-colony stimulating growth factor (G-CSF, filgrastim) is an approved drug in hematology and oncology. Filgrastim's potential in neurodegenerative disorders is gaining increasingly more attention, as preclinical and early clinical studies suggest it could be a promising treatment option. G-CSF has had a tremendous record as a safe drug for more than three decades; however, its effects upon the central nervous system (CNS) are still not fully understood. In contrast to conceptual long-term clinical application with lower dosing, our present pilot study intends to give a first insight into the molecular effects of a single subcutaneous (s.c.) high-dose G-CSF application upon different regions of the rodent brain. We analyzed mRNA-and in some instances-protein data of neurogenic and non-neurogenic differentiation markers in different regions of rat brains five days after G-CSF (1.3 mg/kg) or physiological saline. We found a continuous downregulation of several markers in most brain regions. Remarkably, cerebellum and hypothalamus showed an upregulation of different markers. In conclusion, our study reveals minor suppressive or stimulatory effects of a single exceptional high G-CSF dose upon neurogenic and non-neurogenic differentiation markers in relevant brain regions, excluding unregulated responses or unexpected patterns of marker expression.
Collapse
Affiliation(s)
- Judith Kozole
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Anesthesiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Rosmarie Heydn
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Eva Wirkert
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Sabrina Küspert
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tim-Henrik Bruun
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
- Velvio GmbH, 93053 Regensburg, Germany
| | - Ulrich Bogdahn
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
- Velvio GmbH, 93053 Regensburg, Germany
- Correspondence: or
| | - Sebastian Peters
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Siw Johannesen
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany
- Department of Neurology, BG Trauma Center, 82418 Murnau (Staffelsee), Germany
| |
Collapse
|
18
|
Application Effect Analysis of Clinical Nursing Pathway in the Care of Neonatal Hypoxic-Ischemic Encephalopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9379361. [PMID: 35756419 PMCID: PMC9225897 DOI: 10.1155/2022/9379361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/16/2022]
Abstract
This research focuses on the effectiveness of the clinical nursing pathway (CNP) in the treatment of infant hypoxic-ischemic encephalopathy (NHIE). This research enrolled 120 cases of NHIE admitted to the First Affiliated Hospital of Heilongjiang University of Chinese Medicine, including 70 cases (research group, the Res) who received CNP intervention and 50 cases (control group, the Con) treated by routine nursing pathway intervention. The psychomotor development index (PDI), mental development index (MDI), neurodevelopment (ND), physique growth, and incidence of adverse events (AEs) were recorded and analyzed. The results identified that in comparison with the Con (1) the PDI and MDI were obviously better in the Res 6 months postintervention; (2) the Res had significantly superior ND of behavioral capacity, passive tone, active tone, primitive reflex, and general assessment 1 month after intervention, as well as physical development of body weight, height, and head circumference after 40 days of birth, (3) the incidence of total AEs within 40 days was statistically lower in the Res. As a result, CNP is considerably superior to the traditional nursing pathway in the treatment of NHIE, and it merits clinical promotion.
Collapse
|
19
|
Hsueh YM, Chen WJ, Chung CJ, Hsieh RL, Chen HH, Huang YL, Shiue HS, Lin MI, Mu SC, Lin YC. The combined effects of nucleotide-binding domain-like receptor protein 3 polymorphisms and levels of blood lead on developmental delays in preschool children. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127317. [PMID: 34879550 DOI: 10.1016/j.jhazmat.2021.127317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/22/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Nucleotide-binding domain-like receptors protein 3 (NLRP3) inflammasomes are associated with neuroinflammation and multiple NLRP3 genes regulate NLRP3 expression. Our study aimed to investigate the association of NLRP3 polymorphisms with developmental delay in preschool children. We also explored whether NLRP3 polymorphisms modified the effects of total urinary arsenic and blood cadmium and lead to developmental delays. A total of 178 children with developmental delays and 88 healthy children were analyzed for urinary arsenic concentrations and red blood cell lead and cadmium concentrations. We examined the genotypes of fifteen common single-nucleotide polymorphisms in NLRP3. We observed that levels of total urinary arsenic and blood lead were significantly associated with developmental delay. The NLRP3rs10754555 CG versus CC/GG, NLRP3rs12048215 AG versus AA/GG, and NLRP3rs12137901 TC/TT versus CC genotype showed a lower odds of developmental delay, with the odds ratio (OR) and 95% confidence interval (CI) = 0.38 (0.19-0.75), 0.52 (0.27-0.99), and 0.33 (0.12-0.90), respectively. Children with the NLRP3rs10754555 CC/GG genotype and high blood lead levels had a significant multiplicative interaction with developmental delay [OR (95% CI) = 9.74 (3.59-26.45)]. This study found evidence that suggested the joint effects of NLRP3rs10754555 CC/GG genotype and high blood lead levels on developmental delays.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Chi-Jung Chung
- Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University and Hospital, Taichung, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-I Lin
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shu-Chi Mu
- Department of Pediatrics, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
20
|
Neural Function Recovery and Safety of Mild Hypothermia Therapy Combined with Monosialotetrahexosylganglioside on Neonatal Asphyxia Complicated by Hypoxic Ischemic Encephalopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:6186011. [PMID: 34987600 PMCID: PMC8723842 DOI: 10.1155/2021/6186011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/08/2021] [Accepted: 11/20/2021] [Indexed: 11/18/2022]
Abstract
Objective To explore the effect and safety of mild hypothermia therapy combined with monosialotetrahexosylganglioside (GM1) on neural function recovery of neonatal asphyxia complicated by hypoxic ischemic encephalopathy (HIE). Methods The clinical data of 90 neonates with HIE were retrospectively analyzed. According to the treatment methods, the neonates were divided into a routine group, a mild hypothermia group, and a combination group, with 30 cases in each group. The differences in neural function recovery, biochemical indexes, clinical signs recovery, efficacy, and complications were observed in the three groups after treatment. Results After treatment, the score of neonatal behavioral neurological assessment (NBNA) and level of superoxide dismutase (SOD) in the combination group were higher than those of the other two groups (P < 0.05). The levels of neuron-specific enolase (NSE), S-100β protein, and plasma neuropeptide Y (NPY) in the combination group were lower than those in the other two groups, and the recovery time of consciousness, muscle tension, and reflex was shorter (P < 0.05). The combination group showed higher total effective rate and lower incidence of complications as compared with the other two groups (P < 0.05). Conclusion Mild hypothermia therapy combined with GM1 for the treatment of neonatal asphyxia complicated by HIE can promote the recovery of neural function and reduce the incidence of complications in neonates.
Collapse
|
21
|
Wang Y, Mao J, Li X, Wang B, Zhou X. lncRNA HOTAIR mediates OGD/R-induced cell injury and angiogenesis in a EZH2-dependent manner. Exp Ther Med 2022; 23:99. [PMID: 34976141 PMCID: PMC8674968 DOI: 10.3892/etm.2021.11022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNA) serve an important role in neonatal hypoxic-ischemic encephalopathy (HIE) have been reported to regulate the activity of HIE-associated proteins. The present study aimed to elucidate the role of Hox transcript antisense intergenic RNA (HOTAIR) in oxygen-glucose deprivation/reperfusion (OGD/R)-induced injury in human brain microvascular endothelial cells (hBMVECs). The levels of HOTAIR were evaluated in the serum of neonatal patients with HIE, and the effects of HOTAIR were evaluated using in vitro assays, such as reverse transcription-quantitative PCR to detect lncRNA and mRNA levels and western blot analysis to determine protein levels. Moreover, RNA immunoprecipitation assays were used to evaluate the association between HOTAIR and enhancer of zeste homolog 2 (EZH2), Cell Counting Kit-8 was used to detect cell viability, an endothelial monolayer cell permeability assay was used to analyze cell viability, TUNEL staining was used to detect the levels of apoptosis, a Transwell assay was used to evaluate cell invasion and a tube formation assay was used to analyze tube formation ability. In addition, the effects of HOTAIR and EZH2 on cell apoptosis and the invasive and tube formation abilities of hBMVECs were investigated using TUNEL, Transwell and tube formation assays, respectively. The results showed that the expression levels of HOTAIR were markedly increased both in neonatal HIE patients and in the OGD/R injury in vitro model. HOTAIR knockdown reduced hBMVEC viability, enhanced cell permeability and apoptosis, in addition to decreasing the expression levels of tight junction-related proteins, such as zonula occludens-1, occluden, Claudin5 and vascular endothelial-cadherin. However, EZH2 overexpression reversed the effects of HOTAIR silencing on hBMVECs. Additionally, HOTAIR knockdown enhanced the migratory and tube formation abilities of OGD/R-induced hBMVECs, which were also reversed by EZH2 overexpression. Overall, the present study revealed an association between the HOTAIR/EZH2 axis and brain microvascular endothelial cell injury and angiogenesis, which provides a novel insight into the molecular mechanism underlying stroke or the development of new pharmacotherapies.
Collapse
Affiliation(s)
- Yunpeng Wang
- Department of Neonatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Jiaoyu Mao
- Department of Neonatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Xiaodong Li
- Department of Neonatology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Beibei Wang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoguang Zhou
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
22
|
Melo AM, Taher NAB, Doherty DG, Molloy EJ. The role of lymphocytes in neonatal encephalopathy. Brain Behav Immun Health 2021; 18:100380. [PMID: 34755125 PMCID: PMC8560973 DOI: 10.1016/j.bbih.2021.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Neonatal encephalopathy is a syndrome characterised by abnormal neurological function often caused by a hypoxic insult during childbirth. Triggers such as hypoxia-ischaemia result in the release of cytokines and chemokines inducing the infiltration of neutrophils, natural killer cells, B cells, T cells and innate T cells into the brain. However, the role of these cells in the development of the brain injury is poorly understood. We review the mechanisms by which lymphocytes contribute to brain damage in NE. NK, T and innate T cells release proinflammatory cytokines contributing to the neurodegeneration in the secondary and tertiary phase of injury, whereas B cells and regulatory T cells produce IL-10 protecting the brain in NE. Targeting lymphocytes may have therapeutic potential in the treatment of NE in terms of management of inflammation and brain damage, particularly in the tertiary or persistent phases.
Collapse
Key Words
- Blood-brain barrier, BBB
- Hypoxia-ischaemia encephalopathy, HIE
- Hypoxia-ischaemia, HI
- Hypoxic-ischaemia
- Immune response
- Lymphocytes
- Neonatal encephalopathy
- Neonatal encephalopathy, NE
- Regulatory T cells, Tregs
- T cell receptors, TCRs
- T helper, Th
- Therapeutic hypothermia, TH
- White Matter Injury, WMI
- activating transcription factor-6, ATF6
- central nervous system, CNS
- granulocyte-macrophage colony-stimulating factor, GM-CSF
- interleukin, IL
- major histocompatibility complex, MHC
- natural killer, NK cells
- tumour necrosis factor-alpha, TNF-α
Collapse
Affiliation(s)
- Ashanty M. Melo
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Nawal AB. Taher
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Derek G. Doherty
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Eleanor J. Molloy
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Research in Childhood Centre, Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Children's Hospital Ireland (CHI) at Tallaght & Crumlin, Crumlin, Dublin, Ireland
- Discipline of Coombe Women and Infants University Hospital, Crumlin, Dublin, Ireland
- Discipline of Neonatology & National Children's Research Centre, Crumlin, Dublin, Ireland
- Discipline of National Children's Research Centre, Crumlin, Dublin, Ireland
| |
Collapse
|