1
|
Chen S, Yang J, Li L, Guo Y, Yang S, Su Z, Zhao S, Li X, Lin W, Du Y, Yin L, Wang L, Chen F. Characterization and pathogenicity of a novel avian orthoreovirus in China. Front Microbiol 2025; 15:1529351. [PMID: 39850133 PMCID: PMC11754254 DOI: 10.3389/fmicb.2024.1529351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/24/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction Avian orthoreovirus (ARV) is a significant pathogen causing viral arthritis, leading to substantial economic losses in the poultry industry worldwide. Methods A novel ARV strain, designated FJ202311, was isolated from a broiler farm in Fujian Province, China. Whole-genome sequencing was conducted using next-generation sequencing with MGI technology, and phylogenetic analysis of the sigma C amino acid sequence was performed. Comparative sequence analysis identified unique genetic features of FJ202311. Pathogenicity studies were carried out by inoculating broilers with the isolated strain and monitoring clinical signs, weight gain, and histopathological changes. Results The complete genome of FJ202311 was determined to be 23,495 base pairs in length, encoding 12 major proteins. Phylogenetic analysis revealed that FJ202311 forms a distinct genotypic cluster, exhibiting only 47.1% to 59.3% sequence identity to 16 reference ARV strains. Notably, 50 unique amino acid substitutions were identified in the sigma C protein. Pathogenicity tests demonstrated that FJ202311 caused severe arthritis and tenosynovitis in broilers. Infected birds exhibited significant weight loss compared to controls, with reductions of 11.78% and 8.93% at 14 and 21 days post-infection, respectively. Discussion This study highlights the unique molecular and pathogenic characteristics of the novel ARV strain FJ202311, contributing to our understanding of ARV diversity and epidemiology in China. These findings underscore the importance of continuous monitoring and provide insights for developing improved prevention and control strategies against ARV.
Collapse
Affiliation(s)
- Shunyan Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jialin Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yawei Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shenghua Yang
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, China
| | - Zetao Su
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Sucan Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xuesong Li
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yunping Du
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, China
| | - Lijuan Yin
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, China
| | - Lianxiang Wang
- Yunfu Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Xia W, Yu S, Huang J, Li Y, Wang P, Shen S, Feng M, Fu P, Guan H, Fan Z. Research Note: Real-time fluorescence-based recombinase-aided amplification for rapid detection of Mycoplasma synoviae. Poult Sci 2024; 103:103995. [PMID: 38996740 PMCID: PMC11298912 DOI: 10.1016/j.psj.2024.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Mycoplasma synoviae (MS) is an essential pathogenic mycoplasma in poultry worldwide, posing a serious threat to the poultry industry's health. Timely detection is imperative for early diagnosis, prevention, and control of MS infection. Current laboratory methods for MS detection are generally complicated, time-consuming, and require sophisticated equipment. Therefore, a simple and rapid method is urgently needed. This study developed a novel real-time fluorescence-based recombinase-aided amplification (RF-RAA) technique for detecting MS nucleic acids, enabling target gene amplification within 20 min at 39°C. The RF-RAA outcomes are interpretable in 2 modalities: real-time fluorescence monitoring employing a temperature-controlled fluorescence detector or direct visual inspection facilitated by a portable blue light transilluminator. This method exhibits robust specificity, demonstrating no cross-reactivity with various common poultry pathogens, and achieves high sensitivity, detecting as low as 10 copies/μL for the standard plasmid. Seventy-one clinical samples of chicken throat swabs were detected by RF-RAA and real-time fluorescence quantitative polymerase chain reaction (qPCR) methods. The diagnostic coincidence rates of qPCR with RF-RAA (fluorescence monitoring) and RF-RAA (visual observation) were determined to be 100% and 97.2% (69/71), respectively. In conclusion, the RF-RAA method developed in this study provides a rapid and visually observable approach for MS detection, offering a novel technique to diagnosing MS infection, especially in resource-limited settings.
Collapse
Affiliation(s)
- Wenlong Xia
- Yancheng Engineering Research Center of Animal Biologics, School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Shupei Yu
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Jing Huang
- Yancheng Engineering Research Center of Animal Biologics, School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Yanan Li
- Yancheng Engineering Research Center of Animal Biologics, School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Pei Wang
- Yancheng Engineering Research Center of Animal Biologics, School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Shujun Shen
- Yancheng Engineering Research Center of Animal Biologics, School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Minsheng Feng
- Yancheng Engineering Research Center of Animal Biologics, School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Pengcheng Fu
- Yancheng Engineering Research Center of Animal Biologics, School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Huilin Guan
- Yancheng Engineering Research Center of Animal Biologics, School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Zhongjun Fan
- Yancheng Engineering Research Center of Animal Biologics, School of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
3
|
Zhang G, Han L, Li Z, Chen Y, Li Q, Wang S, Shi H. Screening of immunogenic proteins and evaluation of vaccine candidates against Mycoplasma synoviae. NPJ Vaccines 2023; 8:121. [PMID: 37582795 PMCID: PMC10427712 DOI: 10.1038/s41541-023-00721-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Mycoplasma synoviae (M. synoviae) is a serious avian pathogen that causes significant economic losses to chicken and turkey producers worldwide. The currently available live attenuated and inactivated vaccines provide limited protection. The objective of this study was to identify potential subunit vaccine candidates using immunoproteomics and reverse vaccinology analyses and to evaluate their preliminary protection. Twenty-four candidate antigens were identified, and five of them, namely RS01790 (a putative sugar ABC transporter lipoprotein), BMP (a substrate-binding protein of the BMP family ABC transporter), GrpE (a nucleotide exchange factor), RS00900 (a putative nuclease), and RS00275 (an uncharacterized protein), were selected to evaluate their immunogenicity and preliminary protection. The results showed that all five antigens had good immunogenicity, and they were localized on the M. synoviae cell membrane. The antigens induced specific humoral and cellular immune responses, and the vaccinated chickens exhibited significantly greater body weight gain and lower air sac lesion scores and tracheal mucosal thicknesses. Additionally, the vaccinated chickens had lower M. synoviae loads in throat swabs than non-vaccinated chickens. The protective effect of the RS01790, BMP, GrpE, and RS00900 vaccines was better than that of the RS00275 vaccine. In conclusion, our study demonstrates the potential of subunit vaccines as a new approach to developing M. synoviae vaccines, providing new ideas for controlling the spread of M. synoviae worldwide.
Collapse
Affiliation(s)
- Guihua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lejiabao Han
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zewei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yifei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University (JIRLAAPS), Yangzhou, China.
| |
Collapse
|
4
|
Farnoushi Y, Heller D, Lublin A. Development of a wide-range real-time RT-PCR assay for detection of Avian reovirus (ARV). J Virol Methods 2022; 310:114613. [PMID: 36087792 DOI: 10.1016/j.jviromet.2022.114613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/24/2022]
Abstract
Avian reovirus (ARV) is a common pathogen in chickens and other birds causing a variety of clinical symptoms such as arthritis and tenosynovitis but also enteric and respiratory symptoms. A rapid method that detects as many ARV genotypes as possible, will contribute to the early identification and control of the virus infection that causes high economic damage to the poultry industry worldwide. In this study, a real-time reverse transcription polymerase chain reaction (RT-qPCR) assay for the detection of ARV was developed. The RT-qPCR detection threshold for ARV genomic RNA standard cases was 10 copies/µL. Reproducibility of the RT-qPCR was confirmed by intra- and inter-assays. When the nucleic acids of different ARV genotypes and other common avian pathogens (IBDV, AIV, NDV, and IBV) were subjected to that RT-qPCR test, only ARV samples tested positive while all other pathogens tested negative. Due to the simplicity, convenience, high sensitivity, and specificity of the assay, the probe-based RT-qPCR is proposed to be used as an alternative diagnostic assay for the detection of ARVs in veterinary diagnostic laboratories.
Collapse
Affiliation(s)
- Yigal Farnoushi
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan 5025001, Israel; Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| | - Dan Heller
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Avishai Lublin
- Department of Avian Diseases, Kimron Veterinary Institute, Beit Dagan 5025001, Israel
| |
Collapse
|
5
|
Sellers HS. Avian Reoviruses from Clinical Cases of Tenosynovitis: An Overview of Diagnostic Approaches and 10-Year Review of Isolations and Genetic Characterization. Avian Dis 2022; 66:420-426. [PMID: 36715473 DOI: 10.1637/aviandiseases-d-22-99990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 01/24/2023]
Abstract
Reoviral-induced tenosynovitis/viral arthritis is an economically significant disease of poultry. Affected birds present with lameness, unilateral or bilateral swollen hock joints or shanks, and/or reluctance to move. In severe cases, rupture of the gastrocnemius or digital flexor tendons may occur, and significant culling may be necessary. Historically, vaccination with a combination of modified live and inactivated vaccines has successfully controlled disease. Proper vaccination reduced vertical transmission and provided maternal-derived antibodies to progeny to protect against disease, at an age when they were most susceptible. Starting in 2011-2012, an increased incidence of tenosynovitis/viral arthritis was observed in chickens and turkeys. In chickens, progeny from reovirus-vaccinated breeders were affected, suggesting commercial vaccines did not provide adequate protection against disease. In turkeys, clinical disease was primarily in males, although females can also be affected. The most significant signs were observed around 14-16 wks of age and include reluctance to move, lameness, and limping on one or both legs. The incidence of tenosynovitis/viral arthritis presently remains high. Reoviruses isolated from clinical cases are genetically and antigenically characterized as variants, meaning they are different from vaccine strains. Characterization of the field isolates reveals multiple new genotypes and serotypes that are significantly different from commercial vaccines and each other. In 2012, a single prevalent virus was isolated from a majority of the cases submitted to the Poultry Diagnostic and Research Center at the University of Georgia. Genetic characterization of the σC protein revealed the early isolates belonged to genetic cluster (GC) 5. Soon after the initial identification of the GC5 variant reovirus, many broiler companies incorporated these isolates from their farms into their autogenous vaccines and continue to do so today. The incidence of GC5 field isolates has decreased significantly, likely because of the widespread use of the isolates in autogenous vaccines. Unfortunately, variant reoviruses belonging to multiple GCs have emerged, despite inclusion of these isolates in autogenous vaccines. In this review, an overview of nomenclature, sample collection, and diagnostic testing will be covered, and a summary of variant reoviruses isolated from clinical cases of tenosynovitis/viral arthritis over the past 10 yrs will be provided.
Collapse
Affiliation(s)
- Holly S Sellers
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602,
| |
Collapse
|
6
|
Xia W, Chen K, Liu W, Yin Y, Yao Q, Ban Y, Pu Y, Zhan X, Bian H, Yu S, Han K, Yang L, Wang H, Fan Z. Rapid and visual detection of Mycoplasma synoviae by recombinase-aided amplification assay combined with a lateral flow dipstick. Poult Sci 2022; 101:101860. [PMID: 35537343 PMCID: PMC9118145 DOI: 10.1016/j.psj.2022.101860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Mycoplasma synoviae (MS) is an important avian pathogen that has brought substantial economic losses to the global poultry industry. Fast and accurate diagnosis is one of the critical factors for the control of MS infection. This study established a simple, rapid and visual detection method for MS using a recombinase-aided amplification (RAA) combined with a lateral flow dipstick (LFD). The reaction temperature and time of the RAA-LFD assay were optimized after selecting the primers and probe, and the specificity and sensitivity rates were analyzed. The results showed that RAA could amplify the target gene in 20 min at a constant temperature of 38°C, and the amplification products could be visualized by LFD within 5 min. There was no cross-reaction with Mycoplasma gallisepticum (MG), Pasteurella multocida (P. multocida), Escherichia coli (E. coli), Newcastle disease virus (NDV), infectious bursal disease virus (IBDV), infectious bronchitis virus (IBV), and avian reovirus (ARV). Furthermore, the RAA-LFD assay exhibited high sensitivity with a detection limit of 10 copies/μL. A total of 128 clinical samples with suspected infection of MS were tested by RAA-LFD, PCR, and real-time fluorescence quantitative PCR (RFQ-PCR). The coincidence rate of the detection results was 95.3% between RAA-LFD and PCR, and 98.4% between RAA-LFD and RFQ-PCR. These results suggested that the RAA-LFD method established in the present study was easy to use and was associated with strong specificity and high sensitivity. This method was very suitable for the rapid detection of MS in clinical practice.
Collapse
Affiliation(s)
- Wenlong Xia
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Ke Chen
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Wensong Liu
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yan Yin
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Qian Yao
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yu Ban
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yiwen Pu
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Xingmin Zhan
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Hongchun Bian
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Shupei Yu
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Kunpeng Han
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Ling Yang
- Yancheng Animal Husbandry and Veterinary Station, Yancheng 224001, China
| | - Huanli Wang
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Zhongjun Fan
- Yancheng Engineering Research Center of Animal Biologics, College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng 224002, China.
| |
Collapse
|
7
|
Bergeron N, Hébert G, Pelletier MC, Cai HY, Brochu-Morin ME, Vaillancourt JP. Prevalence of Mycoplasma synoviae and Its Impact on Productivity in Commercial Poultry Farms in Quebec, Canada. Avian Dis 2021; 65:547-553. [DOI: 10.1637/21-00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/21/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Nadia Bergeron
- Équipe québécoise de contrôle des maladies avicoles, Longueuil, Québec, Canada J4H 3Y9
| | - Ghislain Hébert
- Équipe québécoise de contrôle des maladies avicoles, Longueuil, Québec, Canada J4H 3Y9
| | - Martin C. Pelletier
- Équipe québécoise de contrôle des maladies avicoles, Longueuil, Québec, Canada J4H 3Y9
| | - Hugh Y. Cai
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Marie-Eve Brochu-Morin
- Direction générale des laboratoires et de la santé animale, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation, Québec, Québec, Canada G1P 3W8
| | - Jean-Pierre Vaillancourt
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada J2S 2M2
| |
Collapse
|
8
|
Altered gene expression profiles of the MDA5 signaling pathway in peripheral blood lymphocytes of chickens infected with avian reovirus. Arch Virol 2019; 164:2451-2458. [PMID: 31273469 DOI: 10.1007/s00705-019-04340-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 01/27/2023]
Abstract
Avian reovirus (ARV) is a member of the genus Orthoreovirus in the family Reoviridae and causes a severe syndrome including viral arthritis that leads to considerable losses in the poultry industry. Innate immunity plays a significant role in host defense against ARV. Here, we explored the interaction between ARV and the host innate immune system by measuring mRNA expression levels of several genes associated with the MDA5 signaling pathway. The results showed that expression peaks for MDA5, MAVS, TRAF3, TRAF6, IRF7, IKKɛ, TBK1 and NF-κB occurred at 3 days postinfection (dpi). Moreover, type I IFN (IFN-α, IFN-β) and IL-12 expression levels peaked at 3 dpi, while type II IFN (IFN-γ), IL-6, IL-17 and IL-18 expression reached a maximum level at 1 dpi. IL-8 changed at 5 dpi, and IL-1β and TNF-α changed at 7 dpi. Interestingly, several key IFN-stimulated genes (ISGs), including IFITM1, IFITM2, IFITM5, Mx1 and OASL, were simultaneously upregulated and reached maximum values at 3 dpi. These data indicate that the MDA5 signaling pathway and innate immune cytokines were induced after ARV infection, which would contribute to the ARV-host interaction, especially at the early infection stage.
Collapse
|
9
|
Cruz-Flores R, Mai HN, Dhar AK. Multiplex SYBR Green and duplex TaqMan real-time PCR assays for the detection of Photorhabdus Insect-Related (Pir) toxin genes pirA and pirB. Mol Cell Probes 2018; 43:20-28. [PMID: 30576786 PMCID: PMC7127373 DOI: 10.1016/j.mcp.2018.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
Abstract
Acute hepatopancreatic necrosis disease (AHPND), also known as Early mortality syndrome (EMS), is a recently emerged lethal disease that has caused major economic losses in shrimp aquaculture. The etiologic agents are Vibrio spp. that carry Photorhabdus Insect-Related (Pir) toxin genes pirA and pirB. A multiplex SYBR Green real-time PCR was developed that detects pirA, pirB, and two internal control genes, the shrimp 18S rRNA and the bacterial 16S rRNA genes in a single reaction. The pirB primers amplify the 3'-end of the pirB gene allowing the detection of Vibrio spp. mutants that contain a complete deletion of pirA and the partial deletion of pirB. The assay also detects mutants that contain the entire pirA gene and the deletion of the pirB gene. Since both toxin genes are needed for disease development, this assays can distinguish between pathogenic strains of Vibrio spp. that cause AHPND in shrimp and mutants that do not cause disease. The amplicons for pirA, pirB, 18S rRNA and 16S rRNA showed easily distinguishable melting temperatures of 78.21 ± 0.18, 75.20 ± 0.20, 82.28 ± 0.34 and 85.41 ± 0.21 °C respectively. Additionally, a duplex real-time PCR assay was carried out by designing TaqMan probes for the pirA and pirB primers. The diagnostic sensitivity and specificity was compared between the SYBR Green and TaqMan assays. Both assays showed similar sensitivity with a limit of detection being 10 copies for pirA and pirB, and neither assays showed any cross reaction with other known bacterial and viral pathogens in shrimp. The high sensitivity of both assays make them suitable for the detection of low copies of the pirA and pirB genes in AHPND causing Vibrio spp. as well as for detecting non-pathogenic mutants. Development of a multiplex SYBR Green real-time PCR for the simultaneous detection of the pirA and pirB genes of Vibrio spp. Comparison of the SYBR Green assay with the TaqMan assay for the detection of the pirA and pirB genes of Vibrio spp. First report of real-time PCR assays for the simultaneous detection of the pirA and pirB genes of Vibrio spp.
Collapse
Affiliation(s)
- Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, AZ. 85721, USA
| | - Hung Nam Mai
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, AZ. 85721, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal and Comparative Biomedical Sciences, The University of Arizona, AZ. 85721, USA.
| |
Collapse
|
10
|
Ligozzi M, Galia L, Carelli M, Piccaluga PP, Diani E, Gibellini D. Duplex real-time polymerase chain reaction assay for the detection of human KIPyV and WUPyV in nasopharyngeal aspirate pediatric samples. Mol Cell Probes 2018; 40:13-18. [PMID: 29883628 PMCID: PMC7172048 DOI: 10.1016/j.mcp.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/09/2022]
Abstract
In this study, we describe a duplex real-time PCR assay for the simultaneous detection of KIPyV and WUPyV polyomaviruses based on TaqMan probes. This assay detected 500 copies/mL both for KIPyV and WUPyV in 100% of tested positive samples. We assessed this technique on 482 nasopharyngeal aspirate specimens from hospitalized pediatric patients with respiratory symptoms, previously analyzed with commercial multiplex assay for 16 major respiratory viruses. Our assay detected KIPyV genome in 15 out of 482 samples (3.1%) and WUPyV genome in 24 out of 482 samples (4.9%), respectively, and in three samples the coinfection of the two viruses was found. Interestingly, 29 out of 36 of samples with KIPyV and/or WUPyV infection exhibited a co-infection with one or more respiratory viruses confirming that KIPyV and WUPyV were often detected in association to other viral infections. Of note, KIPyV and WUPyV were detected singularly in 4 out of 15 cases and 3 out of 24 cases, respectively, suggesting a possible direct role of these viruses in the respiratory diseases. In conclusion, this method could be taken into account as an alternative technical approach to detect KIPyV and/or WUPyV in respiratory samples for epidemiological and diagnostic analyses.
Collapse
Affiliation(s)
- Marco Ligozzi
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy.
| | - Liliana Galia
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Maria Carelli
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy; Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Erica Diani
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Davide Gibellini
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| |
Collapse
|
11
|
Kuo HC, Lo DY, Chen CL, Tsai YL, Ping JF, Lee CH, Lee PYA, Chang HFG. Rapid and sensitive detection of Mycoplasma synoviae by an insulated isothermal polymerase chain reaction-based assay on a field-deployable device. Poult Sci 2016; 96:35-41. [PMID: 27389062 PMCID: PMC5161023 DOI: 10.3382/ps/pew228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/04/2016] [Accepted: 05/10/2016] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma synoviae (MS), causing respiratory diseases, arthritis, and eggshell apex abnormalities in avian species, is an important pathogen in the poultry industry. Implementation of a biosecurity plan is important in MS infection management. Working on a field-deployable POCKIT™ device, an insulated isothermal polymerase chain reaction (iiPCR) assay has a potential for timely MS detection on the farm. The MS iiPCR assay had limit of detection 95% of about 9 genome equivalents by testing serial dilutions of a standard DNA. The detection endpoint of the assay for detection of MS genomic DNA was comparable to a reference real-time PCR. The assay did not crossreact with other important avian pathogens, including avian reovirus, Mycoplasma gallisepticum, Staphylococcus aureus, Escherichia coli, Pasteurella multocida, and Salmonella Pullorum. When 92 synovial fluid and respiratory tract swab samples collected from chickens, turkeys, and geese suspected of MS infection were tested, the clinical performance of the MS iiPCR had 97.8% agreement (Cohen's kappa value, 0.95) with that of the reference real-time PCR. In conclusion, the MS iiPCR/POCKIT™ system, working with field-deployable manual or automatic nucleic acid extraction methods, has potential to serve as a rapid and sensitive on-site tool to facilitate timely detection of MS.
Collapse
Affiliation(s)
- Hung-Chih Kuo
- Yunlin-Chiayi-Tainan of Animal Disease Diagnostic Center, Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Dan-Yuan Lo
- Yunlin-Chiayi-Tainan of Animal Disease Diagnostic Center, Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | - Chiou-Lin Chen
- Yunlin-Chiayi-Tainan of Animal Disease Diagnostic Center, Department of Veterinary Medicine, National Chiayi University, Chiayi, Taiwan
| | | | | | | | | | | |
Collapse
|