1
|
Yuan H, Xu Y, Jiang H, Jiang M, Zhang L, Wei S, Li C, Zhao Z. Acid sphingomyelinase modulates anxiety-like behavior likely through toll-like receptor signaling pathway. Mol Brain 2025; 18:8. [PMID: 39905541 DOI: 10.1186/s13041-025-01178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Recent studies have shown that abnormal activity of acid sphingomyelinase (Asm) has been associated with a range of psychiatric disorders including schizophrenia and depression. However, the role of Asm in the regulation of anxiety remains unclear. In the present study, we employed Asm-knockout (Asm KO) mice to investigate the association between Asm and anxiety using behavioral tests, RNA sequencing, q-PCR, immunohistochemical staining, and other methods. The behavioral results showed that Asm KO mice exhibit enhanced anxiety-like behaviors, such as restricted activity, reduced cumulative times in the central area, diminished exploratory interest, delayed latency to feed, through behavioral tests including open field, novelty-suppressed feeding test, elevated plus maze test, ect. Transcriptional profiling combined with bioinformatics analysis revealed the upregulation of Toll-like receptor signaling pathway related gene including Tlr1/2, Ccl3, Ccl4, Ccl5 and Cd86 in Asm KO mice, which was further confirmed by the detection of activated microglia and astrocytes through iba-1 and GFAP immunohistochemical staining. Collectively, our findings uncover a role for Asm in regulating anxiety-like behavior and suggest that it may be essential for the maintenance of emotional stability, indicating its potential as a promising target for treating anxiety disorders.
Collapse
Affiliation(s)
- Huiqi Yuan
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Meizhu Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Luofei Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shifeng Wei
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Cao Li
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Zhang Y, Du B, Zou M, Peng B, Rao Y. Neuronal Ceroid Lipofuscinosis-Concepts, Classification, and Avenues for Therapy. CNS Neurosci Ther 2025; 31:e70261. [PMID: 39925015 PMCID: PMC11808193 DOI: 10.1111/cns.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by excessive accumulation of lysosomal lipofuscin. Thirteen subtypes of NCL have been identified, each associated with distinct genes encoding various transmembrane proteins, secretory proteins, or lysosomal enzymes. Clinically, NCL manifests in infants through vision impairment, motor and cognitive dysfunctions, epilepsy, and premature death. The pathological complexity of NCL has hindered the development of effective clinical protocols. Current treatment modalities, including enzyme replacement therapy, pharmacological approaches, gene therapy, and stem cell therapy, have demonstrated limited efficacy. However, emerging evidence suggests a significant relationship between NCL and microglial cells, highlighting the potential of novel microglial cell replacement therapies. This review comprehensively examines the pathogenic genes associated with various NCL subtypes, elucidating their roles, clinical presentations, and corresponding mouse models. Especially, we thoroughly discuss the advances in the clinical study of potential therapeutics, which crucially calls for early diagnosis and treatment more than ever.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Bingying Du
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
- Department of NeurologyThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Miaozhan Zou
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Bo Peng
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
| |
Collapse
|
3
|
Ma Y, Guo S, Chen Y, Peng Y, Su X, Jiang H, Lin X, Zhang J. Single-nucleus chromatin landscape dataset of mouse brain development and aging. Sci Data 2024; 11:616. [PMID: 38866804 PMCID: PMC11169343 DOI: 10.1038/s41597-024-03382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
The development and aging of the brain constitute a lifelong dynamic process, marked by structural and functional changes that entail highly coordinated cellular differentiation and epigenetic regulatory mechanisms. Chromatin accessibility serves as the foundational basis for genetic activity. However, the holistic and dynamic chromatin landscape that spans various brain regions throughout development and ageing remains predominantly unexplored. In this study, we employed single-nucleus ATAC-seq to generate comprehensive chromatin accessibility maps, incorporating data from 69,178 cells obtained from four distinct brain regions - namely, the olfactory bulb (OB), cerebellum (CB), prefrontal cortex (PFC), and hippocampus (HP) - across key developmental time points at 7 P, 3 M, 12 M, and 18 M. We delineated the distribution of cell types across different age stages and brain regions, providing insight into chromatin accessible regions and key transcription factors specific to different cell types. Our data contribute to understanding the epigenetic basis of the formation of different brain regions, providing a dynamic landscape and comprehensive resource for revealing gene regulatory programs during brain development and aging.
Collapse
Affiliation(s)
- Yuting Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, 050035, China
- BGI Genomics, Shenzhen, 518083, China
| | - Sicheng Guo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, 050035, China
- BGI Genomics, Shenzhen, 518083, China
| | - Yixi Chen
- BGI Research, Shenzhen, 518083, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | | | - Xi Su
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, 050035, China
- BGI Genomics, Shenzhen, 518083, China
| | - Hui Jiang
- BGI Genomics, Shenzhen, 518083, China
| | - Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI Research, Shenzhen, 518083, China.
| | - Jianguo Zhang
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Clin Lab, BGI Genomics, Shijiazhuang, 050035, China.
- BGI Genomics, Shenzhen, 518083, China.
- BGI Research, Shenzhen, 518083, China.
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
4
|
El-Hage N, Haney MJ, Zhao Y, Rodriguez M, Wu Z, Liu M, Swain CJ, Yuan H, Batrakova EV. Extracellular Vesicles Released by Genetically Modified Macrophages Activate Autophagy and Produce Potent Neuroprotection in Mouse Model of Lysosomal Storage Disorder, Batten Disease. Cells 2023; 12:1497. [PMID: 37296618 PMCID: PMC10252192 DOI: 10.3390/cells12111497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Over the recent decades, the use of extracellular vesicles (EVs) has attracted considerable attention. Herein, we report the development of a novel EV-based drug delivery system for the transport of the lysosomal enzyme tripeptidyl peptidase-1 (TPP1) to treat Batten disease (BD). Endogenous loading of macrophage-derived EVs was achieved through transfection of parent cells with TPP1-encoding pDNA. More than 20% ID/g was detected in the brain following a single intrathecal injection of EVs in a mouse model of BD, ceroid lipofuscinosis neuronal type 2 (CLN2) mice. Furthermore, the cumulative effect of EVs repetitive administrations in the brain was demonstrated. TPP1-loaded EVs (EV-TPP1) produced potent therapeutic effects, resulting in efficient elimination of lipofuscin aggregates in lysosomes, decreased inflammation, and improved neuronal survival in CLN2 mice. In terms of mechanism, EV-TPP1 treatments caused significant activation of the autophagy pathway, including altered expression of the autophagy-related proteins LC3 and P62, in the CLN2 mouse brain. We hypothesized that along with TPP1 delivery to the brain, EV-based formulations can enhance host cellular homeostasis, causing degradation of lipofuscin aggregates through the autophagy-lysosomal pathway. Overall, continued research into new and effective therapies for BD is crucial for improving the lives of those affected by this condition.
Collapse
Affiliation(s)
- Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (N.E.-H.); (M.R.)
| | - Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (N.E.-H.); (M.R.)
| | - Zhanhong Wu
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (Z.W.); (H.Y.)
| | - Mori Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Carson J. Swain
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Hong Yuan
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (Z.W.); (H.Y.)
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| |
Collapse
|
5
|
Chemistry and Function of Glycosaminoglycans in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:117-162. [DOI: 10.1007/978-3-031-12390-0_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Takahashi K, Nelvagal HR, Lange J, Cooper JD. Glial Dysfunction and Its Contribution to the Pathogenesis of the Neuronal Ceroid Lipofuscinoses. Front Neurol 2022; 13:886567. [PMID: 35444603 PMCID: PMC9013902 DOI: 10.3389/fneur.2022.886567] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/16/2022] [Indexed: 01/05/2023] Open
Abstract
While significant efforts have been made in developing pre-clinical treatments for the neuronal ceroid lipofuscinoses (NCLs), many challenges still remain to bring children with NCLs a cure. Devising effective therapeutic strategies for the NCLs will require a better understanding of pathophysiology, but little is known about the mechanisms by which loss of lysosomal proteins causes such devastating neurodegeneration. Research into glial cells including astrocytes, microglia, and oligodendrocytes have revealed many of their critical functions in brain homeostasis and potential contributions to neurodegenerative diseases. Genetically modified mouse models have served as a useful platform to define the disease progression in the central nervous system across NCL subtypes, revealing a wide range of glial responses to disease. The emerging evidence of glial dysfunction questions the traditional “neuron-centric” view of NCLs, and would suggest that directly targeting glia in addition to neurons could lead to better therapeutic outcomes. This review summarizes the most up-to-date understanding of glial pathologies and their contribution to the pathogenesis of NCLs, and highlights some of the associated challenges that require further research.
Collapse
Affiliation(s)
- Keigo Takahashi
- Pediatric Storage Disorders Laboratory, Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Hemanth R. Nelvagal
- Department of Pharmacology, School of Pharmacy, University College London, London, United Kingdom
| | - Jenny Lange
- Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Genetics, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Jonathan D. Cooper
| |
Collapse
|
7
|
Wang W, Li Q, Zhao Z, Liu Y, Wang Y, Xiong H, Mei Z. Paeonol Ameliorates Chronic Itch and Spinal Astrocytic Activation via CXCR3 in an Experimental Dry Skin Model in Mice. Front Pharmacol 2022; 12:805222. [PMID: 35095512 PMCID: PMC8794748 DOI: 10.3389/fphar.2021.805222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Paeonol is a bioactive phenol presents mainly in Paeonia suffruticosa Andr. (Paeoniaceae), Paeonia lactiflora Pall., and Dioscorea japonica Thunb. (Dioscoreaceae), harboring various pharmacological activities including anti-inflammatory, antioxidant, immune regulatory activity and reverse chemoresistance. Recent reports revealed paeonol exhibited good effects on chronic dermatitis, such as atopic dermatitis (AD) and psoriasis. However, whether paeonol is effective for dry skin disease and its mechanism of action still remain unclear. In this study, we analysed the effects of paeonol on a mouse model of dry skin treated with acetone-ether-water (AEW), which showed impressive activities in reducing scratching behavior and skin inflammation. To elucidate the underlying molecular targets for the anti-pruritic ability of paeonol, we screened the expression of possible chemokine pathways in the spinal cord. The expression of CXCR3 was significantly alleviated by paeonol, which increased greatly in the spinal neurons of AEW mice. In addition, treatment of paeonol significantly inhibited AEW-induced expression of astrocyte activity-dependent genes including Tlr4, Lcn2 and Hspb1 et al. The inhibitory effects of paeonol on scratching behavior and astrocytic activation in the spinal cord induced by AEW were abolished when CXCR3 was antagonized or genetically ablated. Taken together, our results indicated that paeonol can ameliorate AEW-induced inflammatory response and itching behavior, and reduce the expression of spinal astrocyte activity-dependent genes induced by AEW, which are driven by CXCR3.
Collapse
Affiliation(s)
- Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Qiaoyun Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhongqiu Zhao
- Washington University School of Medicine, St. Louis, MO, United States.,Barnes-Jewish Hospital, St. Louis, MO, United States
| | - Yutong Liu
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yi Wang
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.,Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|