1
|
Waris A, Siraj M, Khan A, Lin J, Asim M, Alhumaydh FA. A Comprehensive Overview of the Current Status and Advancements in Various Treatment Strategies against Epilepsy. ACS Pharmacol Transl Sci 2024; 7:3729-3757. [PMID: 39698272 PMCID: PMC11650742 DOI: 10.1021/acsptsci.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy affects more than 70 million individuals of all ages worldwide and remains one of the most severe chronic noncommunicable neurological diseases globally. Several neurotransmitters, membrane protein channels, receptors, enzymes, and, more recently noted, various pathways, such as inflammatory and mTORC complexes, play significant roles in the initiation and propagation of seizures. Over the past two decades, significant developments have been made in the diagnosis and treatment of epilepsy. Various pharmacological drugs with diverse mechanisms of action and other treatment options have been developed to control seizures and treat epilepsy. These options include surgical treatment, nanomedicine, gene therapy, natural products, nervous stimulation, a ketogenic diet, gut microbiota, etc., which are in various developmental stages. Despite a plethora of drugs and other treatment options, one-third of affected individuals are resistant to current medications, while the majority of approved drugs have severe side effects, and significant changes can occur, such as pharmacoresistance, effects on cognition, long-term problems, drug interactions, risks of poor adherence, specific effects for certain medications, and psychological complications. Therefore, the development of new drugs and other treatment options that have no or minimal adverse effects is needed to combat this deadly disease. In this Review, we comprehensively summarize and explain all of the treatment options that have been approved or are in developmental stages for epilepsy as well as their status in clinical trials and advancements.
Collapse
Affiliation(s)
- Abdul Waris
- Department
of Biomedical Science, City University of
Hong Kong, 999077 Hong Kong SAR
| | - Muhammad Siraj
- Department
of Biotechnology, Jeonbuk National University−Iksan
Campus, Jeonju 54896, South Korea
| | - Ayyaz Khan
- Department
of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Junyu Lin
- Department
of Neuroscience, City University of Hong
Kong, 999077 Hong Kong SAR
| | - Muhammad Asim
- Department
of Neuroscience, City University of Hong
Kong, 999077 Hong Kong SAR
| | - Fahad A. Alhumaydh
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Mensah-Brown KG, Naylor RM, Graepel S, Brinjikji W. Neuromodulation: What the neurointerventionalist needs to know. Interv Neuroradiol 2024:15910199231224554. [PMID: 38454831 PMCID: PMC11569746 DOI: 10.1177/15910199231224554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/02/2023] [Indexed: 03/09/2024] Open
Abstract
Neuromodulation is the alteration of neural activity in the central, peripheral, or autonomic nervous systems. Consequently, this term lends itself to a variety of organ systems including but not limited to the cardiac, nervous, and even gastrointestinal systems. In this review, we provide a primer on neuromodulation, examining the various technological systems employed and neurological disorders targeted with this technology. Ultimately, we undergo a historical analysis of the field's development, pivotal discoveries and inventions gearing this review to neuro-adjacent subspecialties with a specific focus on neurointerventionalists.
Collapse
Affiliation(s)
| | - Ryan M. Naylor
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
3
|
Qiao YN, Li L, Hu SH, Yang YX, Ma ZZ, Huang L, An YP, Yuan YY, Lin Y, Xu W, Li Y, Lin PC, Cao J, Zhao JY, Zhao SM. Ketogenic diet-produced β-hydroxybutyric acid accumulates brain GABA and increases GABA/glutamate ratio to inhibit epilepsy. Cell Discov 2024; 10:17. [PMID: 38346975 PMCID: PMC10861483 DOI: 10.1038/s41421-023-00636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 12/06/2023] [Indexed: 02/15/2024] Open
Abstract
Ketogenic diet (KD) alleviates refractory epilepsy and reduces seizures in children. However, the metabolic/cell biologic mechanisms by which the KD exerts its antiepileptic efficacy remain elusive. Herein, we report that KD-produced β-hydroxybutyric acid (BHB) augments brain gamma-aminobutyric acid (GABA) and the GABA/glutamate ratio to inhibit epilepsy. The KD ameliorated pentetrazol-induced epilepsy in mice. Mechanistically, KD-produced BHB, but not other ketone bodies, inhibited HDAC1/HDAC2, increased H3K27 acetylation, and transcriptionally upregulated SIRT4 and glutamate decarboxylase 1 (GAD1). BHB-induced SIRT4 de-carbamylated and inactivated glutamate dehydrogenase to preserve glutamate for GABA synthesis, and GAD1 upregulation increased mouse brain GABA/glutamate ratio to inhibit neuron excitation. BHB administration in mice inhibited epilepsy induced by pentetrazol. BHB-mediated relief of epilepsy required high GABA level and GABA/glutamate ratio. These results identified BHB as the major antiepileptic metabolite of the KD and suggested that BHB may serve as an alternative and less toxic antiepileptic agent than KD.
Collapse
Affiliation(s)
- Ya-Nan Qiao
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lei Li
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Song-Hua Hu
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yuan-Xin Yang
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Zhen-Zhen Ma
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Lin Huang
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yan-Peng An
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yi-Yuan Yuan
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yan Lin
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Wei Xu
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Yao Li
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, Qinghai, China
| | - Jing Cao
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi-Min Zhao
- The Obstetrics & Gynaecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodelling and Health, Institutes of Biomedical Sciences, and Children's Hospital of Fudan University, Fudan University, Shanghai, China.
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, Qinghai, China.
| |
Collapse
|
4
|
Paschen E, Kleis P, Vieira DM, Heining K, Boehler C, Egert U, Häussler U, Haas CA. On-demand low-frequency stimulation for seizure control: efficacy and behavioural implications. Brain 2024; 147:505-520. [PMID: 37675644 DOI: 10.1093/brain/awad299] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Mesial temporal lobe epilepsy (MTLE), the most common form of focal epilepsy in adults, is often refractory to medication and associated with hippocampal sclerosis. Deep brain stimulation represents an alternative treatment option for drug-resistant patients who are ineligible for resective brain surgery. In clinical practice, closed-loop stimulation at high frequencies is applied to interrupt ongoing seizures, yet has (i) a high incidence of false detections; (ii) the drawback of delayed seizure-suppressive intervention; and (iii) limited success in sclerotic tissue. As an alternative, low-frequency stimulation (LFS) has been explored recently in patients with focal epilepsies. In preclinical epilepsy models, hippocampal LFS successfully prevented seizures when applied continuously. Since it would be advantageous to reduce the stimulation load, we developed a protocol for on-demand LFS. Given the importance of the hippocampus for navigation and memory, we investigated potential consequences of LFS on hippocampal function. To this end, we used the intrahippocampal kainate mouse model, which recapitulates the key features of MTLE, including spontaneous seizure activity and hippocampal sclerosis. Specifically, our online detection algorithm monitored epileptiform activity in hippocampal local field potential recordings and identified short epileptiform bursts preceding focal seizure clusters, triggering hippocampal LFS to stabilize the network state. To probe behavioural performance, we tested the acute influence of LFS on anxiety-like behaviour in the light-dark box test, spatial and non-spatial memory in the object location memory and novel object recognition test, as well as spatial navigation and long-term memory in the Barnes maze. On-demand LFS was almost as effective as continuous LFS in preventing focal seizure clusters but with a significantly lower stimulation load. When we compared the behavioural performance of chronically epileptic mice to healthy controls, we found that both groups were equally mobile, but epileptic mice displayed an increased anxiety level, altered spatial learning strategy and impaired memory performance. Most importantly, with the application of hippocampal LFS before behavioural training and test sessions, we could rule out deleterious effects on cognition and even show an alleviation of deficits in long-term memory recall in chronically epileptic mice. Taken together, our findings may provide a promising alternative to current therapies, overcoming some of their major limitations, and inspire further investigation of LFS for seizure control in focal epilepsy syndromes.
Collapse
Affiliation(s)
- Enya Paschen
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Piret Kleis
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Diego M Vieira
- Biomicrotechnology, Department of Microsystems Engineering-IMTEK, Faculty of Engineering, University of Freiburg, Freiburg 79108, Germany
| | - Katharina Heining
- Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden
| | - Christian Boehler
- Department of Microsystems Engineering (IMTEK), Bioelectronic Microtechnology (BEMT), University of Freiburg, Freiburg 79108, Germany
| | - Ulrich Egert
- Biomicrotechnology, Department of Microsystems Engineering-IMTEK, Faculty of Engineering, University of Freiburg, Freiburg 79108, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg 79110, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg 79110, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg 79106, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
5
|
Yang H, Yuwen C, Cheng X, Fan H, Wang X, Ge Z. Deep Learning: A Primer for Neurosurgeons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:39-70. [PMID: 39523259 DOI: 10.1007/978-3-031-64892-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter explores the transformative impact of deep learning (DL) on neurosurgery, elucidating its pivotal role in enhancing diagnostic performance, surgical planning, execution, and postoperative assessment. It delves into various deep learning architectures, including convolutional and recurrent neural networks, and their applications in analyzing neuroimaging data for brain tumors, spinal cord injuries, and other neurological conditions. The integration of DL in neurosurgical robotics and the potential for fully autonomous surgical procedures are discussed, highlighting advancements in surgical precision and patient outcomes. The chapter also examines the challenges of data privacy, quality, and interpretability that accompany the implementation of DL in neurosurgery. The potential for DL to revolutionize neurosurgical practices through improved diagnostics, patient-specific surgical planning, and the advent of intelligent surgical robots is underscored, promising a future where technology and healthcare converge to offer unprecedented solutions in neurosurgery.
Collapse
Affiliation(s)
- Hongxi Yang
- Department of Data Science and Artificial Intelligence (DSAI), Faculty of Information Technology, Monash University, Clayton, VIC, Australia
| | - Chang Yuwen
- Monash Suzhou Research Institute, Monash University, Suzhou, China
| | - Xuelian Cheng
- Department of Data Science and Artificial Intelligence (DSAI), Faculty of Information Technology, Monash University, Clayton, VIC, Australia
- Monash Suzhou Research Institute, Monash University, Suzhou, China
| | - Hengwei Fan
- Shukun (Beijing) Technology Co, Beijing, China
| | - Xin Wang
- Shukun (Beijing) Technology Co, Beijing, China
| | - Zongyuan Ge
- Department of Data Science and Artificial Intelligence (DSAI), Faculty of Information Technology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Ghosh S, Sinha JK, Ghosh S, Sharma H, Bhaskar R, Narayanan KB. A Comprehensive Review of Emerging Trends and Innovative Therapies in Epilepsy Management. Brain Sci 2023; 13:1305. [PMID: 37759906 PMCID: PMC10527076 DOI: 10.3390/brainsci13091305] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Epilepsy is a complex neurological disorder affecting millions worldwide, with a substantial number of patients facing drug-resistant epilepsy. This comprehensive review explores innovative therapies for epilepsy management, focusing on their principles, clinical evidence, and potential applications. Traditional antiseizure medications (ASMs) form the cornerstone of epilepsy treatment, but their limitations necessitate alternative approaches. The review delves into cutting-edge therapies such as responsive neurostimulation (RNS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), highlighting their mechanisms of action and promising clinical outcomes. Additionally, the potential of gene therapies and optogenetics in epilepsy research is discussed, revealing groundbreaking findings that shed light on seizure mechanisms. Insights into cannabidiol (CBD) and the ketogenic diet as adjunctive therapies further broaden the spectrum of epilepsy management. Challenges in achieving seizure control with traditional therapies, including treatment resistance and individual variability, are addressed. The importance of staying updated with emerging trends in epilepsy management is emphasized, along with the hope for improved therapeutic options. Future research directions, such as combining therapies, AI applications, and non-invasive optogenetics, hold promise for personalized and effective epilepsy treatment. As the field advances, collaboration among researchers of natural and synthetic biochemistry, clinicians from different streams and various forms of medicine, and patients will drive progress toward better seizure control and a higher quality of life for individuals living with epilepsy.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
- ICMR—National Institute of Nutrition, Tarnaka, Hyderabad 500007, India
| | | | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | | | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
7
|
Tang FL, Zhang XG, Ke PY, Liu J, Zhang ZJ, Hu DM, Gu J, Zhang H, Guo HK, Zang QW, Huang R, Ma YL, Kwan P. MBD5 regulates NMDA receptor expression and seizures by inhibiting Stat1 transcription. Neurobiol Dis 2023; 181:106103. [PMID: 36997128 DOI: 10.1016/j.nbd.2023.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Epilepsy is considered to result from an imbalance between excitation and inhibition of the central nervous system. Pathogenic mutations in the methyl-CpG binding domain protein 5 gene (MBD5) are known to cause epilepsy. However, the function and mechanism of MBD5 in epilepsy remain elusive. Here, we found that MBD5 was mainly localized in the pyramidal cells and granular cells of mouse hippocampus, and its expression was increased in the brain tissues of mouse models of epilepsy. Exogenous overexpression of MBD5 inhibited the transcription of the signal transducer and activator of transcription 1 gene (Stat1), resulting in increased expression of N-methyl-d-aspartate receptor (NMDAR) subunit 1 (GluN1), 2A (GluN2A) and 2B (GluN2B), leading to aggravation of the epileptic behaviour phenotype in mice. The epileptic behavioural phenotype was alleviated by overexpression of STAT1 which reduced the expression of NMDARs, and by the NMDAR antagonist memantine. These results indicate that MBD5 accumulation affects seizures through STAT1-mediated inhibition of NMDAR expression in mice. Collectively, our findings suggest that the MBD5-STAT1-NMDAR pathway may be a new pathway that regulates the epileptic behavioural phenotype and may represent a new treatment target.
Collapse
|
8
|
Yang Y, Zhang F, Gao X, Feng L, Xu K. Progressive alterations in electrophysiological and epileptic network properties during the development of temporal lobe epilepsy in rats. Epilepsy Behav 2023; 141:109120. [PMID: 36868167 DOI: 10.1016/j.yebeh.2023.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/28/2023] [Accepted: 01/29/2023] [Indexed: 03/05/2023]
Abstract
OBJECTIVE Refractory temporal lobe epilepsy (TLE) with recurring seizures causing continuing pathological changes in neural reorganization. There is an incomplete understanding of how spatiotemporal electrophysiological characteristics changes during the development of TLE. Long-term multi-site epilepsy patients' data is hard to obtain. Thus, our study relied on animal models to reveal the changes in electrophysiological and epileptic network characteristics systematically. METHODS Long-term local field potentials (LFPs) were recorded over a period of 1 to 4 months from 6 pilocarpine-treated TLE rats. We compared variations of seizure onset zone (SOZ), seizure onset pattern (SOP), the latency of seizure onsets, and functional connectivity network from 10-channel LFPs between the early and late stages. Moreover, three machine learning classifiers trained by early-stage data were used to test seizure detection performance in the late stage. RESULTS Compared to the early stage, the earliest seizure onset was more frequently detected in hippocampus areas in the late stage. The latency of seizure onsets between electrodes became shorter. Low-voltage fast activity (LVFA) was the most common SOP and the proportion of it increased in the late stage. Different brain states were observed during seizures using Granger causality (GC). Moreover, seizure detection classifiers trained by early-stage data were less accurate when tested in late-stage data. SIGNIFICANCE Neuromodulation especially closed-loop deep brain stimulation (DBS) is effective in the treatment of refractory TLE. Although the frequency or amplitude of the stimulation is generally adjusted in existing closed-loop DBS devices in clinical usage, the adjustment rarely considers the pathological progression of chronic TLE. This suggests that an important factor affecting the therapeutic effect of neuromodulation may have been overlooked. The present study reveals time-varying electrophysiological and epileptic network properties in chronic TLE rats and indicates that classifiers of seizure detection and neuromodulation parameters might be designed to adapt to the current state dynamically with the progression of epilepsy.
Collapse
Affiliation(s)
- Yufang Yang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
| | - Fang Zhang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
| | - Xiang Gao
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China; Institute of Advanced Digital Technology and Instrument, Zhejiang University, Hangzhou, China.
| | | | - Kedi Xu
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China; The MOE Frontier Science Center for Brain Science and Brain-machine Integration, Hangzhou, China.
| |
Collapse
|
9
|
Si X, Yang Z, Zhang X, Sun Y, Jin W, Wang L, Yin S, Ming D. Patient-independent seizure detection based on long-term iEEG and a novel lightweight CNN. J Neural Eng 2023; 20. [PMID: 36626831 DOI: 10.1088/1741-2552/acb1d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Objective.Patient-dependent seizure detection based on intracranial electroencephalography (iEEG) has made significant progress. However, due to the difference in the locations and number of iEEG electrodes used for each patient, patient-independent seizure detection based on iEEG has not been carried out. Additionally, current seizure detection algorithms based on deep learning have outperformed traditional machine learning algorithms in many performance metrics. However, they still have shortcomings of large memory footprints and slow inference speed.Approach.To solve the above problems of the current study, we propose a novel lightweight convolutional neural network model combining the Convolutional Block Attention Module (CBAM). Its performance for patient-independent seizure detection is evaluated on two long-term continuous iEEG datasets: SWEC-ETHZ and TJU-HH. Finally, we reproduce four other patient-independent methods to compare with our method and calculate the memory footprints and inference speed for all methods.Main results.Our method achieves 83.81% sensitivity (SEN) and 85.4% specificity (SPE) on the SWEC-ETHZ dataset and 86.63% SEN and 92.21% SPE on the TJU-HH dataset. In particular, it takes only 11 ms to infer 10 min iEEG (128 channels), and its memory footprint is only 22 kB. Compared to baseline methods, our method not only achieves better patient-independent seizure detection performance but also has a smaller memory footprint and faster inference speed.Significance.To our knowledge, this is the first iEEG-based patient-independent seizure detection study. This facilitates the application of seizure detection algorithms to the future clinic.
Collapse
Affiliation(s)
- Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhuobin Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xingjian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yulin Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Weipeng Jin
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin 300072, People's Republic of China
| | - Le Wang
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin 300072, People's Republic of China
| | - Shaoya Yin
- Department of Neurosurgery, Huanhu Hospital, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, People's Republic of China.,Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
10
|
Capuani S, Malgir G, Chua CYX, Grattoni A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng Transl Med 2022; 7:e10300. [PMID: 36176611 PMCID: PMC9472022 DOI: 10.1002/btm2.10300] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Mitigating the foreign body response (FBR) to implantable medical devices (IMDs) is critical for successful long-term clinical deployment. The FBR is an inevitable immunological reaction to IMDs, resulting in inflammation and subsequent fibrotic encapsulation. Excessive fibrosis may impair IMDs function, eventually necessitating retrieval or replacement for continued therapy. Therefore, understanding the implant design parameters and their degree of influence on FBR is pivotal to effective and long lasting IMDs. This review gives an overview of FBR as well as anti-FBR strategies. Furthermore, we highlight recent advances in biomimetic approaches to resist FBR, focusing on their characteristics and potential biomedical applications.
Collapse
Affiliation(s)
- Simone Capuani
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- University of Chinese Academy of Science (UCAS)BeijingChina
| | - Gulsah Malgir
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of Biomedical EngineeringUniversity of HoustonHoustonTexasUSA
| | | | - Alessandro Grattoni
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of SurgeryHouston Methodist HospitalHoustonTexasUSA
- Department of Radiation OncologyHouston Methodist HospitalHoustonTexasUSA
| |
Collapse
|
11
|
Li D, Huang S, Wang X, Yang L, Song T. Efficacy and adverse reactions of perampanel in the treatment of epilepsy in children. Front Neurol 2022; 13:924057. [PMID: 35968281 PMCID: PMC9363754 DOI: 10.3389/fneur.2022.924057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To observe the clinical effect and adverse reactions of perampanel in the treatment of epilepsy in children. Methods A retrospective analysis was performed on 83 children with epilepsy who were treated with perampanel in the Department of Pediatric Neurology, Second Affiliated Hospital of Xi'an Jiaotong University from April to August 2021. The treatment status, prognosis and adverse reactions were followed up. The effective rates of different age groups, different seizure types and epilepsy syndromes, and different treatment methods were statistically analyzed. The effective rate and adverse reactions of all patients were statistically analyzed. Results The overall effective rate of perampanel in the treatment of epilepsy was 62.03%, and there was no significant difference in the effective rate of perampanel in the treatment of epilepsy in patients of different ages (P > 0.05). The effective rates of perampanel in the treatment of focal seizures and generalized seizures were 60.38% and 65.38%, and the effective rates of benign childhood epilepsy with centrotemporal spikes (BECT), BECT combined with electrical status epilepticus during sleep (ESES) and frontal lobe epilepsy (FLE) were 88.89, 72.73, and 66.67%. The effective rates of monotherapy and combination therapy were 88.88 and 58.57%, respectively. The above statistical differences were not statistically significant (P > 0.05). In addition, the adverse reaction rate of perampanel treatment was 16.45%, including irritability, drowsiness, dizziness, nausea, vomiting and abnormal liver function. Conclusion Perampanel has a high efficiency and controllable adverse reactions in the treatment of childhood epilepsy. This drug can be used as a reliable choice for long-term use in the treatment of epilepsy in children.
Collapse
Affiliation(s)
- Dan Li
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shaoping Huang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xueying Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lin Yang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tingting Song
- Fifth Department of Pediatrics, Northwest Women's and Children's Hospital, Xi'an, China
- *Correspondence: Tingting Song
| |
Collapse
|
12
|
Chen HL, Yang D, Chen CR, Tian GZ, Kim DH. In situ polymerization of conducting polymers around living neural cells: Cellular effect study. Colloids Surf B Biointerfaces 2022; 213:112410. [PMID: 35176603 DOI: 10.1016/j.colsurfb.2022.112410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
Conducting polymer has been directly polymerized around living neural cells or in the cortex with the aim of creating an intimate contact between implantable electrical devices and electrogenetic cells. The long term cellular effect after conductive polymer coating, a critical issue for practical applications, has not been reported. In this study, poly(3,4-ethylenedioxythiophene) PEDOT was directly polymerized around the living primary neural and PC12 cells under varying current densities, potentials and charge-balanced current pulses. The cell morphology, nuclei evolution, and cell viability post PEDOT polymerization were studied at different time points. The aim of this study was to investigate the immediate and long-term cellular response towards in-situ polymerization of conductive polymers and to provide experimental information on the feasibility of this technique in practical applications.
Collapse
Affiliation(s)
- Hai-Lan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
| | - Dan Yang
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Chun-Rong Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Guang-Zhao Tian
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
13
|
Rotondo E, Riva A, Graziosi A, Pellegrino N, Di Battista C, Di Stefano V, Striano P. Non-pharmacological treatments for pediatric refractory epilepsies. Expert Rev Neurother 2022; 22:337-349. [PMID: 35320056 DOI: 10.1080/14737175.2022.2057847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Antiseizure medications (ASMs) are the primary treatment option for epilepsies of wide etiologies, however, about 10-20% of children do not gain sustained seizure control and in this case, it is worth investigating "alternative" therapeutic approaches aside from ASMs. Nowadays, non-pharmacological strategies for epilepsy treatment encompass dietary interventions, neurostimulation-based techniques, and biobehavioral approaches. AREAS COVERED A search on PubMed database was conducted. Experimental and clinical studies, as well as meta-analysis and structured reviews on the latest non-pharmacological treatments for drug-resistant epilepsy (DRE) in children, were included. Special attention is given to the efficacy and tolerability outcomes, trying to infer the role novel approaches may have in the future. EXPERT OPINION The large heterogeneity of primary clinical outcomes and the unavoidable subjective response of each patient to treatments prevents Researchers from the identification of a single, reliable, approach to treat DRE. The understanding of fine pathophysiologic processes is giving the way to the use of alternative therapies, such as the well-known ketogenic diet, in a "personalized" view of treatment. The goal is to apply the non-pharmacological treatment most suitable for the patient's sake.
Collapse
Affiliation(s)
- Eleonora Rotondo
- Division of Pediatrics and Neonatology, Ciri Hospital, ASL TO4, Ciri, Torino, Italy
| | - Antonella Riva
- Paeditric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| | - Alessandro Graziosi
- Department of Neuroscience Imaging and Clinical Sciences, University G. D'Annunzio, Chieti, Italy
| | - Noemi Pellegrino
- Department of Neonatology, National Maternity Hospital, Dublin, Ireland
| | | | - Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and advanced Diagnostic (BIND), University of Palermo, Italy
| | - Pasquale Striano
- Paeditric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genova, Italy
| |
Collapse
|
14
|
da Silva Fiorin F, de Araújo E Silva M, Rodrigues AC. Electrical stimulation in animal models of epilepsy: A review on cellular and electrophysiological aspects. Life Sci 2021; 285:119972. [PMID: 34560081 DOI: 10.1016/j.lfs.2021.119972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/24/2023]
Abstract
Epilepsy is a debilitating condition, primarily refractory individuals, leading to the search for new efficient therapies. Electrical stimulation is an important method used for years to treat several neurological disorders. Currently, electrical stimulation is used to reduce epileptic crisis in patients and shows promising results. Even though the use of electricity to treat neurological disorders has grown worldwide, there are still many caveats that must be clarified, such as action mechanisms and more efficient stimulation treatment parameters. Thus, this review aimed to explore the comprehension of the main stimulation methods in animal models of epilepsy using rodents to develop new experimental protocols and therapeutic approaches.
Collapse
Affiliation(s)
- Fernando da Silva Fiorin
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil.
| | - Mariane de Araújo E Silva
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| | - Abner Cardoso Rodrigues
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Brazil
| |
Collapse
|
15
|
Zhang Z, Tian G, Duan X, Chen HL, Kim Richie DH. Nanostructured PEDOT Coatings for Electrode-Neuron Integration. ACS APPLIED BIO MATERIALS 2021; 4:5556-5565. [PMID: 35006733 DOI: 10.1021/acsabm.1c00375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural electrodes have been developed for the diagnosis and treatment of stroke, sensory deficits, and neurological disorders based on the electrical stimulation of nerve tissue and recording of neural electrical activity. A low interface impedance and large active surface area for charge transfer and intimate contact between neurons and the electrode are critical to obtain high-quality neural signal and effective stimulation without causing damage to both tissue and electrode. In this study, a nanostructured poly(3,4-ethylenedioxythiophene) (PEDOT) coating with lots of long protrusions was created via a one-step electrochemical polymerization from a dichloromethane solution without any rigid or soft templates. The nanostructures on the PEDOT coating were basically formed by intertwined PEDOT nanofibers, which further enhanced the active surface area. The fuzzy PEDOT-modified microelectrodes exhibited an impedance as low as 1 kΩ at 1 kHz, which is much lower than those produced from aqueous 3,4-ethylenedioxythiophene (EDOT) solution, and it was comparable with PEDOT films or composites created from/with template materials. Also, more than 150 times larger charge storage capacity density was obtained compared to the unmodified microelectrode. An in vitro biocompatibility test performed on PC12 cells and primary cells suggested that the PEDOT coatings support cell adhesion, growth, and neurite extension. These results suggest the great potential of the nanostructured PEDOT coating as an electroactive and biosafe intimate contact between the implanted neural electrode and neurons.
Collapse
Affiliation(s)
- Ziyi Zhang
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Guangzhao Tian
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Xiaoge Duan
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Hai-Lan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Dong-Hwan Kim Richie
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Rincon N, Barr D, Velez-Ruiz N. Neuromodulation in Drug Resistant Epilepsy. Aging Dis 2021; 12:1070-1080. [PMID: 34221550 PMCID: PMC8219496 DOI: 10.14336/ad.2021.0211] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/11/2021] [Indexed: 12/26/2022] Open
Abstract
Epilepsy affects approximately 70 million people worldwide, and it is a significant contributor to the global burden of neurological disorders. Despite the advent of new AEDs, drug resistant-epilepsy continues to affect 30-40% of PWE. Once identified as having drug-resistant epilepsy, these patients should be referred to a comprehensive epilepsy center for evaluation to establish if they are candidates for potential curative surgeries. Unfortunately, a large proportion of patients with drug-resistant epilepsy are poor surgical candidates due to a seizure focus located in eloquent cortex, multifocal epilepsy or inability to identify the zone of ictal onset. An alternative treatment modality for these patients is neuromodulation. Here we present the evidence, indications and safety considerations for the neuromodulation therapies in vagal nerve stimulation (VNS), responsive neurostimulation (RNS), or deep brain stimulation (DBS).
Collapse
Affiliation(s)
- Natalia Rincon
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Donald Barr
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Naymee Velez-Ruiz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
17
|
Opie NL, O'Brien TJ. The potential of closed-loop endovascular neurostimulation as a viable therapeutic approach for drug-resistant epilepsy: A critical review. Artif Organs 2021; 46:337-348. [PMID: 34101849 DOI: 10.1111/aor.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Over the last few decades, biomedical implants have successfully delivered therapeutic electrical stimulation to reduce the frequency and severity of seizures in people with drug-resistant epilepsy. However, neurostimulation approaches require invasive surgery to implant stimulating electrodes, and surgical, medical, and hardware complications are not uncommon. An endovascular approach provides a potentially safer and less invasive surgical alternative. This article critically evaluates the feasibility of endovascular closed-loop neuromodulation for the treatment of epilepsy. By reviewing literature that reported the impact of direct electrical stimulation to reduce the frequency of epileptic seizures, we identified clinically validated extracranial, cortical, and deep cortical neural targets. We identified veins in close proximity to these targets and evaluated the potential of delivering an endovascular implant to these veins based on their diameter. We then compared the risks and benefits of existing technology to describe a benchmark of clinical safety and efficacy that would need to be achieved for endovascular neuromodulation to provide therapeutic benefit. For the majority of brain regions that have been clinically demonstrated to reduce seizure occurrence in response to delivered electrical stimulation, vessels of appropriate diameter for delivery of an endovascular electrode to these regions could be achieved. This includes delivery to the vagus nerve via the 13.2 ± 0.9 mm diameter internal jugular vein, the motor cortex via the 6.5 ± 1.7 mm diameter superior sagittal sinus, and the cerebellum via the 7.7 ± 1.4 mm diameter sigmoid sinus or 6.2 ± 1.4 mm diameter transverse sinus. Deep cerebral targets can also be accessed with an endovascular approach, with the 1.9 ± 0.5 mm diameter internal cerebral vein and 1.2-mm-diameter thalamostriate vein lying in close proximity to the anterior and centromedian nuclei of the thalamus, respectively. This work identified numerous veins that are in close proximity to conventional stimulation targets that are of a diameter large enough for delivery and deployment of an endovascular electrode array, supporting future work to assess clinical efficacy and chronic safety of an endovascular approach to deliver therapeutic neurostimulation.
Collapse
Affiliation(s)
- Nicholas L Opie
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Parkville, VIC, Australia.,Synchron Inc., San Francisco, CA, USA
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Neurology, Alfred Health, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Intelligent automated drug administration and therapy: future of healthcare. Drug Deliv Transl Res 2021; 11:1878-1902. [PMID: 33447941 DOI: 10.1007/s13346-020-00876-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/13/2022]
Abstract
In the twenty-first century, the collaboration of control engineering and the healthcare sector has matured to some extent; however, the future will have promising opportunities, vast applications, and some challenges. Due to advancements in processing speed, the closed-loop administration of drugs has gained popularity for critically ill patients in intensive care units and routine life such as personalized drug delivery or implantable therapeutic devices. For developing a closed-loop drug delivery system, the control system works with a group of technologies like sensors, micromachining, wireless technologies, and pharmaceuticals. Recently, the integration of artificial intelligence techniques such as fuzzy logic, neural network, and reinforcement learning with the closed-loop drug delivery systems has brought their applications closer to fully intelligent automatic healthcare systems. This review's main objectives are to discuss the current developments, possibilities, and future visions in closed-loop drug delivery systems, for providing treatment to patients suffering from chronic diseases. It summarizes the present insight of closed-loop drug delivery/therapy for diabetes, gastrointestinal tract disease, cancer, anesthesia administration, cardiac ailments, and neurological disorders, from a perspective to show the research in the area of control theory.
Collapse
|
19
|
|
20
|
Hannan S, Faulkner M, Aristovich K, Avery J, Walker MC, Holder DS. Optimised induction of on-demand focal hippocampal and neocortical seizures by electrical stimulation. J Neurosci Methods 2020; 346:108911. [DOI: 10.1016/j.jneumeth.2020.108911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
|
21
|
Murakami H, Kinoshita M. Impaired cortical beta-band modulation presages innovation of neuromodulation in Parkinson's disease. Clin Neurophysiol 2020; 131:2484-2485. [PMID: 32800695 DOI: 10.1016/j.clinph.2020.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Affiliation(s)
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, Kyoto, Japan.
| |
Collapse
|
22
|
Eslami V, Lola MC, Karceski SC, Cavazos JE, Szabó CÁ. Changing characteristics of epilepsy interventional clinical trials over the last decade: Clinicaltrials.Gov registry. Epilepsy Res 2020; 164:106350. [PMID: 32447238 DOI: 10.1016/j.eplepsyres.2020.106350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Epilepsy affects about 1% of the world's population (over 50 million). Of these, one-third have refractory or medication-resistant epilepsy. This group of people drives the development and testing of new interventions for epilepsy. To better address the needs of people with epilepsy, the characteristics of clinical trials, as well as the gaps in the population of interest, need to be evaluated. METHODS We searched the www.ClinicalTrials.gov database using the keywords "seizure" or "epilepsy" between 9/1/2008-9/1/2018 and filtering for Interventional Clinical trials. The data were categorized by three equal time intervals (tertiles), and evaluated by type of intervention (behavioral, diet, device, drug, other), primary purpose (treatment, diagnosis, prevention, or basic science), gender, age, phase (Phase1 to Phase 4 trials), length and status of the study, enrollment/recruitment/randomization, location, blinding status, assignment group (single/parallel/crossover/factorial/sequential), and funding. We focused on drugs and devices and used a binary logistic regression model to analyze the role of time, length of study, funding, location, randomization, and age. RESULTS We found 359 epilepsy clinical trials; of these, 245 (68.2%) clinical trials involved drugs, and 55 (15.3%) were device trials. Over the three tertiles, the percentage of device trials increased while medication trials decreased. Device:drug trial odds ratios increased six times by the third tertile. Also, the results showed that clinical trials for drugs and devices occurred more in adults than children. Industry funding decreased 20% over time. The US contribution to clinical research was stable, but device trials were more likely to occur outside of the US. CONCLUSION Drugs constitute the substantial fields of interventional trials in epilepsy but decreased in proportion over the last decade, while the presence of the device trials steadily increased. Device trials focused on treatment and diagnosis of seizures and have been more invested in non-US countries.
Collapse
Affiliation(s)
- Vahid Eslami
- Department of Neurology, UT Health Science Center, 7703 Floyd Curl Drive, San Antonio 78229-7883, TX, USA.
| | - Morgan C Lola
- Department of Neurology, UT Health Science Center, 7703 Floyd Curl Drive, San Antonio 78229-7883, TX, USA; South Texas Comprehensive Epilepsy Center, UT Health Science Center, San Antonio, TX, USA
| | - Steven C Karceski
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| | - Jose E Cavazos
- Department of Neurology, UT Health Science Center, 7703 Floyd Curl Drive, San Antonio 78229-7883, TX, USA; South Texas Comprehensive Epilepsy Center, UT Health Science Center, San Antonio, TX, USA
| | - Charles Ákos Szabó
- Department of Neurology, UT Health Science Center, 7703 Floyd Curl Drive, San Antonio 78229-7883, TX, USA; South Texas Comprehensive Epilepsy Center, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|