1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2025; 31:2416847. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Abraham DJ, Black CM, Denton CP, Distler JHW, Domsic R, Feghali-Bostwick C, Gourh P, Hinchcliff M, Kolling F, Kuwana M, Lafyatis R, Landegren U, Mahoney JM, Martin J, Matucci-Cerinic M, McMahan ZH, Mora AL, Mouthon L, Rabinovitch M, Rojas M, Rubin K, Trojanowska M, Varga J, Whitfield ML, Gabrielli A, Krieg T. An international perspective on the future of systemic sclerosis research. Nat Rev Rheumatol 2025; 21:174-187. [PMID: 39953141 DOI: 10.1038/s41584-024-01217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 02/17/2025]
Abstract
Systemic sclerosis (SSc) remains a challenging and enigmatic systemic autoimmune disease, owing to its complex pathogenesis, clinical and molecular heterogeneity, and the lack of effective disease-modifying treatments. Despite a century of research in SSc, the interconnections among microvascular dysfunction, autoimmune phenomena and tissue fibrosis in SSc remain unclear. The absence of validated biomarkers and reliable animal models complicates diagnosis and treatment, contributing to high morbidity and mortality. Advances in the past 5 years, such as single-cell RNA sequencing, next-generation sequencing, spatial biology, transcriptomics, genomics, proteomics, metabolomics, microbiome profiling and artificial intelligence, offer new avenues for identifying the early pathogenetic events that, once treated, could change the clinical history of SSc. Collaborative global efforts to integrate these approaches are crucial to developing a comprehensive, mechanistic understanding and enabling personalized therapies. Challenges include disease classification, clinical heterogeneity and the establishment of robust biomarkers for disease activity and progression. Innovative clinical trial designs and patient-centred approaches are essential for developing effective treatments. Emerging therapies, including cell-based and fibroblast-targeting treatments, show promise. Global cooperation, standardized protocols and interdisciplinary research are vital for advancing SSc research and improving patient outcomes. The integration of advanced research techniques holds the potential for important breakthroughs in the diagnosis, treatment and care of individuals with SSc.
Collapse
Affiliation(s)
- David J Abraham
- Department of Inflammation and Rare Diseases, UCL Centre for Rheumatology, UCL Division of Medicine, Royal Free Hospital Campus, London, UK.
| | - Carol M Black
- Department of Inflammation and Rare Diseases, UCL Centre for Rheumatology, UCL Division of Medicine, Royal Free Hospital Campus, London, UK
| | - Christopher P Denton
- Department of Inflammation and Rare Diseases, UCL Centre for Rheumatology, UCL Division of Medicine, Royal Free Hospital Campus, London, UK
| | - Jörg H W Distler
- Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany
| | - Robyn Domsic
- Division of Rheumatology, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Pravitt Gourh
- Scleroderma Genomics and Health Disparities Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Monique Hinchcliff
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Fred Kolling
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Masataka Kuwana
- Department of Allergy and Rheumatology. Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology. University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Research programme: Molecular Tools and Functional Genomics, Uppsala University, Uppsala, Sweden
| | | | - Javier Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases and Inflammation, fibrosis and aging Initiative, IRCCS Ospedle San Raffaele and Vita Salute University San Raffaele, Milan, Italy
| | - Zsuzsanna H McMahan
- Department of Internal Medicine, Division of Rheumatology, UTHealth Houston, Houston, TX, USA
| | - Ana L Mora
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Luc Mouthon
- Department of Internal Medicine, Reference Center for Rare Systemic Autoimmune and Auto-Inflammatory diseases in Île-de-France, East and West, Cochin Hospital, Public Assistance-Hospitals of Paris, Paris-Centre, Paris Cité University, Paris, France
| | - Marlene Rabinovitch
- Department of Paediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering (BASE) Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Davis Heart and Lung research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristofer Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Maria Trojanowska
- Boston University, Department of Medicine, Arthritis & Autoimmune Diseases Research Center, Boston, MA, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Armando Gabrielli
- Hiller Research Center, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University, Düsseldorf, Germany.
- Foundation of Molecular Medicine and Cellular Therapy Polytechnic University of Marche, Via Tronto, Ancona, Italy.
| | - Thomas Krieg
- Translational Matrix Biology, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC) University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
O’Reilly S. Senescence in diffuse systemic sclerosis is elevated and may play a role in fibrosis. Clin Exp Immunol 2025; 219:uxad077. [PMID: 37458231 PMCID: PMC11771193 DOI: 10.1093/cei/uxad077] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 07/15/2023] [Indexed: 01/28/2025] Open
|
4
|
Janssen LM, Lemaire F, Sanchez-Calero CL, Huaux F, Ronsmans S, Hoet PH, Ghosh M. External and internal exposome as triggers of biological signalling in systemic sclerosis - A narrative synthesis. J Autoimmun 2025; 150:103342. [PMID: 39643962 DOI: 10.1016/j.jaut.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune chronic connective tissue disorder with a complex pathogenesis and a strong gene-environment interaction. Despite the low prevalence of SSc, with around 100-250 cases per million, the morbidity and mortality are high and disproportionately affecting women. In this context, we review the influence of the external and internal exposome on the "immunome" in SSc. While several studies have addressed aspects of exposure-induced autoimmunity in general, very few have focused on SSc-specific phenotypes. In epidemiological studies, targeted characterization of the external exposome component in relation to SSc has often been limited to a single exposure. Despite the selective characterization of exposure, such studies play an important role in providing evidence that can be used towards reduction of exposure of modifiable factors, and can lead to proper management and prevention of SSc. Additionally, there is an effort towards integration of external exposome data with health data (health records, medical imaging, diagnostic results, etc.), to significantly improve our understanding of the environmental and occupational causes of SSc. A limited number of studies have identified biological processes related to the vascular homeostasis, fibrotic processes and the immune system. The key findings of the current review show advances in our understanding of the SSc disease phenotype and associated biomarkers in relation to specific pathophysiological features, however most often such studies are not supplemented with external exposome data.
Collapse
Affiliation(s)
- Lisa Mf Janssen
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Frauke Lemaire
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | | | - François Huaux
- Louvain Center for Toxicology and Applied Pharmacology, UCLouvain, Brussels, Belgium
| | - Steven Ronsmans
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Peter Hm Hoet
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Manosij Ghosh
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Yang MM, Boin F, Wolters PJ. Molecular underpinnings of aging contributing to systemic sclerosis pathogenesis. Curr Opin Rheumatol 2025; 37:86-92. [PMID: 39600291 DOI: 10.1097/bor.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by diffuse organ fibrosis and vasculopathy. Aberrant aging has been increasingly implicated in fibrotic diseases of the lung and other organs. The aim of this review is to summarize the established mechanisms of aging and how they may contribute to the pathogenesis of SSc. RECENT FINDINGS Shortened telomeres are present in SSc patients with interstitial lung disease (SSc-ILD) and associate with disease severity and mortality. Although the cause of telomere length shortening is unknown, immune mechanisms may be at play. Senescent cells accumulate in affected organs of SSc patients and contribute to a pathologic cellular phenotype that can be profibrotic and inflammatory. In addition to identifying patients with a more severe phenotype, biomarkers of aging may help identify patients who have worse outcomes with immunosuppression. SUMMARY Aging mechanisms, including telomere dysfunction and cellular senescence, likely contribute to the progressive fibrosis, vasculopathy, and immune dysfunction of SSc. Further work is needed to understand whether aberrant aging is an initiator or perpetuator of disease, and whether this is cell or organ specific. A better understanding of the role aging mechanisms play in SSc will contribute to our understanding of the underlying pathobiology and may also influence management of patients exhibiting the aging phenotype.
Collapse
Affiliation(s)
- Monica M Yang
- Division of Rheumatology, Department of Medicine, University of California, San Francisco
| | - Francesco Boin
- Division of Rheumatology, Kao Autoimmunity Institute, Cedar Sinai Medical Center, Los Angeles
| | - Paul J Wolters
- Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
6
|
O'Reilly S, Tsou PS, Varga J. Senescence and tissue fibrosis: opportunities for therapeutic targeting. Trends Mol Med 2024; 30:1113-1125. [PMID: 38890028 DOI: 10.1016/j.molmed.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Cellular senescence is a key hallmark of aging. It has now emerged as a key mediator in normal tissue turnover and is associated with a variety of age-related diseases, including organ-specific fibrosis and systemic sclerosis (SSc). This review discusses the recent evidence of the role of senescence in tissue fibrosis, with an emphasis on SSc, a systemic autoimmune rheumatic disease. We discuss the physiological role of these cells, their role in fibrosis, and that targeting these cells specifically could be a new therapeutic avenue in fibrotic disease. We argue that targeting senescent cells, with senolytics or senomorphs, is a viable therapeutic target in fibrotic diseases which remain largely intractable.
Collapse
Affiliation(s)
- Steven O'Reilly
- Bioscience Department, Durham University, South Road, Durham, UK.
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Vijayraghavan S, Blouin T, McCollum J, Porcher L, Virard F, Zavadil J, Feghali-Bostwick C, Saini N. Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis. Nat Commun 2024; 15:8889. [PMID: 39406724 PMCID: PMC11480385 DOI: 10.1038/s41467-024-53332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis is a connective tissue disorder characterized by excessive fibrosis that primarily affects women, and can present as a multisystem pathology. Roughly 4-22% of patients with systemic sclerosis develop cancer, which drastically worsens prognosis. However, the mechanisms underlying systemic sclerosis initiation, propagation, and cancer development are poorly understood. We hypothesize that the inflammation and immune response associated with systemic sclerosis can trigger DNA damage, leading to elevated somatic mutagenesis, a hallmark of pre-cancerous tissues. To test our hypothesis, we culture clonal lineages of fibroblasts from the lung tissues of controls and systemic sclerosis patients and compare their mutation burdens and spectra. We find an overall increase in all major mutation types in systemic sclerosis samples compared to control lung samples, from small-scale events such as single base substitutions and insertions/deletions, to chromosome-level changes, including copy-number changes and structural variants. In the genomes of patients with systemic sclerosis, we find evidence of somatic hypermutation or kategis (typically only seen in cancer genomes), we identify mutation signatures closely resembling the error-prone translesion polymerase Polη activity, and observe an activation-induced deaminase-like mutation signature, which overlaps with genomic regions displaying kataegis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Blouin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - James McCollum
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - François Virard
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer WHO, Epigenomics and Mechanisms Branch, Lyon, France
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
8
|
Han F, Riaz F, Pu J, Gao R, Yang L, Wang Y, Song J, Liang Y, Wu Z, Li C, Tang J, Xu X, Wang X. Connecting the Dots: Telomere Shortening and Rheumatic Diseases. Biomolecules 2024; 14:1261. [PMID: 39456194 PMCID: PMC11506250 DOI: 10.3390/biom14101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Telomeres, repetitive sequences located at the extremities of chromosomes, play a pivotal role in sustaining chromosomal stability. Telomerase is a complex enzyme that can elongate telomeres by appending telomeric repeats to chromosome ends and acts as a critical factor in telomere dynamics. The gradual shortening of telomeres over time is a hallmark of cellular senescence and cellular death. Notably, telomere shortening appears to result from the complex interplay of two primary mechanisms: telomere shelterin complexes and telomerase activity. The intricate interplay of genetic, environmental, and lifestyle influences can perturb telomere replication, incite oxidative stress damage, and modulate telomerase activity, collectively resulting in shifts in telomere length. This age-related process of telomere shortening plays a considerable role in various chronic inflammatory and oxidative stress conditions, including cancer, cardiovascular disease, and rheumatic disease. Existing evidence has shown that abnormal telomere shortening or telomerase activity abnormalities are present in the pathophysiological processes of most rheumatic diseases, including different disease stages and cell types. The impact of telomere shortening on rheumatic diseases is multifaceted. This review summarizes the current understanding of the link between telomere length and rheumatic diseases in clinical patients and examines probable telomere shortening in peripheral blood mononuclear cells and histiocytes. Therefore, understanding the intricate interaction between telomere shortening and various rheumatic diseases will help in designing personalized treatment and control measures for rheumatic disease.
Collapse
Affiliation(s)
- Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Farooq Riaz
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518000, China;
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Chunrui Li
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China;
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| |
Collapse
|
9
|
De Lorenzis E, Wasson CW, Del Galdo F. Alveolar epithelial-to-mesenchymal transition in scleroderma interstitial lung disease: Technical challenges, available evidence and therapeutic perspectives. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024; 9:7-15. [PMID: 38333528 PMCID: PMC10848925 DOI: 10.1177/23971983231181727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/27/2023] [Indexed: 02/10/2024]
Abstract
The alveolar epithelial-to-mesenchymal transition is the process of transformation of differentiated epithelial cells into mesenchymal-like cells through functional and morphological changes. A partial epithelial-to-mesenchymal transition process can indirectly contribute to lung fibrosis through a paracrine stimulation of the surrounding cells, while a finalized process could also directly enhance the pool of pulmonary fibroblasts and the extracellular matrix deposition. The direct demonstration of alveolar epithelial-to-mesenchymal transition in scleroderma-related interstitial lung disease is challenging due to technical pitfalls and the limited availability of lung tissue samples. Similarly, any inference on epithelial-to-mesenchymal transition occurrence driven from preclinical models should consider the limitations of cell cultures and animal models. Notwithstanding, while the occurrence or the relevance of this phenomenon in scleroderma-related interstitial lung disease have not been directly and conclusively demonstrated until now, pre-clinical and clinical evidence supports the potential role of epithelial-to-mesenchymal transition in the development and progression of lung fibrosis. Evidence consolidation on scleroderma-related interstitial lung disease epithelial-to-mesenchymal transition would pave the way for new therapeutic opportunities to prevent, slow or even reverse lung fibrosis, drawing lessons from current research lines in neoplastic epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
10
|
Jin S, Li K, Zong X, Eun S, Morimoto N, Guo S. Hallmarks of Skin Aging: Update. Aging Dis 2023; 14:2167-2176. [PMID: 37199583 PMCID: PMC10676801 DOI: 10.14336/ad.2023.0321] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/21/2023] [Indexed: 05/19/2023] Open
Abstract
Aging is defined as impaired physiological integrity, decreased function, increased susceptibility to external risk factors and various diseases. Skin, the largest organ in our body, may become more vulnerable to insult as time goes by and behave as aged skin. Here, we systemically reviewed three categories including seven hallmarks of skin aging. These hallmarks including genomic instability and telomere attrition, epigenetic alterations and loss of proteostasis, deregulated nutrient-sensing, mitochondrial damage and dysfunction, cellular senescence, stem cell exhaustion/dysregulation, and altered intercellular communication. These seven hallmarks can generally be divided into three categories including (i) causes of damages as primary hallmarks in skin aging; (ii) responses to damage as antagonistic hallmarks in skin aging; and (iii) culprits of the phenotype as integrative hallmarks in skin aging.
Collapse
Affiliation(s)
- Shifeng Jin
- Department of Plastic Surgery, the First Hospital of China Medical University, Liaoning, China.
| | - Kezhu Li
- Department of Plastic Surgery, the First Hospital of China Medical University, Liaoning, China.
| | - Xuanru Zong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Shandong, China.
| | - Seokchan Eun
- Department of Plastic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Naoki Morimoto
- Department of Plastic Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Shu Guo
- Department of Plastic Surgery, the First Hospital of China Medical University, Liaoning, China.
| |
Collapse
|
11
|
Rodriguez-Martin I, Villanueva-Martin G, Guillen-Del-Castillo A, Ortego-Centeno N, Callejas JL, Simeón-Aznar CP, Martin J, Acosta-Herrera M. Contribution of Telomere Length to Systemic Sclerosis Onset: A Mendelian Randomization Study. Int J Mol Sci 2023; 24:15589. [PMID: 37958573 PMCID: PMC10648506 DOI: 10.3390/ijms242115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Although previous studies have suggested a relationship between telomere shortening and systemic sclerosis (SSc), the association between these two traits remains poorly understood. The objective of this study was to assess the causal relationship between telomere length in leukocytes (LTL) and SSc using the two-sample Mendelian randomization approach, with the genome-wide association study data for both LTL and SSc. The results of inverse-variance weighted regression (OR = 0.716 [95% CI 0.528-0.970], p = 0.031) and the Mendelian randomization pleiotropy residual sum and outlier method (OR = 0.716 [95% CI 0.563-0.911], p = 0.035) indicate an association between telomere length and SSc. Specifically, longer genetically predicted LTL is associated with a reduced risk of SSc. Sensitivity tests highlight the significant roles of the variants rs10936599 and rs2736100 annotated to the TERC and TERT genes, respectively. Our findings suggest an influence of telomere length in leukocytes on the development of SSc.
Collapse
Affiliation(s)
| | | | | | - Norberto Ortego-Centeno
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - José L. Callejas
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, 18012 Granada, Spain
| | - Carmen P. Simeón-Aznar
- Department of Internal Medicine, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, 18016 Granada, Spain
| | - Marialbert Acosta-Herrera
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, 18016 Granada, Spain
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, 18012 Granada, Spain
| |
Collapse
|
12
|
Martín-López M, Carreira PE. The Impact of Progressive Pulmonary Fibrosis in Systemic Sclerosis-Associated Interstitial Lung Disease. J Clin Med 2023; 12:6680. [PMID: 37892818 PMCID: PMC10607647 DOI: 10.3390/jcm12206680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/08/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease characterized by immune dysregulation and progressive fibrosis, typically affecting the skin, with variable internal organ involvement. Interstitial lung disease (ILD), with a prevalence between 35 and 75%, is the leading cause of death in patients with SSc, indicating that all newly diagnosed patients should be screened for this complication. Some patients with SSc-ILD experience a progressive phenotype, which is characterized by worsening fibrosis on high-resolution computed tomography (HRCT), a decline in lung function, and premature mortality. To assess progression and guide therapeutic decisions, regular monitoring is essential and should include pulmonary function testing (PFT), symptom assessment, and repeat HRCT imaging when indicated. Multidisciplinary discussion allows a comprehensive evaluation of the available information and its consequences for management. There has been a shift in the approach to managing SSc-ILD, which includes the addition of targeted biologic and antifibrotic therapies to standard immunosuppressive therapy (particularly mycophenolate mofetil or cyclophosphamide), with autologous hematopoietic stem-cell transplantation and lung transplantation reserved for refractory cases.
Collapse
Affiliation(s)
- María Martín-López
- Department of Rheumatology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Patricia E. Carreira
- Department of Rheumatology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
13
|
Hayashi Y, Kimura S, Yano E, Yoshimoto S, Saeki A, Yasukochi A, Hatakeyama Y, Moriyama M, Nakamura S, Jimi E, Kawakubo-Yasukochi T. Id4 modulates salivary gland homeostasis and its expression is downregulated in IgG4-related disease via miR-486-5p. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119404. [PMID: 36535369 DOI: 10.1016/j.bbamcr.2022.119404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Salivary glands are physiologically orchestrated by the coordinated balance between cell differentiation, proliferation, apoptosis, and interactions between epithelial, mesenchymal endothelial, and neuronal cells, and they are frequent sites of manifestations of Sjögren's syndrome (SS) or IgG4-related disease (IgG4-RD). However, little is known about salivary gland homeostasis and its involvement in those diseases. Inhibitor of DNA binding/differentiation 4 (Id4) is an Id protein involved in the transcriptional control of many biological events, including differentiation. Studies of Id4-deficient mice revealed that Id4-deficient submandibular glands were smaller and exhibited accelerated differentiation, compared with those from wild-type littermates. In addition, dry mouth symptoms and Th17 expansion in splenocytes were also observed in the absence of Id4. Furthermore, Id4 levels in the salivary glands of patients with IgG4-RD, but not SS, were significantly decreased compared with those of healthy controls. miRNA-mRNA integrated analysis demonstrated that miR-486-5p was upregulated in IgG4-RD patients and that it might regulate Id4 in the lesion sites. Together, these results provide evidence for the inhibitory role of Id4 in salivary differentiation, and a critical association between Id4 downregulation and IgG4-RD.
Collapse
Affiliation(s)
- Yoshikazu Hayashi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Soi Kimura
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ena Yano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka 814-0193, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Ayaka Saeki
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Yasukochi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuji Hatakeyama
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Masafumi Moriyama
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomoyo Kawakubo-Yasukochi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
14
|
Retuerto M, Lledó A, Fernandez-Varas B, Guerrero-López R, Usategui A, Lalueza A, García-García R, Mancebo E, Paz-Artal E, Sastre L, Perona R, Pablos JL. Shorter telomere length is associated with COVID-19 hospitalization and with persistence of radiographic lung abnormalities. Immun Ageing 2022; 19:38. [PMID: 35996190 PMCID: PMC9394033 DOI: 10.1186/s12979-022-00294-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Age and comorbidity are the main determinants of COVID-19 outcome. Shorter leukocyte telomere length (TL), a hallmark of biological aging, has been associated with worse COVID-19 outcomes. We sought to determine TL in patients with severe COVID-19 requiring hospitalization to analyze whether clinical outcomes and post-COVID-19 manifestations are associated with shorter TL.
Results
We analyzed 251 patients with PCR-confirmed COVID-19, hospitalized in the first months of the pandemics. We determined TL in PBL at admission by quantitative-PCR (qPCR) analysis in patients. A healthy cohort from the same area with a similar age range (n = 169) was used to calculate TL Z-scores. After hospital discharge, 144 COVID-19 survivors were followed-up for persistent COVID-19 manifestations. A second TL determination was performed in a smaller group of 63 patients 1 year later and compared with baseline TL.
Hospitalized COVID-19 patients had a decreased baseline age-adjusted TL Z-score compared to the reference group. No differences in Z-scores were observed in patients with different COVID-19 outcomes, classified as WHO ordinal scores. In 144 patients, followed for a median of 8 months, post-COVID manifestations were not associated to differences in TL. Persistence of lung radiographic abnormalities was associated with shorter baseline TL. In patients with a second TL determination, further telomere shortening (TS) was observed in 35% and telomere lengthening in 49%. Patients with further TS had suffered a more severe disease.
Conclusion
Shorter TL is associated with COVID-19 hospitalization but not with hospital clinical outcomes nor with persistent post-COVID-19 manifestations. Delayed resolution of radiographic lung abnormalities was also associated with shorter TL.
Collapse
|