1
|
Tan L, Li J, Duan Y, Liu J, Zheng S, Liang X, Fang C, Zuo M, Tian G, Yang Y. Current knowledge on the epidemiology and prevention of Avian leukosis virus in China. Poult Sci 2024; 103:104009. [PMID: 39002365 PMCID: PMC11298916 DOI: 10.1016/j.psj.2024.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Avian leukosis virus (ALV) is an enveloped retrovirus with a single-stranded RNA genome, belonging to the genus Alpharetrovirus within the family Retroviridae. The disease (Avian leukosis, AL) caused by ALV is mainly characterized by tumor development and immunosuppression in chickens, which increases susceptibility to other pathogens and leads to significant economic losses in the Chinese poultry industry. The government and poultry industry have made lots of efforts to eradicate ALV, but the threat of which remains not vanished. This review provides a summary of the updated understanding of ALV in China, which mainly focuses on genetic and molecular biology, epidemiology, and diagnostic methods. Additionally, promising antiviral agents and ALV eradication strategies performed in China are also included.
Collapse
Affiliation(s)
- Lei Tan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China; Yunnan Sino-Science Gene Technology Co. Ltd. Kunming, Yunnan, China
| | - Juan Li
- Yunnan Sino-Science Gene Technology Co. Ltd. Kunming, Yunnan, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Yuqing Duan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Jing Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Shiling Zheng
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Xiongyan Liang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Chun Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Mengting Zuo
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Guangming Tian
- College of Animal Science and Technology, Yangtze University, Jingzhou, China.
| | - Yuying Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China.
| |
Collapse
|
2
|
Dou J, Wang Z, Li L, Lu Q, Jin X, Ling X, Cheng Z, Zhang T, Shao H, Zhai X, Luo Q. A Multiplex Quantitative Polymerase Chain Reaction for the Rapid Differential Detection of Subgroups A, B, J, and K Avian Leukosis Viruses. Viruses 2023; 15:1789. [PMID: 37766196 PMCID: PMC10535029 DOI: 10.3390/v15091789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Avian leukosis (AL), caused by avian leukosis virus (ALV), is a contagious tumor disease that results in significant economic losses for the poultry industry. Currently, ALV-A, B, J, and K subgroups are the most common in commercial poultry and cause possible coinfections. Therefore, close monitoring is necessary to avoid greater economic losses. In this study, a novel multiplex quantitative polymerase chain reaction (qPCR) assay was developed to detect ALV-A, ALV-B, ALV-J, and ALV-K with limits of detection of 40, 11, 13.7, and 96 copies/µL, respectively, and no cross-reactivity with other ALV subtypes and avian pathogens. We detected 852 cell cultures inoculated with clinical samples using this method, showing good consistency with conventional PCR and ELISA. The most prevalent ALV strain in Hubei Province, China, was still ALV-J (11.74%). Although single infections with ALV-A, ALV-B, and ALV-K were not found, coinfections with different subgroup strains were identified: 0.7% for ALV-A/J, 0.35% for ALV-B/J, 0.25% for ALV-J/K, and 0.12% for ALV-A/B/K and ALV-A/B/J. Therefore, our novel multiplex qPCR may be a useful tool for molecular epidemiology, clinical detection of ALV, and ALV eradication programs.
Collapse
Affiliation(s)
- Junfeng Dou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
- Department of Animal Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zui Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Li Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Qin Lu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Xinxin Jin
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Xiaochun Ling
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Zhengyu Cheng
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| | - Xinguo Zhai
- Department of Animal Medicine, College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Qingping Luo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Special One, Nanhuyaoyuan, Hongshan District, Wuhan 430064, China; (J.D.); (Z.W.); (L.L.); (Q.L.); (X.J.); (X.L.); (H.S.)
- Hubei Hongshan Laboratory, Wuhan 430064, China
| |
Collapse
|
3
|
Kannaki TR, Edigi P, Yalagandula N, Haunshi S. Simultaneous detection and differentiation of three oncogenic viral diseases of chicken by use of multiplex PCR. Anim Biotechnol 2022; 33:1760-1765. [PMID: 33928832 DOI: 10.1080/10495398.2021.1914643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Avian oncogenic or tumor diseases are common in poultry industry causing significant economic loss. Marek's disease (MD), avian leukosis (AL) and Reticuloendotheliosis (RE) are the three major viral oncogenic infections that are difficult to differentiate with gross lesions. Multiplex PCR for simultaneous detection and differentiation of these three viruses was developed and validated. The primers targeting the genes of pp38, pol and LTR for MDV, ALV and REV were designed to yield 206, 429, and 128 bp, respectively. The sensitivity of the PCR primers was checked with serial dilution of positive template DNA for each virus and found to be in the range of 10-5 to 10-7 of 1 µg/µl of initial template DNA. Out of 114 suspected tumor samples screened, 8 samples were positive for MDV, 13 samples were positive for ALV and 31 samples positive for REV. Five samples were positive for both MD and ALV; 3 samples were positive for MD and REV and 25 samples were positive for ALV and REV. Eight samples were positive for all three viruses. Multiplex PCR demonstrated to be a useful technique for simultaneous, rapid detection and differentiation of major tumor causing and immunosuppressive viral diseases of chicken.
Collapse
Affiliation(s)
- T R Kannaki
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Priyanka Edigi
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| | - Nishitha Yalagandula
- Department of Veterinary Microbiology, P. V. Narsimha Rao Telangana Veterinary University, Hyderabad, India
| | - Santosh Haunshi
- ICAR-Directorate of Poultry Research, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Biotic concerns in generating molecular diagnosis matrixes for 4 avian viruses with emphasis on Marek's disease virus. J Virol Methods 2019; 274:113708. [PMID: 31351169 PMCID: PMC7119753 DOI: 10.1016/j.jviromet.2019.113708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 01/18/2023]
Abstract
The great advance in the field of diagnosis of avian viruses is reflecting the highly sophisticated molecular assays of the human and general virology in providing highly sensitive and fast methods of diagnosis. The present review will discuss the biotic factors and the complexities that became evident with the evolution of the novel molecular diagnostic assays with emphasis on 4 avian viruses, chicken anemia, infectious laryngotracheitis, turkey meningoencephalitis, but mainly on Marek's disease virus. To create a biologically meaningful diagnosis, attention should be dedicated to various biotic factors and not only of the diagnostic assay. Included among the important factors are, (a) the sample examined and the sampling strategy, (b) the outcomes of the pathogen amplification ex vivo, (c) the sampling time and its reflection on the disease diagnosis, (d) the impact of simultaneous multiple virus-infections regarding the ability to demonstrate all pathogens and inter- and intra-interactions between the pathogens. A concerted consideration of the relevant factors and the use of advanced molecular diagnostic assay would yield biologically significant diagnosis in real-time that would beneficiate the poultry industry.
Collapse
|
5
|
Zeng F, Wu M, Ma L, Han Z, Shi Y, Zhang Y, Liu C, Zhang S, Cong F, Liu S. Rapid and sensitive real-time recombinase polymerase amplification for detection of Marek's disease virus. Mol Cell Probes 2019; 48:101468. [PMID: 31580913 DOI: 10.1016/j.mcp.2019.101468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Marek's disease (MD) is one of the most devastating diseases of poultry. It's caused by the highly infectious alphaherpesvirus MD virus serotype 1 (MDV-1). In this study, a rapid and easy-to-use assay based on recombinase polymerase amplification (RPA) was developed for MDV detection. Primer-probe sets targeting the highly conserved region of Meq gene were designed and applied to the RPA assay. The assay was carried out on a real-time thermostatic fluorescence detector at 39 °C for 20 min. As revealed by the results, no cross-reactions were found with the Newcastle disease virus (NDV), chicken infectious anemia virus (CAV), infectious bursal disease virus (IBDV), avian infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), avain influenza virus (AIV), avian leucosis virus (ALV), avian reovirus (ARV), Marek's disease virus serotype 2 (MDV-2) and turkey herpes virus (HVT), indicating appropriate specificity of the assay. Plasmid DNA standards were used to determine the sensitivity of the assay and the detection limit was 102copies/μL. To further evaluate the clinical performance, 94 clinical samples were subjected to the RPA assay and 28 samples were tested MDV positive, suggesting that the real-time RPA assay was sufficient enough for clinical sample detection. Thus, a highly specific and sensitive real-time RPA assay was established and validated as a candidate for MDV diagnosis. Additionally, the portability of real-time RPA assay makes it suitable to be potentially applied in clinical diagnosis in the field, especially in resource-limited settings.
Collapse
Affiliation(s)
- Fanwen Zeng
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China; College of Animal Science of South China Agricultural University, Guangzhou, 510640, China
| | - Miaoli Wu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Lei Ma
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150026, China
| | - Yue Shi
- Beijing Senkang Biotech Development Co., Ltd., Beijing, 101400, China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150026, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150026, China
| | - Shouquan Zhang
- College of Animal Science of South China Agricultural University, Guangzhou, 510640, China.
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150026, China.
| |
Collapse
|
6
|
Liu H, Ma K, Liu M, Yang C, Huang X, Zhao Y, Qi K. Histologic findings and viral antigen distribution in natural coinfection of layer hens with subgroup J avian leukosis virus, Marek's disease virus, and reticuloendotheliosis virus. J Vet Diagn Invest 2019; 31:761-765. [PMID: 31378167 DOI: 10.1177/1040638719868274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We investigated the histologic findings and viral antigen distribution in 3 cases of natural coinfection of layer hens with subgroup J avian leukosis virus (ALV-J), Marek's disease virus (MDV), and reticuloendotheliosis virus (REV) in hens. At autopsy, diseased hens were found to have hepatosplenomegaly and thickened proventriculi, with white tumor nodules in the liver, spleen, lung, kidney, and ovary. Microscopically, most tissues had been infiltrated by neoplastic lymphocytes; the spleen, lung, proventriculus, heart, and liver had been infiltrated by both neoplastic lymphocytes and myeloblastic cells and/or primitive reticular cells. Fluorescence multiplex immunohistochemistry staining revealed ALV-J, MDV, and REV antigens co-expressed in the same tissue, even the same cell.
Collapse
Affiliation(s)
- Hongmei Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kui Ma
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Miaomiao Liu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Chengcheng Yang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueting Huang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Yu Zhao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
7
|
Luo S, Xie Z, Huang J, Xie Z, Xie L, Zhang M, Li M, Wang S, Li D, Zeng T, Zhang Y, Fan Q, Deng X. Simultaneous Differentiation of the N1 to N9 Neuraminidase Subtypes of Avian Influenza Virus by a GeXP Analyzer-Based Multiplex Reverse Transcription PCR Assay. Front Microbiol 2019; 10:1271. [PMID: 31231349 PMCID: PMC6568037 DOI: 10.3389/fmicb.2019.01271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
To date, nine neuraminidase (NA) subtypes of avian influenza virus (AIV) have been identified in poultry and wild birds. Rapid and effective methods for differentiating these nine NA subtypes are needed. We developed and validated a rapid, sensitive, and robust method utilizing a GeXP analyzer-based multiplex RT-PCR assay and capillary electrophoresis for the simultaneous differentiation of the N1 to N9 subtypes in a single-tube reaction. Ten pairs of primers-nine subtype-specific pairs and one pan-AIV pair-were screened and used to establish the GeXP multiplex RT-PCR assay. A single subtype was detected using the developed GeXP assay; the N1 to N9 AIV subtypes individually generated two target peaks: the NA subtype-specific peak and the general AIV peak. Different concentrations of multiplexed subtypes were tested with this GeXP assay and the peaks of the corresponding NA subtypes were generated, suggesting that this GeXP assay is useful for identifying NA subtypes in mixed samples. Moreover, no peaks were generated for other important avian viruses, indicating negative results and validating the lack of cross-reactions between AIV subtypes and other avian pathogens. RNA templates synthesized through in vitro transcription were used to analyze the sensitivity of the assay; the limit of detection was 100 copies per reaction mixture. The results obtained from clinical samples using this GeXP method were consistent with the results of the neuraminidase inhibition (NI) test, and the ability of the GeXP assay to identify mixed infections was superior to amplicon sequencing of isolated viruses. In conclusion, this GeXP assay is proposed as a specific, sensitive, rapid, high-throughput, and versatile diagnostic tool for nine NA subtypes of AIV.
Collapse
Affiliation(s)
- Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Dan Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| | - Xianwen Deng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, China
| |
Collapse
|
8
|
Mu X, Chen W, Shi J, Li X, Wang Y. Development of a GeXP-Based Multiplex RT-PCR Assay for Detection of Long Noncoding RNA in Hepatocellular Carcinoma. Lab Med 2019; 50:180-188. [PMID: 30423146 DOI: 10.1093/labmed/lmy064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE To develop a multiplex quantitative polymerase chain reaction (qPCR) assay based on the GenomeLab™ GeXP Genetic Analysis System (GeXP) for detection of long noncoding RNA in hepatocellular carcinoma (HCC). METHODS From PubMed database articles published between 2011 and 2016, we selected 8 kinds of long noncoding RNAs (lncRNAs) related to HCC. Further, we examined 23 pairs of HCC and adjacent noncancerous tissues, using the optimized GeXP multiplex reverse transcription polymerase chain reaction (RT-PCR) assay. RESULTS The expression level of lncRNA NEAT1, H19, MALAT1, HOTAIR, DANCR, UCA1, and BCAR4 were significantly decreased, compared with that in adjacent noncancerous tissues (all P <.05). The expression level of lncRNA GAS5 was statistically significantly increased (P <.05). For the quantitative polymerase chain reaction (qPCR) assay, 8 kinds of lncRNAs were detected as a result of the GeXP assay. CONCLUSIONS The GeXP-based multiplex RT-PCR assay may be used as an alternative method for assisting in the histopathological diagnosis of HCC in liver lesions.
Collapse
Affiliation(s)
- Xiaofeng Mu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, China.,Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, China
| | - Wen Chen
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, China
| | - Junying Shi
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, China
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, China
| |
Collapse
|
9
|
Marinho RC, Martins GR, Souza KC, Sousa ALM, Silva STC, Nobre JA, Teixeira MFS. Duplex nested-PCR for detection of small ruminant lentiviruses. Braz J Microbiol 2018; 49 Suppl 1:83-92. [PMID: 30249525 PMCID: PMC6328810 DOI: 10.1016/j.bjm.2018.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 11/30/2022] Open
Abstract
Small ruminant lentiviruses (SRLV) have high genetic variability which results in different viral strains around the world. This create a challenge to design sensible primers for molecular diagnosis in different regions. This work proposes a protocol of duplex nested-PCR for the precise diagnosis of SRLV. The technique was designed and tested with the control strains CAEV Co and MVV 1514. Then, field strains were submitted to the same protocol of duplex nested-PCR. Blood samples of sheep and goats were tested with AGID and nested PCR with specific primers for pol, gag and LTR. The AGID results showed low detection capacity of positive animals, while the nested PCR demonstrated a greater capacity of virus detection. Results demonstrated that LTR-PCR was more efficient in detecting positive sheep samples, whereas gag-PCR allowed a good detection of samples of positive goats and positive sheep. In addition, pol-PCR was more efficient with goat samples than for sheep. Duplex nested PCR performed with standard virus samples and field strains demonstrated that the technique is more efficient for the detection of multiple pro-viral DNA sequences. This study demonstrated a successful duplex nested PCR assay allowing a more accurate diagnosis of SRLV.
Collapse
Affiliation(s)
- Rebeca C Marinho
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil.
| | - Gabrielle R Martins
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | | | - Ana Lídia M Sousa
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | - Sabrina Tainah C Silva
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | - Juliana A Nobre
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| | - Maria F S Teixeira
- Universidade Estadual do Ceará, Programa de Pós-Graduação em Ciências Veterinárias, Laboratório de Virologia, Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Li X, Chen B, Zhang S, Li X, Chang J, Tang Y, Wu Y, Lu X. Rapid Detection of Respiratory Pathogens for Community-Acquired Pneumonia by Capillary Electrophoresis-Based Multiplex PCR. SLAS Technol 2018; 24:105-116. [PMID: 30048599 DOI: 10.1177/2472630318787452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Community-acquired pneumonia (CAP) is a common infectious disease linked to high rates of morbidity and mortality. Fast and accurate identification of the pathogens responsible for CAP will aid in diagnosis. We established a capillary electrophoresis-based multiplex PCR (CEMP) panel to enable the detection of viral and bacterial pathogens associated with CAP. The assay simultaneously detects and identifies the 13 common unculturable CAP viral and bacterial pathogens within 4 h. We evaluated the performance of a commercially available panel with 314 samples collected from CAP patients. We compared the results to those obtained with the liquid chip-based Luminex xTAG Respiratory Viral Panel (RVP) Fast Kit (for viruses) and the agarose gel-based Seegene PneumoBacter ACE Detection Kit (for atypical bacteria). All positive samples were further verified by the Sanger sequencing method. The sensitivity, specificity, positive predictive value, and negative predictive value of CEMP were 97.31%, 100%, 100%, and 99.85%, respectively. CEMP provides a rapid and accurate method for the high-throughput detection of pathogens in patients with CAP.
Collapse
Affiliation(s)
- Xue Li
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| | - Bo Chen
- 3 Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Shaoya Zhang
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiuyuan Li
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| | - Junxia Chang
- 4 Department of Laboratory Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yanyan Tang
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| | - Yong Wu
- 3 Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Xinxin Lu
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Simultaneous detection of eight avian influenza A virus subtypes by multiplex reverse transcription-PCR using a GeXP analyser. Sci Rep 2018; 8:6183. [PMID: 29670227 PMCID: PMC5906657 DOI: 10.1038/s41598-018-24620-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 04/03/2018] [Indexed: 01/16/2023] Open
Abstract
Recent studies have demonstrated that at least eight subtypes of avian influenza virus (AIV) can infect humans, including H1, H2, H3, H5, H6, H7, H9 and H10. A GeXP analyser-based multiplex reverse transcription (RT)-PCR (GeXP-multiplex RT-PCR) assay was developed in our recent studies to simultaneously detect these eight AIV subtypes using the haemagglutinin (HA) gene. The assay consists of chimeric primer-based PCR amplification with fluorescent labelling and capillary electrophoresis separation. RNA was extracted from chick embryo allantoic fluid or liquid cultures of viral isolates. In addition, RNA synthesised via in vitro transcription was used to determine the specificity and sensitivity of the assay. After selecting the primer pairs, their concentrations and GeXP-multiplex RT-PCR conditions were optimised. The established GeXP-multiplex RT-PCR assay can detect as few as 100 copies of premixed RNA templates. In the present study, 120 clinical specimens collected from domestic poultry at live bird markets and from wild birds were used to evaluate the performance of the assay. The GeXP-multiplex RT-PCR assay specificity was the same as that of conventional RT-PCR. Thus, the GeXP-multiplex RT-PCR assay is a rapid and relatively high-throughput method for detecting and identifying eight AIV subtypes that may infect humans.
Collapse
|
12
|
Ahmed H, Mays J, Kiupel M, Dunn JR. Development of reliable techniques for the differential diagnosis of avian tumour viruses by immunohistochemistry and polymerase chain reaction from formalin-fixed paraffin-embedded tissue sections. Avian Pathol 2018. [PMID: 29533078 DOI: 10.1080/03079457.2018.1451620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A variety of techniques have been developed as diagnostic tools for the differential diagnosis of tumours produced by Marek's disease virus from those induced by avian leukosis virus and reticuloendotheliosis virus. However, most current techniques are unreliable when used in formalin-fixed paraffin-embedded (FFPE) tissues, which often is the only sample type available for definitive diagnosis. A collection of tumours was generated by the inoculation of different strains of Marek's disease virus, reticuloendotheliosis virus or avian leukosis virus singularly or in combination. FFPE tissue sections from tumour and non-tumour tissues were analysed by optimized immunohistochemistry (IHC) techniques and traditional as well as quantitative polymerase chain reaction (PCR) with newly designed primers ideal for DNA fragmented by fixation. IHC and PCR results were highly sensitive and specific in tissues from single-infected birds. Virus quantity was higher in tumours compared to non-tumour spleens from Marek's disease (MD) virus-infected birds. Thus, using FFPE sections alone may be sufficient for the diagnosis of MD by demonstration of high quantities of viral antigens or genome in tumour cells, along with the absence of other tumour viruses by traditional PCR, and if standard criteria are met based on clinical history and histology. IHC furthermore allowed detection of the specific cells that were infected with different viruses in tumours from birds that had been inoculated simultaneously with multiple viruses. Following validation with field samples, these new protocols can be applied for both diagnostic and research purposes to help accurately identify avian tumour viruses in routine FFPE tissue sections.
Collapse
Affiliation(s)
- Husnain Ahmed
- a Avian Disease and Oncology Laboratory, US National Poultry Research Center, US Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA.,b Department of Comparative Medicine and Integrative Biology , College of Veterinary Medicine, Michigan State University , East Lansing , MI , USA
| | - Jody Mays
- a Avian Disease and Oncology Laboratory, US National Poultry Research Center, US Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| | - Matti Kiupel
- c Veterinary Diagnostic Laboratory , Michigan State University , Lansing , MI , USA
| | - John R Dunn
- a Avian Disease and Oncology Laboratory, US National Poultry Research Center, US Department of Agriculture , Agricultural Research Service , East Lansing , MI , USA
| |
Collapse
|
13
|
Development of a GeXP-multiplex PCR assay for the simultaneous detection and differentiation of six cattle viruses. PLoS One 2017; 12:e0171287. [PMID: 28166243 PMCID: PMC5293189 DOI: 10.1371/journal.pone.0171287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV), Bluetongue virus (BTV), Vesicular stomatitis Virus (VSV), Bovine viral diarrheal (BVDV), Bovine rotavirus (BRV), and Bovine herpesvirus 1 (IBRV) are common cattle infectious viruses that cause a great economic loss every year in many parts of the world. A rapid and high-throughput GenomeLab Gene Expression Profiler (GeXP) analyzer-based multiplex PCR assay was developed for the simultaneous detection and differentiation of these six cattle viruses. Six pairs of chimeric primers consisting of both the gene-specific primer and a universal primer were designed and used for amplification. Then capillary electrophoresis was used to separate the fluorescent labeled PCR products according to the amplicons size. The specificity of GeXP-multiplex PCR assay was examined with samples of the single template and mixed template of six viruses. The sensitivity was evaluated using the GeXP-multiplex PCR assay on serial 10-fold dilutions of ssRNAs obtained via in vitro transcription. To further evaluate the reliability, 305 clinical samples were tested by the GeXP-multiplex PCR assay. The results showed that the corresponding virus specific fragments of genes were amplified. The detection limit of the GeXP-multiplex PCR assay was 100 copies/μL in a mixed sample of ssRNAs containing target genes of six different cattle viruses, whereas the detection limit for the Gexp-mono PCR assay for a single target gene was 10 copies/μL. In detection of viruses in 305 clinical samples, the results of GeXP were consistent with simplex real-time PCR. Analysis of positive samples by sequencing demonstrated that the GeXP-multiplex PCR assay had no false positive samples of nonspecific amplification. In conclusion, this GeXP-multiplex PCR assay is a high throughput, specific, sensitive, rapid and simple method for the detection and differentiation of six cattle viruses. It is an effective tool that can be applied for the rapid differential diagnosis of clinical samples and for epidemiological investigation.
Collapse
|