1
|
Oliver KE, Harrison XA. Temperature and land use change are associated with Rana temporaria reproductive success and phenology. PeerJ 2024; 12:e17901. [PMID: 39224827 PMCID: PMC11368080 DOI: 10.7717/peerj.17901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chemical pollution, land cover change, and climate change have all been established as important drivers of amphibian reproductive success and phenology. However, little is known about the relative impacts of these anthropogenic stressors, nor how they may interact to alter amphibian population dynamics. Addressing this gap in our knowledge is important, as it allows us to identify and prioritise the most needed conservation actions. Here, we use long-term datasets to investigate landscape-scale drivers of variation in the reproductive success and phenology of UK Common frog (Rana temporaria) populations. Consistent with predictions, we found that increasing mean temperatures resulted in earlier initialisation of spawning, and earlier hatching, but these relationships were not consistent across all sites. Lower temperatures were also linked to increased spawn mortality. However, temperature increases were also strongly correlated with increases in urban area, arable area, and nitrate levels in the vicinity of spawning grounds. As with spawning and hatching, there was marked spatial variation in spawn mortality trends, where some sites exhibited steady increases over time in the proportion of dead or diseased spawn. These findings support previous work linking warming temperatures to shifts in timing of amphibian breeding, but also highlight the importance of assessing the effect of land use change and pollution on wild amphibian populations. These results have implications for our understanding of the response of wild amphibian populations to climate change, and the management of human-dominated landscapes for declining wildlife populations.
Collapse
Affiliation(s)
- Kat E. Oliver
- Centre for Ecology and Conservation, University of Exeter, Falmouth, United Kingdom
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Falmouth, United Kingdom
| |
Collapse
|
2
|
Lyu ZT, Zeng ZC, Wan H, Li Q, Tominaga A, Nishikawa K, Matsui M, Li SZ, Jiang ZW, Liu Y, Wang YY. Contrasting nidification behaviors facilitate diversification and colonization of the Music frogs under a changing paleoclimate. Commun Biol 2024; 7:638. [PMID: 38796601 PMCID: PMC11127999 DOI: 10.1038/s42003-024-06347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
In order to cope with the complexity and variability of the terrestrial environment, amphibians have developed a wide range of reproductive and parental behaviors. Nest building occurs in some anuran species as parental care. Species of the Music frog genus Nidirana are known for their unique courtship behavior and mud nesting in several congeners. However, the evolution of these frogs and their nidification behavior has yet to be studied. With phylogenomic and phylogeographic analyses based on a wide sampling of the genus, we find that Nidirana originated from central-southwestern China and the nidification behavior initially evolved at ca 19.3 Ma but subsequently lost in several descendants. Further population genomic analyses suggest that the nidification species have an older diversification and colonization history, while N. adenopleura complex congeners that do not exhibit nidification behavior have experienced a recent rapid radiation. The presence and loss of the nidification behavior in the Music frogs may be associated with paleoclimatic factors such as temperature and precipitation. This study highlights the nidification behavior as a key evolutionary innovation that has contributed to the diversification of an amphibian group under past climate changes.
Collapse
Affiliation(s)
- Zhi-Tong Lyu
- State Key Laboratory of Biocontrol, School of Ecology / School of Life Sciences, Sun Yat-sen University, Shenzhen, 518107, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610040, China
| | - Zhao-Chi Zeng
- State Key Laboratory of Biocontrol, School of Ecology / School of Life Sciences, Sun Yat-sen University, Shenzhen, 518107, China
| | - Han Wan
- State Key Laboratory of Biocontrol, School of Ecology / School of Life Sciences, Sun Yat-sen University, Shenzhen, 518107, China
| | - Qin Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Atsushi Tominaga
- Faculty of Education, University of the Ryukyus, Senbaru 1 Nishihara, Okinawa, 903-0213, Japan
| | - Kanto Nishikawa
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-hon-machi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masafumi Matsui
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihon-matsu, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shi-Ze Li
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564500, China
| | - Zhong-Wen Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology / School of Life Sciences, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ying-Yong Wang
- State Key Laboratory of Biocontrol, School of Ecology / School of Life Sciences, Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Relyea R, Mattes B, Schermerhorn C, Shepard I. Freshwater salinization and the evolved tolerance of amphibians. Ecol Evol 2024; 14:e11069. [PMID: 38481759 PMCID: PMC10933534 DOI: 10.1002/ece3.11069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 11/02/2024] Open
Abstract
The increasing salinization of freshwaters is a growing environmental issue as a result of mining, agriculture, climate change, and the application of de-icing salts in regions that experience ice and snow. Due to narrow osmotic limits, many freshwater species are particularly susceptible to salinization, but it is possible that repeated exposures over time could favor the evolution of increased salt tolerance. Using collected nine populations of larval wood frogs (Rana sylvatica) as eggs from ponds and wetlands with close proximity to roads and spanning a wide gradient of salt concentrations. In the first experiment, we used a time-to-death experiment to examine the salt tolerance. In a second experiment, we examined whether population differences in salt tolerance were associated with trade-offs in growth, development, or behavior in the presence of control water or a sublethal salt concentration. We found that populations collected from ponds with low and intermediate salt concentrations exhibited similar tolerance curves over a 96-h exposure. However, the population from a pond with the highest salt concentration exhibited a much higher tolerance. We also found population differences in growth, development, and activity level among the populations, but these were not associated with population differences in tolerance. In addition, the sublethal concentration of salt had no impact on growth and development, but it did cause a reduction in tadpole activity across the populations. Collectively, these results provide further evidence that some species of freshwater organisms can evolve tolerance to increasing salinization, although it may only occur under relatively high concentrations and without trade-offs in growth, development, or behavior.
Collapse
Affiliation(s)
- Rick Relyea
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Brian Mattes
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Candace Schermerhorn
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Isaac Shepard
- Department of Biological SciencesRensselaer Polytechnic InstituteTroyNew YorkUSA
| |
Collapse
|
4
|
Relyea RA, Schermerhorn CX, Mattes BM, Shepard ID. Phenotypically plastic responses to freshwater salinization in larval amphibians: Induced tolerance and induced sensitivity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122588. [PMID: 37734634 DOI: 10.1016/j.envpol.2023.122588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Contamination of aquatic ecosystems is pervasive around the world and there has been a growing interest in understanding the ecological and evolutionary impacts. For contaminants such as pesticides, researchers are discovering widespread evolution of increased tolerance in target and non-target species and the role of phenotypic plasticity in facilitating this evolution. In contrast, we know much less about the evolution of tolerance in response to the increasing problem of freshwater salinization. In amphibians, recent studies have discovered that some populations from ponds with high salt pollution (from deicing road salts) have evolved higher tolerance. In this study, we examined whether populations of wood frog tadpoles (Rana sylvatica) possess rapid, inducible tolerance to salinity in a manner similar to their inducible tolerance to pesticides. Using newly hatched tadpoles from nine populations, we discovered that eight of the populations were able to alter their tolerance to salt. However, seven of the eight inducible populations experienced a higher sensitivity to salt while the eighth population experienced a higher tolerance to salt. Such inducible responses likely reflect the interplay of salt dynamics in the ponds, combined with the available genetic variation and selection intensity of each pond. This appears to be the first example of inducible salt tolerance in any animal and future studies should examine the generality of the response and how it may affect the evolution of tolerance to the global issue of freshwater salinization.
Collapse
Affiliation(s)
- Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Candace X Schermerhorn
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian M Mattes
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Isaac D Shepard
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
5
|
Fong PP, Doganoglu A, Sandt EV, Turbeville SD. Warmer temperature overrides the effects of antidepressants on amphibian metamorphosis and behavior. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114912-114919. [PMID: 37880404 DOI: 10.1007/s11356-023-30607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
Climate change can exacerbate the effects of environmental pollutants on aquatic organisms. Pollutants such as human antidepressants released from wastewater treatment plants have been shown to impact life-history traits of amphibians. We exposed tadpoles of the wood frog Lithobates sylvaticus to two temperatures (20 °C and 25 °C) and two antidepressants (fluoxetine and venlafaxine), and measured timing of metamorphosis, mass at metamorphosis, and two behaviors (startle response and percent motionless). Antidepressants significantly shortened time to metamorphosis at 20 °C, but not at 25 °C. At 25 °C, tadpoles metamorphosed significantly faster than those at 20 °C independent of antidepressant exposure. Venlafaxine reduced body mass at 25 °C, but not at 20 °C. Temperature and antidepressant exposure affected the percent of tadpoles showing a startle response. Tadpoles at 20 °C displayed significantly more responses than at 25 °C. Exposure to fluoxetine also increased the percent of tadpoles showing a startle response. Venlafaxine reduced the percent of motionless tadpoles at 25 °C but not at 20 °C. While our results showed that antidepressants can affect the timing of metamorphosis in tadpoles, warmer temperatures overrode these effects and caused a reduction in an important reaction behavior (startle response). Future studies should address how warmer global temperatures may exacerbate or negate the effects of environmental pollutants.
Collapse
Affiliation(s)
- Peter P Fong
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA.
| | - Aylin Doganoglu
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA
| | - Eleanor V Sandt
- Department of Biology, Gettysburg College, Gettysburg, PA, 17325, USA
| | | |
Collapse
|
6
|
Dumandan PKT, Yenni GM, Ernest SKM. Shifts in competitive structures can drive variation in species' phenology. Ecology 2023; 104:e4160. [PMID: 37671433 DOI: 10.1002/ecy.4160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/07/2023] [Accepted: 07/29/2023] [Indexed: 09/07/2023]
Abstract
For many species, a well documented response to anthropogenic climate change is a shift in various aspects of its life history, including its timing or phenology. Often, these phenological shifts are associated with changes in abiotic factors used as proxies for resource availability or other suitable conditions. Resource availability, however, can also be impacted by competition, but the impact of competition on phenology is less studied than abiotic drivers. We fit generalized additive models (GAMs) to a long-term experimental dataset on small mammals monitored in the southwestern United States and show that altered competitive landscapes can drive shifts in breeding timing and prevalence, and that, relative to a dominant competitor, other species exhibit less specific responses to environmental factors. These results suggest that plasticity of phenological responses, which is often described in the context of annual variation in abiotic factors, can occur in response to biotic context as well. Variation in phenological responses under different biotic conditions shown here further demonstrates that a more nuanced understanding of shifting biotic interactions is useful to better understand and predict biodiversity patterns in a changing world.
Collapse
Affiliation(s)
| | - Glenda M Yenni
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - S K Morgan Ernest
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Ruthsatz K, Schwarz A, Gomez-Mestre I, Meyer R, Domscheit M, Bartels F, Schaeffer SM, Engelkes K. Life in plastic, it's not fantastic: Sublethal effects of polyethylene microplastics ingestion throughout amphibian metamorphosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163779. [PMID: 37146798 DOI: 10.1016/j.scitotenv.2023.163779] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Microplastics (MP) are an abundant, long-lasting, and widespread type of environmental pollution that is of increasing concern as it might pose a serious threat to ecosystems and species. However, these threats are still largely unknown for amphibians. Here, we used the African clawed frog (Xenopus laevis) as a model species to investigate whether polyethylene MP ingestion affects amphibian growth and development and leads to metabolic changes across two consecutive life stages (larvae and juveniles). Furthermore, we examined whether MP effects were more pronounced at higher rearing temperatures. Larval growth, development, and body condition were recorded, and standard metabolic rate (SMR) and levels of stress hormone (corticosterone, CORT) were measured. We determined variation in size, morphology, and hepatosomatic index in juveniles to identify any potential consequences of MP ingestion across metamorphosis. In both life stages, MP accumulation in the body was assessed. MP ingestion was found to result in sublethal effects on larval growth, development, and metabolism, to lead to allometric carry-over effects on juvenile morphology, and to accumulate in the specimens at both life stages. In larvae, SMR and developmental rate increased in response to MP ingestion; there additionally was a significant interaction of MP ingestion and temperature on development. CORT levels were higher in larvae that ingested MP, except at higher temperature. In juveniles, body was wider, and extremities were longer in animals exposed to MP during the larval stage; a high rearing temperature in combination with MP ingestion counteracted this effect. Our results provide first insights into the effects of MP on amphibians throughout metamorphosis and demonstrate that juvenile amphibians may act as a pathway for MP from freshwater to terrestrial environments. To allow for generalizations across amphibian species, future experiments need to consider the field prevalence and abundance of different MP in amphibians at various life stages.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Anja Schwarz
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Department Ecology and Evolution, Doñana Biological Station, CSIC, 41092 Seville, Spain
| | - Ruth Meyer
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Marie Domscheit
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Fabian Bartels
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Sarah-Maria Schaeffer
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Karolin Engelkes
- Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany; Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
8
|
Environmental Drivers of Amphibian Breeding Phenology across Multiple Sites. DIVERSITY 2023. [DOI: 10.3390/d15020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
A mechanistic understanding of phenology, the seasonal timing of life history events, is important for understanding species’ interactions and the potential responses of ecological communities to a rapidly changing climate. We present analysis of a seven-year dataset on the breeding phenology of wood frogs (Rana sylvatica), tiger salamanders (Ambystoma tigrinum), blue-spotted salamanders (Ambystoma laterale), and associated unisexual Ambystoma salamanders from six wetlands in Southeast Michigan, USA. We assess whether the ordinal date of breeding migrations varies among species, sexes, and individual wetlands, and we describe the specific environmental conditions associated with breeding migrations for each species/sex. Breeding date was significantly affected by species/sex identity, year, wetland, and the interactions between species/sex and year as well as wetland and year. There was a great deal of variation among years, with breeding occurring nearly synchronously among groups in some years but widely spaced between groups in other years. Specific environmental triggers for movement varied for each species and sex and changed as the breeding season progressed. In general, salamanders responded to longer temperature lags (more warmer days in a row) than wood frogs, whereas wood frogs required longer precipitation lags (more rainy days in a row) than salamanders. Wood frogs were more likely to migrate around the time of a new moon, whereas in contrast, Ambystoma salamander migration was not associated with a moon phase. Ordinal day was an important factor in all models, suggesting that these amphibians require a latency period or similar mechanism to avoid breeding too early in the year, even when weather conditions appear favorable. Male wood frogs migrated earlier than female wood frogs, and male blue-spotted salamanders migrated earlier than female A. laterale and associated unisexual females. Larger unisexual salamanders migrated earlier than smaller individuals. Differences in species’ responses to environmental cues led to wood frogs and A. laterale breeding later than tiger salamanders in colder years but not in warmer years. This suggests that, as the climate warms, wood frog and A. laterale larvae may experience less predation from tiger salamander larvae due to reduced size differences when they breed simultaneously. Our study is one of few to describe the proximate drivers of amphibian breeding migrations across multiple species, wetlands, and years, and it can inform models predicting how climate change may shift ecological interactions among pond-breeding amphibian species.
Collapse
|
9
|
Yermokhin MV, Tabachishin VG. False Spring in the Spawning Migrations of Spadefoot Toads (Pelobates, Anura): Distribution in European Russia and the Phenomenon Scale in 2020. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Ruthsatz K, Bartels F, Stützer D, Eterovick PC. Timing of parental breeding shapes sensitivity to nitrate pollution in the common frog Rana temporaria. J Therm Biol 2022; 108:103296. [DOI: 10.1016/j.jtherbio.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
|