1
|
Biradar S, Agarwal Y, Das A, Shu ST, Samal J, Ho S, Kelly N, Mahesh D, Teredesai S, Castronova I, Mussina L, Mailliard RB, Smithgall TE, Bility MT. Nef defect attenuates HIV viremia and immune dysregulation in the bone marrow-liver-thymus-spleen (BLTS) humanized mouse model. Virology 2024; 598:110192. [PMID: 39106585 PMCID: PMC11458258 DOI: 10.1016/j.virol.2024.110192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
In vitro studies have shown that deletion of nef and deleterious mutation in the Nef dimerization interface attenuates HIV replication and associated pathogenesis. Humanized rodents with human immune cells and lymphoid tissues are robust in vivo models for investigating the interactions between HIV and the human immune system. Here, we demonstrate that nef deletion impairs HIV replication and HIV-induced immune dysregulation in the blood and human secondary lymphoid tissue (human spleen) in bone marrow-liver-thymus-spleen (BLTS) humanized mice. Furthermore, we also show that nef defects (via deleterious mutations in the dimerization interface) impair HIV replication and HIV-induced immune dysregulation in the blood and human spleen in BLTS-humanized mice. We demonstrate that the reduced replication of nef-deleted and nef-defective HIV is associated with robust antiviral innate immune response, and T helper 1 response. Our results support the proposition that Nef may be a therapeutic target for adjuvants in HIV cure strategies.
Collapse
Affiliation(s)
- Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Yash Agarwal
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Antu Das
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Sherry T Shu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jasmine Samal
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Sara Ho
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Nickolas Kelly
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Deepika Mahesh
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Shreya Teredesai
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Isabella Castronova
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - London Mussina
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Robbie B Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Moses T Bility
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA; Department of Microbiology, Howard University, Washington, DC, USA.
| |
Collapse
|
2
|
Karimian Shamsabadi M, Jia X. A fluorescence polarization assay for high-throughput screening of inhibitors against HIV-1 Nef-mediated CD4 downregulation. J Biol Chem 2024; 300:107528. [PMID: 38960038 PMCID: PMC11325777 DOI: 10.1016/j.jbc.2024.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Therapeutic inhibition of the viral protein Nef is an intriguing direction of antiretroviral drug discovery-it may revitalize immune mechanisms to target, and potentially clear, HIV-1-infected cells. Of the many cellular functions of Nef, the most conserved is the downregulation of surface CD4, which takes place through Nef hijacking the clathrin adaptor protein complex 2 (AP2)-dependent endocytosis. Our recent crystal structure has unraveled the molecular details of the CD4-Nef-AP2 interaction. Guided by the new structural knowledge, we have developed a fluorescence polarization-based assay for inhibitor screening against Nef's activity on CD4. In our assay, AP2 is included along with Nef to facilitate the proper formation of the CD4-binding pocket and a fluorescently labeled CD4 cytoplasmic tail binds competently to the Nef-AP2 complex generating the desired polarization signal. The optimized assay has a good signal-to-noise ratio, excellent tolerance of dimethylsulfoxide and detergent, and the ability to detect competitive binding at the targeted Nef pocket, making it suitable for high-throughput screening.
Collapse
Affiliation(s)
- Mohammad Karimian Shamsabadi
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA; The Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - Xiaofei Jia
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA; The Biomedical Engineering and Biotechnology Program, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA.
| |
Collapse
|
3
|
Kalita E, Panda M, Rao A, Prajapati VK. Exploring the role of secretory proteins in the human infectious diseases diagnosis and therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:231-269. [PMID: 36707203 DOI: 10.1016/bs.apcsb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secretory proteins are playing important role during the host-pathogen interaction to develop the infection or protection into the cell. Pathogens developing infectious disease to human being are taken up by host macrophages or number of immune cells, play an important role in physiological, developmental and immunological function. At the same time, infectious agents are also secreting various proteins to neutralize the resistance caused by host cells and also helping the pathogens to develop the infection. Secretory proteins (secretome) are only developed at the time of host-pathogen interaction, therefore they become very important to develop the targeted and potential therapeutic strategies. Pathogen specific secretory proteins released during interaction with host cell provide opportunity to develop point of care and rapid diagnostic kits. Proteins secreted by pathogens at the time of interaction with host cell have also been found as immunogenic in nature and numbers of vaccines have been developed to control the spread of human infectious diseases. This chapter highlights the importance of secretory proteins in the development of diagnostic and therapeutic strategies to fight against human infectious diseases.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
4
|
Hooy RM, Iwamoto Y, Tudorica DA, Ren X, Hurley JH. Self-assembly and structure of a clathrin-independent AP-1:Arf1 tubular membrane coat. SCIENCE ADVANCES 2022; 8:eadd3914. [PMID: 36269825 PMCID: PMC9586487 DOI: 10.1126/sciadv.add3914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 05/28/2023]
Abstract
The adaptor protein (AP) complexes not only form the inner layer of clathrin coats but also have clathrin-independent roles in membrane traffic whose mechanisms are unknown. HIV-1 Nef hijacks AP-1 to sequester major histocompatibility complex class I (MHC-I), evading immune detection. We found that AP-1:Arf1:Nef:MHC-I forms a coat on tubulated membranes without clathrin and determined its structure. The coat assembles via Arf1 dimer interfaces. AP-1-positive tubules are enriched in cells upon clathrin knockdown. Nef localizes preferentially to AP-1 tubules in cells, explaining how Nef sequesters MHC-I. Coat contact residues are conserved across Arf isoforms and the Arf-dependent AP complexes AP-1, AP-3, and AP-4. Thus, AP complexes can self-assemble with Arf1 into tubular coats without clathrin or other scaffolding factors. The AP-1:Arf1 coat defines the structural basis of a broader class of tubulovesicular membrane coats as an intermediate in clathrin vesicle formation from internal membranes and as an MHC-I sequestration mechanism in HIV-1 infection.
Collapse
Affiliation(s)
- Richard M. Hooy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yuichiro Iwamoto
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Dan A. Tudorica
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xuefeng Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James H. Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Pagani I, Demela P, Ghezzi S, Vicenzi E, Pizzato M, Poli G. Host Restriction Factors Modulating HIV Latency and Replication in Macrophages. Int J Mol Sci 2022; 23:ijms23063021. [PMID: 35328442 PMCID: PMC8951319 DOI: 10.3390/ijms23063021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
In addition to CD4+ T lymphocytes, myeloid cells and, particularly, differentiated macrophages are targets of human immunodeficiency virus type-1 (HIV-1) infection via the interaction of gp120Env with CD4 and CCR5 or CXCR4. Both T cells and macrophages support virus replication, although with substantial differences. In contrast to activated CD4+ T lymphocytes, HIV-1 replication in macrophages occurs in nondividing cells and it is characterized by the virtual absence of cytopathicity both in vitro and in vivo. These general features should be considered in evaluating the role of cell-associated restriction factors aiming at preventing or curtailing virus replication in macrophages and T cells, particularly in the context of designing strategies to tackle the viral reservoir in infected individuals receiving combination antiretroviral therapy. In this regard, we will here also discuss a model of reversible HIV-1 latency in primary human macrophages and the role of host factors determining the restriction or reactivation of virus replication in these cells.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Pietro Demela
- Human Immuno-Virology Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy;
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy; (I.P.); (S.G.); (E.V.)
| | - Massimo Pizzato
- Department of Cellular, Computational and Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Guido Poli
- Human Immuno-Virology Unit, San Raffaele Scientific Institute, Via Olgettina n. 58, 20132 Milano, Italy;
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina n. 58, 20132 Milano, Italy
- Correspondence: ; Tel.: +39-02-2643-4909
| |
Collapse
|
6
|
HIV-Associated Neurotoxicity: The Interplay of Host and Viral Proteins. Mediators Inflamm 2021; 2021:1267041. [PMID: 34483726 PMCID: PMC8410439 DOI: 10.1155/2021/1267041] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/12/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
HIV-1 can incite activation of chemokine receptors, inflammatory mediators, and glutamate receptor-mediated excitotoxicity. The mechanisms associated with such immune activation can disrupt neuronal and glial functions. HIV-associated neurocognitive disorder (HAND) is being observed since the beginning of the AIDS epidemic due to a change in the functional integrity of cells from the central nervous system (CNS). Even with the presence of antiretroviral therapy, there is a decline in the functioning of the brain especially movement skills, noticeable swings in mood, and routine performance activities. Under the umbrella of HAND, various symptomatic and asymptomatic conditions are categorized and are on a rise despite the use of newer antiretroviral agents. Due to the use of long-lasting antiretroviral agents, this deadly disease is becoming a manageable chronic condition with the occurrence of asymptomatic neurocognitive impairment (ANI), symptomatic mild neurocognitive disorder, or HIV-associated dementia. In-depth research in the pathogenesis of HIV has focused on various mechanisms involved in neuronal dysfunction and associated toxicities ultimately showcasing the involvement of various pathways. Increasing evidence-based studies have emphasized a need to focus and explore the specific pathways in inflammation-associated neurodegenerative disorders. In the current review, we have highlighted the association of various HIV proteins and neuronal cells with their involvement in various pathways responsible for the development of neurotoxicity.
Collapse
|
7
|
Larijani MS, Pouriayevali MH, Sadat SM, Ramezani A. Production of Recombinant HIV-1 p24-Nef Protein in Two Forms as Potential Candidate Vaccines in Three Vehicles. Curr Drug Deliv 2021; 17:387-395. [PMID: 32183667 DOI: 10.2174/1567201817666200317121728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/11/2020] [Accepted: 02/13/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Different approaches have been investigated to develop a preventive or therapeutic vaccine, although none of them has been fully practical. Therapeutic vaccines against HIV-1 have been studied with the aim of eliminating the virus from reservoir cells with or without HAART (Highly Active Antiretroviral Therapy). Fusion proteins with the most immunogenic features among conserved regions can facilitate this achievement in such a variable virus. To achieve the most immunogenic and also conserved regions, bioinformatics tools are widely used to predict antigens' features before applying them. OBJECTIVE This study aimed at the in vitro evaluation of p24 -Nef fusion protein based on the previous in silico design to achieve a potential therapeutic subunit vaccine against HIV-1. METHODS The truncated form of p24-Nef using AAY flexible linker and the full protein were expressed and evaluated in the prokaryotic system and confirmed by western blotting. We also used pcDNA3.1 to transfect Lenti-X 293T cells. Moreover, lentiviral vectors were applied to produce recombinant virions harboring the genes of interest and cell transduction. RESULTS Both fusion proteins in a truncated and a full form were expressed and confirmed by Anti Nef polyclonal antibody in western blotting. Recombinant virions were generated and transduced Lenti-X 293T cells confirming by immunofluorescence microscope and p24 ELISA assay kit. Transduced cells were analyzed by SDS-PAGE and western blotting, which resulted in approved protein expression. CONCLUSION Fusion protein of p24 and Nef is well expressed in eukaryotic cell lines according to its pre-evaluated features by bioinformatics tools.
Collapse
Affiliation(s)
- Mona Sadat Larijani
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Ref Lab), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis, AIDS and Blood Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Gromov KB, Kazennova EV, Kireev DE, Murzakova AV, Lopatukhin AE, Bobkova MR. [Analysis of HIV-1 (Human immunodeficiency virus-1, Lentivirus, Orthoretrovirinae, Retroviridae) Nef protein polymorphism of variants circulating in the former USSR countries.]. Vopr Virusol 2021; 64:281-290. [PMID: 32168442 DOI: 10.36233/0507-4088-2019-64-6-281-290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The human immunodeficiency virus (HIV) Nef protein is one of the key factors determining the infectivity and replicative properties of HIV. With the ability to interact with numerous proteins of the host cell, this protein provides the maximum level of virus production and protects it from the immune system. The main activities of Nef are associated with a decrease in the expression of the CD4 receptor and major histocompatibility complex class I molecules (MHC-I), as well as the rearrangement of the cytoskeleton. These properties of the protein are determined by the structure of several motifs in the structure of the nef gene encoding it, which is quite variable. OBJECTIVES The main goal of the work was to analyze the characteristics of Nef protein of HIV-1 variant A6, which dominates in the countries of the former USSR. The objective of the work was a comparative analysis of natural polymorphisms in the nef gene of HIV-1 sub-subtypes A6 and A1 and subtype B. MATERIAL AND METHODS The sequences of the HIV-1 genome obtained during the previous work of the laboratory were used, as well as the reference sequence from GenBank. In this work, Sanger sequencing and new generation sequencing methods, as well as bioinformation analysis methods were used. RESULTS AND DISCUSSION The existence of noticeable differences in the prevalence of Nef natural polymorphisms (A32P, E38D, I43V, A54D, Q104K, H116N, Y120F, Y143F, V168M, H192T, V194R, R35Q, D108E, Y135F, E155K, E182M, R184K and F191L), some of which are characteristic mutations for variant A6, was shown. CONCLUSION Characteristic substitutions were found in the Nef structure, potentially capable of weakening the replicative properties of HIV-1 variant A6.
Collapse
Affiliation(s)
- K B Gromov
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - E V Kazennova
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| | - D E Kireev
- Central Research Institute of Epidemiology, Moscow, 111123, Russia
| | - A V Murzakova
- Central Research Institute of Epidemiology, Moscow, 111123, Russia
| | - A E Lopatukhin
- Central Research Institute of Epidemiology, Moscow, 111123, Russia
| | - M R Bobkova
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russia
| |
Collapse
|
9
|
Comorbidities of HIV infection: role of Nef-induced impairment of cholesterol metabolism and lipid raft functionality. AIDS 2020; 34:1-13. [PMID: 31789888 PMCID: PMC6903377 DOI: 10.1097/qad.0000000000002385] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Combination antiretroviral therapy has dramatically changed the outcome of HIV infection, turning it from a death sentence to a manageable chronic disease. However, comorbidities accompanying HIV infection, such as metabolic and cardio-vascular diseases, as well as cognitive impairment, persist despite successful virus control by combination antiretroviral therapy and pose considerable challenges to clinical management of people living with HIV. These comorbidities involve a number of pathological processes affecting a variety of different tissues and cells, making it challenging to identify a common cause(s) that would link these different diseases to HIV infection. In this article, we will present evidence that impairment of cellular cholesterol metabolism may be a common factor driving pathogenesis of HIV-associated comorbidities. Potential implications for therapeutic approaches are discussed.
Collapse
|
10
|
Bourgeois C, Gorwood J, Barrail-Tran A, Lagathu C, Capeau J, Desjardins D, Le Grand R, Damouche A, Béréziat V, Lambotte O. Specific Biological Features of Adipose Tissue, and Their Impact on HIV Persistence. Front Microbiol 2019; 10:2837. [PMID: 31921023 PMCID: PMC6927940 DOI: 10.3389/fmicb.2019.02837] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Although white AT can contribute to anti-infectious immune responses, it can also be targeted and perturbed by pathogens. The AT's immune involvement is primarily due to strong pro-inflammatory responses (with both local and paracrine effects), and the large number of fat-resident macrophages. Adipocytes also exert direct antimicrobial responses. In recent years, it has been found that memory T cells accumulate in AT, where they provide efficient secondary responses against viral pathogens. These observations have prompted researchers to re-evaluate the links between obesity and susceptibility to infections. In contrast, AT serves as a reservoir for several persistence pathogens, such as human adenovirus Ad-36, Trypanosoma gondii, Mycobacterium tuberculosis, influenza A virus, and cytomegalovirus (CMV). The presence and persistence of bacterial DNA in AT has led to the concept of a tissue-specific microbiota. The unexpected coexistence of immune cells and pathogens within the specific AT environment is intriguing, and its impact on anti-infectious immune responses requires further evaluation. AT has been recently identified as a site of HIV persistence. In the context of HIV infection, AT is targeted by both the virus and the antiretroviral drugs. AT's intrinsic metabolic features, large overall mass, and wide distribution make it a major tissue reservoir, and one that may contribute to the pathophysiology of chronic HIV infections. Here, we review the immune, metabolic, viral, and pharmacological aspects that contribute to HIV persistence in AT. We also evaluate the respective impacts of both intrinsic and HIV-induced factors on AT's involvement as a viral reservoir. Lastly, we examine the potential consequences of HIV persistence on the metabolic and immune activities of AT.
Collapse
Affiliation(s)
- Christine Bourgeois
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Aurélie Barrail-Tran
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| | - Claire Lagathu
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Jacqueline Capeau
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Delphine Desjardins
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Roger Le Grand
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Abderaouf Damouche
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
| | - Véronique Béréziat
- INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Olivier Lambotte
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Sud, INSERM U1184, Fontenay-aux-Roses, France
- AP-HP, Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Rostami B, Irani S, Bolhassani A, Cohan RA. Gene and protein delivery using four cell penetrating peptides for HIV-1 vaccine development. IUBMB Life 2019; 71:1619-1633. [PMID: 31220406 DOI: 10.1002/iub.2107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
Cell penetrating peptides (CPPs) can potently transport therapeutic molecules to target cells for treatment of a variety of diseases. Thus, their use is critical to improve therapeutic vaccines. Histidine-rich nona-arginine (HR9) and primary amphipathic peptide (MPG) showed the ability to transfer DNA into the cells. Moreover, the peptide derived from the C-terminal of the tumor suppressor protein p14ARF (M918) and arginine-rich peptide (penetratin) were utilized to deliver polypeptides and proteins into the living cells. In this study, the immunostimulatory properties of HIV-1 Nef DNA and protein constructs were evaluated using small heat shock protein 20 (sHsp20) and Freund's emulsion as an adjuvant, and four CPPs (HR9, MPG, M918, and penetratin) as a gene or protein carrier in BALB/c mice. Our data indicated that the HR9/DNA, MPG/DNA, M918/protein, and penetratin/protein complexes formed the stable nanoparticles that were effectively delivered in HEK-293T cell line at certain ratios. Moreover, a heterologous Hsp20-Nef DNA + MPG prime/rHsp20-Nef protein+M918 boost regimen significantly elicited higher levels of IgG2a, IgG2b, IFN-gamma, and Granzyme B directed toward Th1 responses in a long period (3 months) after the last immunization compared to other groups. Furthermore, the effective role of Hsp20 was detected as a natural adjuvant in enhancing immune responses against HIV-1 Nef antigen. These findings demonstrated that the simultaneous use of M918 and MPG CPPs as protein and gene carriers improves HIV-1 Nef-specific B- and T-cell immune responses as a promising approach for development of HIV-1 monovalent vaccine.
Collapse
Affiliation(s)
- Bahareh Rostami
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Pilot Nano-Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Shattock R. HIV vaccine research in Canada. AIDS Res Ther 2017; 14:54. [PMID: 28893293 PMCID: PMC5594529 DOI: 10.1186/s12981-017-0181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 11/24/2022] Open
|