1
|
Chen T, Ye W, Gao S, Li Y, Luan J, Lv X, Wang S. Emerging importance of m6A modification in liver cancer and its potential therapeutic role. Biochim Biophys Acta Rev Cancer 2025; 1880:189299. [PMID: 40088993 DOI: 10.1016/j.bbcan.2025.189299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/17/2025]
Abstract
Liver cancer refers to malignant tumors that form in the liver and is usually divided into several types, the most common of which is hepatocellular carcinoma (HCC), which originates in liver cells. Other rare types of liver cancer include intrahepatic cholangiocarcinoma (iCCA). m6A modification is a chemical modification of RNA that usually manifests as the addition of a methyl group to adenine in the RNA molecule to form N6-methyladenosine. This modification exerts a critical role in various biological processes by regulating the metabolism of RNA, affecting gene expression. Recent studies have shown that m6A modification is closely related to the occurrence and development of liver cancer, and m6A regulators can further participate in the pathogenesis of liver cancer by regulating the expression of key genes and the function of specific cells. In this review, we provided an overview of the latest advances in m6A modification in liver cancer research and explored in detail the specific functions of different m6A regulators. Meanwhile, we deeply analyzed the mechanisms and roles of m6A modification in liver cancer, aiming to provide novel insights and references for the search for potential therapeutic targets. Finally, we discussed the prospects and challenges of targeting m6A regulators in liver cancer therapy.
Collapse
Affiliation(s)
- Tao Chen
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Wufei Ye
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| | - Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province 241001, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province 230032, China.
| |
Collapse
|
2
|
Li Y, Xue J, Ma Y, Ye K, Zhao X, Ge F, Zheng F, Liu L, Gao X, Wang D, Xia Q. The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. Neural Regen Res 2025; 20:1582-1598. [PMID: 38845217 PMCID: PMC11688559 DOI: 10.4103/nrr.nrr-d-23-01872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Hronova A, Pritulova E, Hejnova L, Novotny J. An Investigation of the RNA Modification m 6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal. Int J Mol Sci 2025; 26:4371. [PMID: 40362608 PMCID: PMC12072463 DOI: 10.3390/ijms26094371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
N6-methyladenosine (m6A) is one of the most prevalent methylated modifications of mRNA in eukaryotes. This reversible alteration can directly or indirectly influence biological functions, including RNA degradation, translation, and splicing. This study investigates the impact of chronic morphine administration and varying withdrawal durations (1 day, 1 week, 4 weeks, and 12 weeks) on the m6A modification levels in brain regions critical to addiction development and persistence. Our findings indicate that in the prefrontal cortex, the m6A levels and METTL3 expression decrease, accompanied by an increase in FTO and ALKBH5 expression, followed by fluctuating, but statistically insignificant changes in methylation-regulating enzymes over prolonged withdrawal. In the striatum, reductions in m6A levels and METTL3 expression are observed at 4 weeks of withdrawal, preceded by non-significant fluctuations in enzyme expression and the m6A modification levels. In contrast, no changes in the m6A modification levels or the expression of related enzymes are detected in the hippocampus and the cerebellum. Our data suggest that m6A modification and its regulatory enzymes undergo region-specific and time-dependent changes in response to chronic morphine exposure and subsequent withdrawal.
Collapse
Affiliation(s)
| | | | | | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic; (A.H.); (E.P.); (L.H.)
| |
Collapse
|
4
|
Mai Z, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zheng Y, Zhou Z, Xu R, Guo B, Cui L, Zhao X. Orchestration of immunoregulatory signaling ligand and receptor dynamics by mRNA modifications: Implications for therapeutic potential. Int J Biol Macromol 2025; 310:142987. [PMID: 40210040 DOI: 10.1016/j.ijbiomac.2025.142987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
RNA modifications are pivotal regulators of gene expression, significantly influencing immune responses by modulating the stability and translation of mRNAs encoding key immunoregulatory ligands and receptors. Among these modifications, N6-methyladenosine (m6A) is the most abundant and well-characterized, orchestrating immune evasion, T-cell exhaustion, and cytokine production by dynamically regulating transcripts such as PD-L1, IFN-γ, and TGF-β. These modifications critically impact the function and availability of proteins essential for maintaining immune homeostasis and shaping adaptive immune responses. This review comprehensively examines established and emerging roles of mRNA modifications in regulating immunoregulatory signaling, including co-inhibitory and co-stimulatory molecules, chemokines, cytokines, and transforming growth factor-β. We highlight how m6A writers, erasers, and readers finely regulate immune checkpoints and inflammatory pathways across cancer, infection, and autoimmune diseases. Furthermore, the review provides a critical analysis of current discrepancies in the field, emphasizing factors contributing to inconsistencies and offering insights into the complex nature of epigenetic regulation. Challenges and limitations in this rapidly evolving area are also discussed. Advancing detection technologies and developing specific inhibitors targeting RNA-modifying proteins will be crucial for precisely modulating immune responses, paving the way for innovations in precision medicine and immunotherapy.
Collapse
Affiliation(s)
- Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China; School of Dentistry, University of California, Los Angeles, Los Angeles 90095, CA, USA.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, Guangdong, China.
| |
Collapse
|
5
|
Tan Y, Miao L, Wang C, Wang H, Li Y, Huang Y, Teng H, Tian Y, Yang G, Zeng X, Li J. The Role and Mechanism of TRIM13 Regulation of TRAF6 Ubiquitination in the Synergy of Inflammatory Responses and Neurotoxicity Induced by METH and HIV- 1 Tat Protein in Astrocytes. Neurotox Res 2025; 43:21. [PMID: 40192895 DOI: 10.1007/s12640-025-00743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/13/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025]
Abstract
Methamphetamine (METH) abuse and HIV infection are major public health concerns worldwide. While both METH and HIV- 1 Tat proteins can induce neurotoxicity and synergistic effects on the nervous system, the mechanisms by which they act synergistically remain unclear. Our recent research shows that neuroinflammation plays an important role in neurotoxicity induced by METH and HIV- 1 Tat proteins, but the regulatory mechanism has not been clarified. Tripartite Motif Containing 13 (TRIM13) is a protein known to regulate the inflammatory response through ubiquitination of Tumor Necrosis Factor Receptor Associated Factor 6 (TRAF6). This study investigated the role of TRIM13 and TRAF6 in the inflammatory response of U- 87 MG cells induced by METH and HIV- 1 Tat proteins. U- 87 MG cells were treated with 2 mM METH and/or 100 nM HIV- 1 Tat protein. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments were employed to elucidate the role of TRIM13 and TRAF6. The results demonstrated that METH and HIV- 1 Tat protein could synergistically induce an inflammatory response in U- 87 MG cells. Furthermore, the knockdown of TRIM13 significantly enhanced this inflammatory response, while the inhibition of TRAF6 significantly weakened it. Additionally, the study revealed that TRIM13 could degrade TRAF6 via ubiquitination. In conclusion, this study suggests that TRIM13 regulates TRAF6 ubiquitination to dampen the inflammatory response of U- 87 MG cells induced by METH and HIV- 1 Tat proteins. These findings highlight TRIM13 and TRAF6 as potential targets for therapeutic intervention in the context of METH and HIV- 1 Tat protein-induced inflammatory responses and neurotoxic effects.
Collapse
Affiliation(s)
- Yi Tan
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Lin Miao
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Chan Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Haowei Wang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Yi Li
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Yizhen Huang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Hanxin Teng
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, People's Republic of China
| | - Yunqing Tian
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China
| | - Genmeng Yang
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China.
| | - Xiaofeng Zeng
- NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, 650500, People's Republic of China.
| | - Juan Li
- Department of Pathogen Biology and Immunology, School of Basic Medical Science, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, Yunnan, People's Republic of China.
| |
Collapse
|
6
|
HAN S, Du Z, WANG Z, HUANG T, GE Y, SHI J, GAO J. Network pharmacology approach to unveiling the mechanism of berberine in the amelioration of morphine tolerance. J TRADIT CHIN MED 2025; 45:376-384. [PMID: 40151124 PMCID: PMC11955763 DOI: 10.19852/j.cnki.jtcm.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/23/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVE To investigate the mechanism underlying the effect of the Huanglian decoction (, HLD) on morphine tolerance (MT), using network pharmacology, and to verify these mechanisms in vitro and in vivo. METHODS Available biological data on each drug in the HLD were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The target proteins of MT were retrieved from the GeneCards, PharmGkb, Therapeutic Target Database, DrugBank, and Online Mendelian Inheritance in Man databases. Information regarding MT and the drug targets was compared to obtain overlapping elements. This information was imported into the Search Tool for the Retrieval of Interacting Genes/Proteins platform to obtain a protein-protein interaction network diagram. Then, a "component-target" network diagram was constructed using screened drug components and target information, viaCytoscape (Institute for Systems Biology, Seattle, WA, USA). The database for annotation, visualization, and integrated discovery was used for Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathways analyses. Pathway information predicted by network pharmacology was verified using animal studies and cell experiments. RESULTS Network pharmacology analysis identified 22 active compounds of HLD and revealed that HLD partially ameliorated MT by modulating inflammatory, apoptosis, and nuclear factor kappa B (NF-κB) signaling pathways. Berberine (BBR), one of the main components of HLD, inhibited the development of MT in mice. BBR reduced cell viability while increasing B-cell lymphoma 2 (Bcl-2) protein expression and decreasing CD86, NF-κB, Bax, and Caspase-3 protein expression in brain vascular 2 (BV2) mcroglia cells treated with morphine. Additionally, BBR contributed to a reduction in pro-inflammatory cytokine release and apoptotic cell number. CONCLUSIONS BBR, a key component of HLD, effectively suppressed microglial activation and neuro-inflammation by regulating the NF-κB and apoptosis signaling pathways, thereby delaying MT. This study offers a novel approach to enhance the clinical analgesic efficacy of morphine.
Collapse
Affiliation(s)
- Shuai HAN
- 1 Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
- 2 Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
- 3 Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225009, China
| | - Zhikang Du
- 1 Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
- 2 Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Zirui WANG
- 1 Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
- 2 Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Tianfeng HUANG
- 3 Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225009, China
| | - Yali GE
- 3 Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225009, China
| | - Jianwen SHI
- 4 Peking University People's Hospital, Qingdao 266111, China
- 5 Women and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Ju GAO
- 3 Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Chen Y, Fan W, Lyu Y, Liao J, Zhou Y. METTL14 modulates the progression and ferroptosis of colitis by regulating the stability of m6A-modified GPX4. Eur J Med Res 2025; 30:88. [PMID: 39920858 PMCID: PMC11806865 DOI: 10.1186/s40001-025-02334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025] Open
Abstract
Ulcerative colitis (UC) is non-specific inflammatory bowel disease. UC development and progression were closely associated with epigenetic modifications. Nevertheless, the specific relationship between N6-methyladenosine (m6A) modification at RNA transcription levels and UC pathogenesis remains unclear. We established UC cell models and mouse models through dextran sulfate sodium (DSS) induction. The expression levels of METTL14 were analyzed via qRT-PCR and western blot. In vitro functional experiments evaluated the effects of METTL14 overexpression on the viability of DSS-induced NCM460 cells and ferroptosis markers. Use of the m6A methylation detection kit, MeRIP-qPCR, and RNA stability experiments confirmed the molecular mechanism controlled by METTL14. In vivo experiments with inflammatory mice models elucidated the interaction between METTL14 and GPX4. Findings from this study indicated a notable reduction in m6A methyltransferase METTL14 expression in DSS-induced NCM460 cells and DSS-induced mice models. METTL14 overexpression effectively suppressed ferroptosis in DSS-induced NCM460 cells. In addition, METTL14 enhanced GPX4 mRNA stability through mediating m6A modification, and the interplay between METTL14 and GPX4 through m6A modification introduced innovative therapeutic approaches for UC management.
Collapse
Affiliation(s)
- Yuhua Chen
- Anorectal Department, Dongguan Hospital of Traditional Chinese Medicine, 1st Floor, No. 3, Dongcheng Section, Songshanhu Avenue, Dongcheng Street, Dongguan, 523000, Guangdong, China
| | - Weicong Fan
- Anorectal Department, Dongguan Hospital of Traditional Chinese Medicine, 1st Floor, No. 3, Dongcheng Section, Songshanhu Avenue, Dongcheng Street, Dongguan, 523000, Guangdong, China
| | - Ying Lyu
- Anorectal Department, Dongguan Hospital of Traditional Chinese Medicine, 1st Floor, No. 3, Dongcheng Section, Songshanhu Avenue, Dongcheng Street, Dongguan, 523000, Guangdong, China
| | - Jingsheng Liao
- Medical Oncology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), No. 78 Wandao Road, Dongguan, 523059, Guangdong, China.
| | - Ying Zhou
- Anorectal Department, Dongguan Hospital of Traditional Chinese Medicine, 1st Floor, No. 3, Dongcheng Section, Songshanhu Avenue, Dongcheng Street, Dongguan, 523000, Guangdong, China.
| |
Collapse
|
8
|
Sheng G, Wu Y, Yao L, Liu H, Zhang P, Song C, Wu G, Zhu H. Puerarin improves the comorbidity of chronic pain and depression by binding with Bax and reducing mitochondrial dysfunction. Mol Pain 2025; 21:17448069251335230. [PMID: 40183499 PMCID: PMC12035022 DOI: 10.1177/17448069251335230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/06/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
Depression is a common comorbidity of chronic pain. The comorbidity of pain and depression causes longer symptoms and poorer patient prognosis. Periaqueductal gray (PAG) is the key region for the regulation of pain and depression. Puerarin (Pue) is a natural isoflavone compound that has a neuroprotective effect, but the mechanisms on the comorbidity of chronic pain and depression remain unclear. In this study, the spared nerve injury (SNI) produced mechanical allodynia and depressive-like behaviors and elevated the neurological damage in ventrolateral (vl) PAG. Meanwhile, at the 8 weeks following injury, mitochondrial dysfunctions including the dysregulated protein levels, the decreased Mn-SOD activity and the reduced ATP contents were observed in vlPAG of SNI model mice. Pue administration improved mechanical pain, motor coordination, and depression-like behaviors, decreased the neuronal activity and neuroinflammation, and elevated the mitochondrial function in vlPAG. Database analysis and experimental assay showed that Pue bound with Bax at the affinity of 2.4 ± 0.1 μM via D102 residue, and decreased Bax level in vlPAG of mice and in primary astrocytic cells. In addition, Pue also recovered levels of mitochondrial membrane potential and reactive oxygen species, and decreased inflammation in primary astrocytic cells. These results suggest that Pue improves the comorbidity of chronic pain and depression by targeting Bax and reducing mitochondrial dysfunction in vlPAG. This study may provide a theoretical basis for Pue application in improving the comorbidity of chronic pain and depression.
Collapse
Affiliation(s)
- Gege Sheng
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yin Wu
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lixin Yao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Hongyan Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Peigen Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Cancan Song
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Ganlin Wu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Haili Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
9
|
Ou C, Zhang K, Mu Y, Huang Z, Li X, Huang W, Wang Y, Zeng W, Ouyang H. YTHDF1 in periaqueductal gray inhibitory neurons contributes to morphine withdrawal responses in mice. BMC Med 2024; 22:406. [PMID: 39304892 PMCID: PMC11416010 DOI: 10.1186/s12916-024-03634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Physical symptoms and aversion induced by opioid withdrawal strongly affect the management of opioid addiction. YTH N6-methyladenosine (m6A) RNA binding protein 1 (YTHDF1), an m6A-binding protein, from the periaqueductal gray (PAG) reportedly contributes to morphine tolerance and hyperalgesia. However, the role of YTHDF1 in morphine withdrawal remains unclear. METHODS A naloxone-precipitated morphine withdrawal model was established in C57/BL6 mice or transgenic mice. YTHDF1 was knocked down via adeno-associated virus transfection. Combined with the results of the single-cell RNA sequencing analysis, the changes in morphine withdrawal somatic signs and conditioned place aversion (CPA) scores were compared when YTHDF1 originating from different neurons in the ventrolateral periaqueductal gray (vlPAG) was knocked down. We further explored the role of inflammatory factors and transcription factors related to inflammatory response in morphine withdrawal. RESULTS Our results revealed that YTHDF1 expression was upregulated in the vlPAG of mice with morphine withdrawal and that the knockdown of vlPAG YTHDF1 attenuated morphine withdrawal-related somatic signs and aversion. The levels of NF-κB and p-NF-κB were reduced after the inhibition of YTHDF1 in the vlPAG. YTHDF1 from vlPAG inhibitory neurons, rather than excitatory neurons, facilitated morphine withdrawal responses. The inhibition of YTHDF1 in vlPAG somatostatin (Sst)-expressing neurons relieved somatic signs of morphine withdrawal and aversion, whereas the knockdown of YTHDF1 in cholecystokinin (Cck)-expressing or parvalbumin (PV)-expressing neurons did not change morphine withdrawal-induced responses. The activity of c-fos + neurons, the intensity of the calcium signal, the density of dendritic spines, and the frequency of mIPSCs in the vlPAG, which were increased in mice with morphine withdrawal, were decreased with the inhibition of YTHDF1 from vlPAG inhibitory neurons or Sst-expressing neurons. Knockdown of NF-κB in Sst-expressing neurons also alleviated morphine withdrawal-induced responses. CONCLUSIONS YTHDF1 originating from Sst-expressing neurons in the vlPAG is crucial for the modulation of morphine withdrawal responses, and the underlying mechanism might be related to the regulation of the expression and phosphorylation of NF-κB.
Collapse
Affiliation(s)
- Chaopeng Ou
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kun Zhang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yanyu Mu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zhenzhen Huang
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xile Li
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Wan Huang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Weian Zeng
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
10
|
Chen Y, Li S, Guo F. Tsc22d3 promotes morphine tolerance in mice through the GPX4 ferroptosis pathway. Aging (Albany NY) 2024; 16:9859-9875. [PMID: 38843390 PMCID: PMC11210220 DOI: 10.18632/aging.205903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Morphine tolerance refers to gradual reduction in response to drug with continuous or repeated use of morphine, requiring higher doses to achieve same effect. METHODS The morphine tolerance dataset GSE7762 profiles, obtained from gene expression omnibus (GEO) database, were used to identify differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) was applied to explore core modules of DEGs related to morphine tolerance. Core genes were input into Comparative Toxicogenomics Database (CTD). Animal experiments were performed to validate role of Tsc22d3 in morphine tolerance and its relationship with ferroptosis-related pathway. RESULTS 500 DEGs were identified. DEGs were primarily enriched in negative regulation of brain development, neuronal apoptosis processes, and neurosystem development. Core gene was identified as Tsc22d3. Tsc22d3 gene-associated miRNAs were mmu-miR-196b-5p and mmu-miR-196a-5p. Compared to Non-morphine tolerant group, Tsc22d3 expression was significantly upregulated in Morphine tolerant group. Tsc22d3 expression was upregulated in Morphine tolerant+Tsc22d3_OE, expression of HIF-1alpha, GSH, GPX4 in GPX4 ferroptosis-related pathway showed a more pronounced decrease. As Tsc22d3 expression was downregulated in Morphine tolerant+Tsc22d3_KO, expression of HIF-1alpha, GSH, GPX4 in GPX4 ferroptosis-related pathway exhibited a more pronounced increase. Upregulation of Tsc22d3 in Morphine tolerant+Tsc22d3_OE led to a more pronounced increase in expression of apoptosis proteins (P53, Caspase-3, Bax, SMAC, FAS). The expression of inflammatory factors (IL6, TNF-alpha, CXCL1, CXCL2) showed a more pronounced increase with upregulated Tsc22d3 expression in Morphine tolerant+Tsc22d3_OE. CONCLUSIONS Tsc22d3 is highly expressed in brain tissue of morphine-tolerant mice, activating ferroptosis pathway, enhancing apoptosis, promoting inflammatory responses in brain cells.
Collapse
Affiliation(s)
- Yan Chen
- Department of Anesthesiology, Children’s Hospital of Hebei Province, Shijiazhuang 050071, Hebei, P.R. China
| | - Shan Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei, P.R. China
| | - Fenghui Guo
- Department of Anesthesiology, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, P.R. China
| |
Collapse
|
11
|
Han S, Gao J, Wang Z, Xiao Y, Ge Y, Liang Y, Gao J. Genetically supported causality between gut microbiota, immune cells and morphine tolerance: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1343763. [PMID: 38389539 PMCID: PMC10882271 DOI: 10.3389/fmicb.2024.1343763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Background Previous researches have suggested a significant connection between the gut microbiota/immune cells and morphine tolerance (MT), but there is still uncertainty regarding their causal relationship. Hence, our objective is to inverstigate this causal association and reveal the impact of gut microbiota/immune cells on the risk of developing MT using a two-sample Mendelian randomization (MR) study. Methods We conducted a comprehensive analysis using genome-wide association study (GWAS) summary statistics for gut microbiota, immune cells, and MT. The main approach employed was the inverse variance-weighted (IVW) method in MR. To assess horizontal pleiotropy and remove outlier single-nucleotide polymorphisms (SNPs), we utilized the Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) technique as well as MR-Egger regression. Heterogeneity detection was performed using Cochran's Q-test. Additionally, leave-one-out analysis was carried out to determine if any single SNP drove the causal association signals. Finally, we conducted a reverse MR to evaluate the potential of reverse causation. Results We discovered that 6 gut microbial taxa and 16 immune cells were causally related to MT (p < 0.05). Among them, 2 bacterial features and 9 immunophenotypes retained a strong causal relationship with lower risk of MT: genus. Lachnospiraceae NK4A136group (OR: 0.962, 95% CI: 0.940-0.987, p = 0.030), genus. RuminococcaceaeUCG011 (OR: 0.960, 95% CI: 0.946-0.976, p = 0.003), BAFF-R on B cell (OR: 0.972, 95% CI: 0.947-0.998, p = 0.013). Furthermore, 4 bacterial features and 7 immunophenotypes were identified to be significantly associated with MT risk: genus. Flavonifractor (OR: 1.044, 95% CI: 1.017-1.069, p = 0.029), genus. Prevotella9 (OR: 1.054, 95% CI: 1.020-1.090, p = 0.037), B cell % CD3-lymphocyte (OR: 1.976, 95% CI: 1.027-1.129, p = 0.026). The Cochrane's Q test revealed no heterogeneity (p > 0.05). Furthermore, the MR-Egger and MR-PRESSO analyses reveal no instances of horizontal pleiotropy (p > 0.05). Besides, leave-one-out analysis confirmed the robustness of MR results. After adding BMI to the multivariate MR analysis, the gut microbial taxa and immune cells exposure-outcome effect were attenuated. Conclusion Our research confirm the potential link between gut microbiota and immune cells with MT, shedding light on the mechanism by which gut microbiota and immune cells may contribute to MT. These findings lay the groundwork for future investigations into targeted prevention strategies.
Collapse
Affiliation(s)
- Shuai Han
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Jiapei Gao
- Yangzhou University Medical College, Yangzhou, China
| | - Zi Wang
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Yinggang Xiao
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Yali Ge
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| | - Yongxin Liang
- Department of Anesthesiology, Women’s and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Ju Gao
- Department of Anesthesiology, Northern Jiangsu People’s Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
- Yangzhou University Medical College, Yangzhou, China
| |
Collapse
|
12
|
Shao L, Hu F, Xu R, Nie H, Zhang H, Zhang P. METTL14 Regulates the m6A Modification of TRAF6 to Suppress Mitochondrial Dysfunction and Ferroptosis in Dopaminergic Neurons via the cGAS-STING Pathway. Curr Mol Med 2024; 24:1518-1528. [PMID: 37881068 DOI: 10.2174/0115665240263859231018110107] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
OBJECTIVES The degeneration of dopaminergic (DA) neurons has emerged as a crucial pathological characteristic in Parkinson's disease (PD). To enrich the related knowledge, we aimed to explore the impact of the METTL14-TRAF6-cGASSTING axis in mitochondrial dysfunction and ferroptosis underlying DA neuron degeneration. METHODS 1-methyl-4-phenylpyridinium ion (MPP+) was used to treat DA neuron MN9D to develop the PD cell models. Afterward, a cell counting kit, flow cytometer, DCFH-DA fluorescent probe, and Dipyrromethene Boron Difluoride staining were utilized to measure the cell viability, iron concentration, ROS level, and lipid peroxidation, respectively. Meanwhile, the mitochondrial ultrastructure, the activity of mitochondrial respiratory chain complexes, and levels of malondialdehyde and glutathione were monitored. In addition, reverse transcription-quantitative polymerase chain reaction and western blot assays were adopted to measure the expression of related genes. cGAS ubiquitylation and TRAF6 messenger RNA (mRNA) N6-methyladenosine (m6A) levels, the linkages among METTL14, TRAF6, and the cGAS-STING pathway were also evaluated. RESULTS METTL14 expression was low, and TRAF6 expression was high after MPP+ treatment. In MPP+-treated MN9D cells, METTL14 overexpression reduced ferroptosis, ROS generation, mitochondrial injury, and oxidative stress (OS) and enhanced mitochondrial membrane potentials. TRAF6 overexpression had promoting impacts on mitochondrial dysfunction and ferroptosis in MPP+-treated MN9D cells, which was reversed by further overexpression of METTL14. Mechanistically, METTL14 facilitated the m6A methylation of TRAF6 mRNA to down-regulate TRAF6 expression, thus inactivating the cGAS-STING pathway. CONCLUSION METTL14 down-regulated TRAF6 expression through TRAF6 m6A methylation to inactivate the cGAS-STING pathway, thereby relieving mitochondrial dysfunction and ferroptosis in DA neurons.
Collapse
Affiliation(s)
- Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Fan Hu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Renxu Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Hongbing Nie
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Hong Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, Jiangxi, China
| |
Collapse
|
13
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
14
|
Wu L, Tang H. The role of N6-methyladenosine modification in rodent models of neuropathic pain: from the mechanism to therapeutic potential. Biomed Pharmacother 2023; 166:115398. [PMID: 37647691 DOI: 10.1016/j.biopha.2023.115398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
Neuropathic pain (NP) is a common chronic pain condition resulted from lesions or diseases of somatosensory nervous system, but the pathogenesis remains unclear. A growing body of evidence supports the relationship between pathogenesis and N6-methyladenosine (m6A) modifications of RNA. However, studies on the role of m6A modifications in NP are still at an early stage. Elucidating different etiologies is important for understanding the specific pathogenesis of NP. This article provides a comprehensive review on the role of m6A methylation modifications including methyltransferases ("writers"), demethylases ("erasers"), and m6A binding proteins ("readers") in NP models. Further analysis of the pathogenic mechanism relationship between m6A and NP provided novel theoretical and practical significance for clinical treatment of NP.
Collapse
Affiliation(s)
- Liping Wu
- Guangxi University of Traditional Chinese Medicine, Nanning, China; The First Clinical Medical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Hongliang Tang
- Guangxi Traditional Chinese Medicine University Affiliated Fangchenggang Hospital.
| |
Collapse
|
15
|
Li JZ, Zhou SM, Yuan WB, Chen HQ, Zeng Y, Fan J, Zhang Z, Wang N, Cao J, Liu WB. RNA binding protein YTHDF1 mediates bisphenol S-induced Leydig cell damage by regulating the mitochondrial pathway of BCL2 and the expression of CDK2-CyclinE1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121144. [PMID: 36702435 DOI: 10.1016/j.envpol.2023.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol S (BPS) causes reproductive adverse effects on humans and animals. However, the detailed mechanism is still unclear. This research aimed to clarify the role of RNA binding protein YTHDF1 in Leydig cell damage induced by BPS. The mouse TM3 Leydig cells were exposed to BPS of 0, 20, 40, and 80 μmol/L for 72 h. Results showed that TM3 Leydig cells apoptosis rate markedly increased in BPS exposure group. Meanwhile, the apoptosis-related molecule BCL2 protein level decreased significantly, and Caspase9, Caspase3, and BAX increased significantly. Moreover, the cell cycle was blocked in the G1/S phase, CDK2 and CyclinE1 were considerably down-regulated in BPS exposure groups, and the protein level of RNA binding protein YTHDF1 decreased sharply. Furthermore, after overexpression of YTHDF1, the cell viability significantly increased, and the apoptosis rate significantly decreased in TM3 Leydig cells. In the meantime, BCL2, CDK2, and CyclinE1 were significantly up-regulated, and BAX, Caspase9, and Caspase3 were significantly down-regulated. Conversely, interference with YTHDF1 decreased cell proliferation and promoted apoptosis. Importantly, overexpression of YTHDF1 alleviated the cell viability decrease induced by BPS, and interference with YTHDF1 exacerbated the situation. RIP assays showed that the binding of YTHDF1 to CDK2, CyclinE1, and BCL2 significantly increased after overexpressing YTHDF1. Collectively, our study suggested that YTHDF1 plays an essential role in BPS-induced TM3 Leydig cell damage by regulating CDK2-CyclinE1 and BCL2 mitochondrial pathway at the translational level.
Collapse
Affiliation(s)
- Jing-Zhi Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Meng Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Fan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhe Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|