1
|
Jiang G, Zou Y, Zhao D, Yu J. Optimising vaccine immunogenicity in ageing populations: key strategies. THE LANCET. INFECTIOUS DISEASES 2025; 25:e23-e33. [PMID: 39326424 DOI: 10.1016/s1473-3099(24)00497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 09/28/2024]
Abstract
Vaccination has been shown to be the most effective means of preventing infectious diseases, although older people commonly have a suboptimal immune response to vaccines and thus impaired protection against subsequent adverse outcomes. This Review provides an overview of the existing mechanistic insights into compromised vaccine response for respiratory infectious diseases in older people, defined as aged 65 years and older, including immunosenescence, epigenetic regulation, trained immunity, and gut microbiota. We further summarise the latest proven or potential strategies to strengthen weakened immunogenicity. Insights from these analyses will be conducive to the development of the next generation of vaccines.
Collapse
Affiliation(s)
- Guangzhen Jiang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yushu Zou
- Department of Biomedical Informatics, School of Basic Medical Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences and State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jingyou Yu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| |
Collapse
|
2
|
Brune Z, Lu A, Moss M, Brune L, Huang A, Matta B, Barnes BJ. IRF5 mediates adaptive immunity via altered glutamine metabolism, mTORC1 signaling and post-transcriptional regulation following T cell receptor activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609422. [PMID: 39253451 PMCID: PMC11382993 DOI: 10.1101/2024.08.26.609422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Although dynamic alterations in transcriptional, translational, and metabolic programs have been described in T cells, the factors and pathways guiding these molecular shifts are poorly understood, with recent studies revealing a disassociation between transcriptional responses and protein expression following T cell receptor (TCR) stimulation. Previous studies identified interferon regulatory factor 5 (IRF5) in the transcriptional regulation of cytokines, chemotactic molecules and T effector transcription factors following TCR signaling. In this study, we identified T cell intrinsic IRF5 regulation of mTORC1 activity as a key modulator of CD40L protein expression. We further demonstrated a global shift in T cell metabolism, with alterations in glutamine metabolism accompanied by shifts in T cell populations at the single cell level due to loss of Irf5. T cell conditional Irf5 knockout mice in a murine model of experimental autoimmune encephalomyelitis (EAE) demonstrated protection from clinical disease with conserved defects in mTORC1 activity and glutamine regulation. Together, these findings expand our mechanistic understanding of IRF5 as an intrinsic regulator of T effector function(s) and support the therapeutic targeting of IRF5 in multiple sclerosis.
Collapse
Affiliation(s)
- Zarina Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Ailing Lu
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Matthew Moss
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Leianna Brune
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Amanda Huang
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Bharati Matta
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Betsy J Barnes
- Center of Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
3
|
Mkhikian H, Hayama KL, Khachikyan K, Li C, Zhou RW, Pawling J, Klaus S, Tran PQN, Ly KM, Gong AD, Saryan H, Hai JL, Grigoryan D, Lee PL, Newton BL, Raffatellu M, Dennis JW, Demetriou M. Age-associated impairment of T cell immunity is linked to sex-dimorphic elevation of N-glycan branching. NATURE AGING 2022; 2:231-242. [PMID: 35528547 PMCID: PMC9075523 DOI: 10.1038/s43587-022-00187-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022]
Abstract
Impaired T cell immunity with aging increases mortality from infectious disease. The branching of Asparagine-linked glycans is a critical negative regulator of T cell immunity. Here we show that branching increases with age in females more than males, in naïve more than memory T cells, and in CD4+ more than CD8+ T cells. Female sex hormones and thymic output of naïve T cells (TN) decrease with age, however neither thymectomy nor ovariectomy altered branching. Interleukin-7 (IL-7) signaling was increased in old female more than male mouse TN cells, and triggered increased branching. N-acetylglucosamine, a rate-limiting metabolite for branching, increased with age in humans and synergized with IL-7 to raise branching. Reversing elevated branching rejuvenated T cell function and reduced severity of Salmonella infection in old female mice. These data suggest sex-dimorphic antagonistic pleiotropy, where IL-7 initially benefits immunity through TN maintenance but inhibits TN function by raising branching synergistically with age-dependent increases in N-acetylglucosamine.
Collapse
Affiliation(s)
- Haik Mkhikian
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Ken L Hayama
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Khachik Khachikyan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Carey Li
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Raymond W Zhou
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Suzi Klaus
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Phuong Q N Tran
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Kim M Ly
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Andrew D Gong
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Hayk Saryan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Jasper L Hai
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - David Grigoryan
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Philip L Lee
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Barbara L Newton
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Mucosal Immunology, Allergy, and Vaccines, Chiba University-UC San Diego, La Jolla, CA, USA
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Demetriou
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Haga M, Okada M. Systems approaches to investigate the role of NF-κB signaling in aging. Biochem J 2022; 479:161-183. [PMID: 35098992 PMCID: PMC8883486 DOI: 10.1042/bcj20210547] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The nuclear factor-κB (NF-κB) signaling pathway is one of the most well-studied pathways related to inflammation, and its involvement in aging has attracted considerable attention. As aging is a complex phenomenon and is the result of a multi-step process, the involvement of the NF-κB pathway in aging remains unclear. To elucidate the role of NF-κB in the regulation of aging, different systems biology approaches have been employed. A multi-omics data-driven approach can be used to interpret and clarify unknown mechanisms but cannot generate mechanistic regulatory structures alone. In contrast, combining this approach with a mathematical modeling approach can identify the mechanistics of the phenomena of interest. The development of single-cell technologies has also helped clarify the heterogeneity of the NF-κB response and underlying mechanisms. Here, we review advances in the understanding of the regulation of aging by NF-κB by focusing on omics approaches, single-cell analysis, and mathematical modeling of the NF-κB network.
Collapse
Affiliation(s)
- Masatoshi Haga
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical Co., Ltd., Ikuno-ku, Osaka 544-8666, Japan
| | - Mariko Okada
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
5
|
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Grechko AV, Orekhov AN. Role of the mtDNA Mutations and Mitophagy in Inflammaging. Int J Mol Sci 2022; 23:ijms23031323. [PMID: 35163247 PMCID: PMC8836173 DOI: 10.3390/ijms23031323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Ageing is an unavoidable multi-factorial process, characterised by a gradual decrease in physiological functionality and increasing vulnerability of the organism to environmental factors and pathogens, ending, eventually, in death. One of the most elaborated ageing theories implies a direct connection between ROS-mediated mtDNA damage and mutations. In this review, we focus on the role of mitochondrial metabolism, mitochondria generated ROS, mitochondrial dynamics and mitophagy in normal ageing and pathological conditions, such as inflammation. Also, a chronic form of inflammation, which could change the long-term status of the immune system in an age-dependent way, is discussed. Finally, the role of inflammaging in the most common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, is also discussed.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alexander D. Zhuravlev
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.)
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
6
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
7
|
Martos SN, Campbell MR, Lozoya OA, Wang X, Bennett BD, Thompson IJB, Wan M, Pittman GS, Bell DA. Single-cell analyses identify dysfunctional CD16 + CD8 T cells in smokers. CELL REPORTS MEDICINE 2020; 1. [PMID: 33163982 PMCID: PMC7644053 DOI: 10.1016/j.xcrm.2020.100054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tobacco smoke exposure contributes to the global burden of communicable and chronic diseases. To identify the immune cells affected by smoking, we use single-cell RNA sequencing on peripheral blood from smokers and nonsmokers. Transcriptomes reveal a subpopulation of FCGR3A (CD16)-expressing natural killer (NK)-like CD8 T lymphocytes that increase in smokers. Mass cytometry confirms elevated CD16+ CD8 T cells in smokers. Inferred as highly differentiated by pseudotime analysis, NK-like CD8 T cells express markers that are characteristic of effector memory re-expressing CD45RA T (TEMRA) cells. Indicative of immune aging, smokers’ CD8 T cells are biased toward differentiated cells, and smokers have fewer naive cells than nonsmokers. DNA methylation-based models show that smoking dose is associated with accelerated aging and decreased telomere length, a biomarker of T cell senescence. Immune aging accompanies T cell senescence, which can ultimately lead to impaired immune function. This suggests a role for smoking-induced, senescence-associated immune dysregulation in smoking-mediated pathologies. Smoking shifts the composition of CD8 T cells from naive to differentiated states NK-like CD16+ CD8 TEMRA cells are elevated in smokers and express GZMB and PRF1 DNA methylation links smoking dose with age acceleration and shortened telomeres CD8 T, CD4 T, NKT, NK, and monocytes express senescence-linked genes in smokers
Collapse
Affiliation(s)
- Suzanne N Martos
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709.,These authors contributed equally
| | - Michelle R Campbell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709.,These authors contributed equally
| | - Oswaldo A Lozoya
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Isabel J B Thompson
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Ma Wan
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Gary S Pittman
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Douglas A Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| |
Collapse
|
8
|
Dillon SM, Liu J, Purba CM, Christians AJ, Kibbie JJ, Castleman MJ, McCarter MD, Wilson CC. Age-related alterations in human gut CD4 T cell phenotype, T helper cell frequencies, and functional responses to enteric bacteria. J Leukoc Biol 2019; 107:119-132. [PMID: 31573727 DOI: 10.1002/jlb.5a0919-177rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Intestinal lamina propria (LP) CD4 T cells play critical roles in maintaining intestinal homeostasis and in immune responses to enteric microbes, yet little is known regarding whether they contribute to age-associated intestinal immune dysfunction. In this study, we evaluated the direct ex vivo frequency, activation/inhibitory phenotype, death profiles, and in vitro functional responses of human jejunum LP CD4 T cells, including Th1, Th17, and Th22 subsets isolated from younger (<45 years) and older (>65years) persons. Expression of the co-inhibitory molecule CTLA-4 was significantly lower in older CD4 T cells, whereas expression of HLA-DR, CD38, CD57, and PD-1 were not significantly different between groups. Total CD4 T cell frequencies were similar between age groups, but lower frequencies and numbers of Th17 cells were observed directly ex vivo in older samples. Older Th17 and Th1 cells proliferated to a lesser degree following in vitro exposure to bacterial antigens vs. their younger counterparts. Levels of spontaneous cell death were increased in older CD4 T cells; however, cellular death profiles following activation did not differ based on age. Thus, small intestinal CD4 T cells from older persons have altered phenotypic and functional profiles including reduced expression of a co-inhibitory molecule, increased spontaneous cell death, and both reduced frequencies and altered functional responses of specific Th cell subsets. These changes may contribute to altered intestinal homeostasis and loss of protective gut immunity with aging.
Collapse
Affiliation(s)
- Stephanie M Dillon
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jay Liu
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christine M Purba
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Allison J Christians
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jon J Kibbie
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moriah J Castleman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cara C Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Niu F, Wang T, Li J, Yan M, Li D, Li B, Jin T. The impact of genetic variants in IL1R2 on cervical cancer risk among Uygur females from China: A case-control study. Mol Genet Genomic Med 2018; 7:e00516. [PMID: 30460760 PMCID: PMC6382450 DOI: 10.1002/mgg3.516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 01/30/2023] Open
Abstract
Background Disordered inflammation and immune response is an acknowledged risk factor for cervical cancer development. Interleukin‐1 receptor type 2 (IL1R2) is a decoy receptor for IL‐1 cytokines and involved in host inflammatory and immune progression which could lead to the lesion and neoplasia of cervix. In this study, we aimed to evaluate the relationships between IL1R2 polymorphisms and cervical cancer risk in Uygur females from China. Methods In this case–control study, genotypes of six selected variants (rs11674595, rs4851527, rs719250, rs3218896, rs3218977, and rs2072472) distributed in IL1R2 were detected among 247 cervical cancer patients and 286 healthy controls with the usage of an Agena MassARRY method. Furthermore, Genetic models and haplotype analyses were conducted to estimate the associations of IL1R2 polymorphisms with cervical cancer risk. Results After statistical analyses, rs719250 (odd ratio [OR] = 1.436, 95% confidence interval [95% CI] = 1.079–1.911, p = 0.013) and rs3218896 (OR = 1.552, 95% CI = 1.080–2.229, p = 0.017) showed obvious evidence in correlation to cervical cancer susceptibility owing to the surviving significant differences between cases and controls in allele model. Genetic model analyses also revealed significant associations of rs719250 and rs3218896 with cervical cancer risk in the codominant model, the dominant model and the log‐additive model even after adjustment for age (p < 0.05). Moreover, haplotype “T/A” of rs11674595/rs4851527 (adjusted OR = 0.73, 95% CI = 0.54–0.98, p = 0.037) and “T/C” of rs719250/rs3218896 (adjusted OR = 1.61, 95% CI = 1.10–2.36, p = 0.015) exhibited protective and risky effects for Uygur individuals on cervical cancer development, respectively. Conclusion Our data first shed the new light on the associations of IL1R2 polymorphisms with cervical cancer susceptibility among Uygur females. These results are supposed to facilitate the tumorigenesis genetic research among Chinese minorities.
Collapse
Affiliation(s)
- Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Tianchang Wang
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital Affiliated to Medical College, Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Mengdan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Dianzhen Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, China.,Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| |
Collapse
|
10
|
Margineanu MB, Mahmood H, Fiumelli H, Magistretti PJ. L-Lactate Regulates the Expression of Synaptic Plasticity and Neuroprotection Genes in Cortical Neurons: A Transcriptome Analysis. Front Mol Neurosci 2018; 11:375. [PMID: 30364173 PMCID: PMC6191511 DOI: 10.3389/fnmol.2018.00375] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/21/2018] [Indexed: 12/31/2022] Open
Abstract
Lactate, a product of aerobic glycolysis in astrocytes, is required for memory formation and consolidation, and has recently emerged as a signaling molecule for neurons and various cell types in peripheral tissues. In particular lactate stimulates mRNA expression of a few plasticity-related genes. Here, we describe a RNA-seq study that unravels genome-wide transcriptomic responses to this energy metabolite in cortical neurons. Our results show that mRNA expression of 20 immediate-early genes involved in the MAPK signaling pathway and in synaptic plasticity were increased by more than twofold following 1 h of lactate stimulation. This effect was dependent on NMDA receptor (NMDAR) activity since it was prevented by pre-treatment with MK-801. Comparison with published datasets showed that a significant proportion of genes modulated by lactate were similarly regulated by a stimulation protocol activating specifically synaptic NMDARs known to result in upregulation of pro-survival and downregulation of pro-death genes. Remarkably, transcriptional responses to lactate were reproduced by NADH (for 74 of the 113 genes, FDR < 0.05), suggesting a redox-dependent mechanism of action. Longer-term gene expression changes observed after 6 h of lactate treatment affected genes involved in regulating neuronal excitability and genes coding for proteins localized at synapses. Gene set enrichment analyses performed with ranked lists of expressed genes revealed effects on molecular functions involved in epigenetic modulation, and on processes relevant to sleep physiology and behavioral phenotypes such as anxiety and hyperactivity. Overall, these results strengthen the notion that lactate effectively regulates activity-dependent and synaptic genes, and highlight new signaling effects of lactate in plasticity and neuroprotection.
Collapse
Affiliation(s)
- Michael B Margineanu
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hanan Mahmood
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hubert Fiumelli
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Pierre J Magistretti
- Laboratory for Cellular Imaging and Energetics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|