1
|
Berryman S, Feenstra F, Asfor A, Coco-Martin J, Jackson T, Tuthill TJ. Foot-and-Mouth Disease Vaccines by Design; Production of Capsid-Modified Foot-and-Mouth Disease Viruses with Improved Cell Culture Growth. Vaccines (Basel) 2025; 13:281. [PMID: 40266141 PMCID: PMC11945908 DOI: 10.3390/vaccines13030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Vaccination is important for controlling foot-and-mouth disease (FMD) in endemic regions and to lessen the effects of outbreaks in FMD-free countries. The adaptation of FMD virus to BHK cells is a necessary but time-consuming and costly step in vaccine production and can prove problematic for some isolates. Adaptation is, in part, driven by receptor availability and selects variants with altered receptor specificity that result from amino acid substitutions in the capsid proteins. METHODS To bypass the need for cell culture adaptation, we generated chimeric viruses with field-strain capsids and introduced amino acid substitutions associated with cell culture adaptation. We targeted two sites on the capsid: the canonical heparan sulphate binding site and the icosahedral 5-fold symmetry axes. RESULTS Our results show that some viruses with unmodified wild-type (wt) capsids grew well in BHK cells (suspension and adherent), whereas others showed poor growth. For viruses that showed good growth, the introduction of amino acid changes associated with cell culture adaptation improved the rate of growth but not virus titres or yields of 146S particles, whereas growth and 146S yields for viruses that grew poorly in BHK cells were greatly enhanced by some of the amino acid changes. For the latter viruses, the introduced changes did not appear to adversely affect virion stability or antigenicity. CONCLUSIONS For FMD viruses that grow poorly in BHK cells, this approach could be a viable alternative to protracted adaptation by serial passage and could expedite the production of a new vaccine strain from a field virus.
Collapse
Affiliation(s)
- Stephen Berryman
- Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (A.A.); (T.J.)
| | - Femke Feenstra
- Boehringer Ingelheim Animal Health Netherlands BV, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (F.F.); (J.C.-M.)
| | - Amin Asfor
- Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (A.A.); (T.J.)
| | - Jose Coco-Martin
- Boehringer Ingelheim Animal Health Netherlands BV, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (F.F.); (J.C.-M.)
| | - Terry Jackson
- Pirbright Institute, Ash Road, Woking GU24 0NF, UK; (A.A.); (T.J.)
| | | |
Collapse
|
2
|
Haraguchi S, Takenouchi T, Masujin K, Suzuki S, Kokuho T, Uenishi H. Development of Serum-Free Culture Systems for an Immortalized Porcine Kidney-Derived Macrophage Cell Line. Animals (Basel) 2025; 15:558. [PMID: 40003039 PMCID: PMC11851356 DOI: 10.3390/ani15040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The immortalized porcine kidney-derived macrophage (IPKM) cell line is an excellent resource that has proven to be an effective for the production of various strains of African swine fever virus (ASFV). In this study, we developed a serum-free medium to replace the standard serum-containing medium and established the long-term subculture of IPKM cells. We used KnockOut serum replacement instead of serum. As the expression of several cytokines and their receptors were observed in IPKM cells, we examined their effect and found that porcine colony stimulating factor 1 (pCSF1) and pCSF2 were essential for the proliferation of IPKM cells. Furthermore, the addition of 2% polyvinylpyrrolidone K90 to the medium improved cell adhesion and allowed for the stable long-term subculture of IPKM cells. The proportion of cells with a normal number of chromosomes (2n = 38) was similar to that of IPKM cells cultured in a serum-containing medium. Moreover, we investigated the spinner flask suspension culture without using microcarrier beads. Finally, we developed a modified serum- and calcium-free medium in which IPKM cells could be successfully cultured for an extended period. Whether grown in adherent or suspension culture, the expression of the macrophage-specific markers, CD172a, CD203a, and Iba1, remained positive, indicating that IPKM cells retained their macrophage properties.
Collapse
Affiliation(s)
- Seiki Haraguchi
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba 305-0901, Japan; (T.T.); (S.S.); (H.U.)
| | - Takato Takenouchi
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba 305-0901, Japan; (T.T.); (S.S.); (H.U.)
| | - Kentaro Masujin
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, 6-20-1 Josuihoncho, Kodaira 187-0022, Japan; (K.M.); (T.K.)
| | - Shunichi Suzuki
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba 305-0901, Japan; (T.T.); (S.S.); (H.U.)
| | - Takehiro Kokuho
- Division of Transboundary Animal Disease Research, National Institute of Animal Health, National Agriculture and Food Research Organization, 6-20-1 Josuihoncho, Kodaira 187-0022, Japan; (K.M.); (T.K.)
| | - Hirohide Uenishi
- Division of Biomaterial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba 305-0901, Japan; (T.T.); (S.S.); (H.U.)
| |
Collapse
|
3
|
Gaboiphiwe K, Kabelo TI, Mosholombe PT, Hyera J, Fana EM, Masisi K, Lebani K. A Review of the Utility of Established Cell Lines for Isolation and Propagation of the Southern African Territories Serotypes of Foot-and-Mouth Disease Virus. Viruses 2024; 17:39. [PMID: 39861828 PMCID: PMC11768479 DOI: 10.3390/v17010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 12/14/2024] [Indexed: 01/27/2025] Open
Abstract
Cell culture underpins virus isolation and virus neutralisation tests, which are both gold-standard diagnostic methods for foot-and-mouth disease (FMD). Cell culture is also crucial for the propagation of inactivated foot-and-mouth disease virus (FMDV) vaccines. Both primary cells and cell lines are utilised in FMDV isolation and propagation. Widely used cell lines for FMDV and isolation and propagation include baby hamster kidney cells (BHK-21), swine kidney cells (IB-RS-2), foetal goat tongue (ZZ-R 127), foetal porcine kidney cells (LFBKvB6), bovine kidney cells (BK), human telomerase reverse transcriptase bovine thyroid (hTERT-BTY) and porcine kidney-originating PK-15 or SK 6 cell lines. This review highlights how different receptors and molecules-integrins, heparan sulphate (HS), and the Jumonji C-domain containing Protein 6 (JMJD6)-found on the surface of different cell types contribute to differences experienced with susceptibility and sensitivity of the cells to infection with different serotypes of FMDV. This review specifically focuses on Southern African territory (SAT) serotypes, which are unique to the Southern African context and are often under-investigated in cell line development for FMDV isolation and propagation.
Collapse
Affiliation(s)
- Kitsiso Gaboiphiwe
- World Organisation for Animal Health (WOAH) Foot-and-Mouth Disease Reference Laboratory, Botswana Vaccine Institute, Private Bag 0031, Gaborone, Botswana; (K.G.); (J.H.); (E.M.F.)
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana; (T.I.K.); (P.T.M.); (K.M.)
| | - Tshephang Iris Kabelo
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana; (T.I.K.); (P.T.M.); (K.M.)
| | - Petronella Thato Mosholombe
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana; (T.I.K.); (P.T.M.); (K.M.)
| | - Joseph Hyera
- World Organisation for Animal Health (WOAH) Foot-and-Mouth Disease Reference Laboratory, Botswana Vaccine Institute, Private Bag 0031, Gaborone, Botswana; (K.G.); (J.H.); (E.M.F.)
| | - Elliot Mpolokang Fana
- World Organisation for Animal Health (WOAH) Foot-and-Mouth Disease Reference Laboratory, Botswana Vaccine Institute, Private Bag 0031, Gaborone, Botswana; (K.G.); (J.H.); (E.M.F.)
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana; (T.I.K.); (P.T.M.); (K.M.)
| | - Kebaneilwe Lebani
- Department of Biological Sciences and Biotechnology, School of Life Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana; (T.I.K.); (P.T.M.); (K.M.)
| |
Collapse
|
4
|
Hsiung KC, Chiang HJ, Reinig S, Shih SR. Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions. Vaccines (Basel) 2024; 12:1345. [PMID: 39772007 PMCID: PMC11679499 DOI: 10.3390/vaccines12121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies. This review evaluates various vaccine platforms, ranging from traditional approaches (inactivated and live-attenuated vaccines) to modern technologies (subunit vaccines, viral and bacterial vectors, nucleic acid vaccines such as mRNA and DNA, and phage-like particle vaccines). To illustrate these platforms' practical applications, we present case studies of vaccines developed for RNA viruses such as SARS-CoV-2, influenza, Zika, and dengue. Additionally, we assess the role of artificial intelligence in predicting viral mutations and enhancing vaccine design. The case studies underscore the successful application of RNA-based vaccines, particularly in the fight against COVID-19, which has saved millions of lives. Current clinical trials for influenza, Zika, and dengue vaccines continue to show promise, highlighting the growing efficacy and adaptability of these platforms. Furthermore, artificial intelligence is driving improvements in vaccine candidate optimization and providing predictive models for viral evolution, enhancing our ability to respond to future outbreaks. Advances in vaccine technology, such as the success of mRNA vaccines against SARS-CoV-2, highlight the potential of nucleic acid platforms in combating RNA viruses. Ongoing trials for influenza, Zika, and dengue demonstrate platform adaptability, while artificial intelligence enhances vaccine design by predicting viral mutations. Integrating these innovations with the One Health approach, which unites human, animal, and environmental health, is essential for strengthening global preparedness against future RNA virus threats.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Huan-Jung Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food & Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science & Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
5
|
Li X, Ma F, Wang S, Tang T, Ma L, Qiao Z, Ma Z, Wang J, Liu Z. Micro RNA-175 Targets Claudin-1 to Inhibit Madin-Darby Canine Kidney Cell Adhesion. Genes (Basel) 2024; 15:1333. [PMID: 39457456 PMCID: PMC11506999 DOI: 10.3390/genes15101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The Madin-Darby canine kidney (MDCK) cell line constitutes a key component of influenza vaccine production, but its dependence on adherent growth limits cell culture density and hinders vaccine yield. There is evidence that the use of gene editing techniques to inhibit cell adhesion and establish an easily suspended cell line can improve vaccine yield; however, the mechanisms underlying MDCK cell adhesion are unclear. Methods: In this study, we used transcriptomics to analyse differentially expressed mRNAs and miRNAs in adherent and suspension cultures of MDCK cells. Results: We found that claudin-1 (CLDN1) expression was downregulated in the suspension MDCK cells and that CLDN1 promotes MDCK cell-extracellular matrix adhesion. Additionally, microRNA (miR)-175 expression was upregulated in the suspension MDCK cells. Importantly, we demonstrated that miR-175 inhibits MDCK cell adhesion by targeting the CLDN1 3'-untranslated region (UTR). These findings contribute to a more comprehensive understanding of the regulatory mechanisms modulating cell adhesion and provide a basis for establishing suspension-adapted, genetically engineered cell lines. Our work could also facilitate the identification of targets for tumour therapy.
Collapse
Affiliation(s)
- Xiaoyun Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Fangfang Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Tian Tang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Liyuan Ma
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China;
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (X.L.); (F.M.); (S.W.); (T.T.); (Z.Q.); (Z.M.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
| |
Collapse
|
6
|
Mushtaq H, Shah SS, Zarlashat Y, Iqbal M, Abbas W. Cell Culture Adaptive Amino Acid Substitutions in FMDV Structural Proteins: A Key Mechanism for Altered Receptor Tropism. Viruses 2024; 16:512. [PMID: 38675855 PMCID: PMC11054764 DOI: 10.3390/v16040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/28/2024] Open
Abstract
The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time. Cell culture adaptation is chiefly indebted to amino acid substitutions in surface-exposed capsid proteins, altering the necessity of RGD-dependent receptors to heparan sulfate macromolecules for virus binding. Several amino acid substations in VP1, VP2, and VP3 capsid proteins of FMDV, both at structural and functional levels, have been characterized previously. This literature review combines frequently reported amino acid substitutions in virus capsid proteins, their critical roles in virus adaptation, and functional characterization of the substitutions. Furthermore, this data can facilitate molecular virologists to develop new vaccine strains against the foot-and-mouth disease virus, revolutionizing vaccinology via reverse genetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hassan Mushtaq
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Syed Salman Shah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan
| | - Yusra Zarlashat
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| | - Wasim Abbas
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering-C (NIBGE), Faisalabad 38000, Pakistan; (H.M.); (M.I.)
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan
| |
Collapse
|
7
|
Hossain KA, Anjume H, Akther M, Alam KMM, Yeamin A, Akter S, Islam MR, Sultana M, Hossain MA. Epidemiological Surveillance and Mutational Pattern Analysis of Foot-and-Mouth Disease Outbreaks in Bangladesh during 2012-2021. Transbound Emerg Dis 2023; 2023:8896572. [PMID: 40303801 PMCID: PMC12017146 DOI: 10.1155/2023/8896572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 05/02/2025]
Abstract
Foot-and-mouth disease (FMD) in cloven-hoofed animals is considered an economically devastating disease in endemic countries like Bangladesh, where the livestock sector contributes to a greater portion of the nation's economy. The causative agent of the disease, foot-and-mouth disease virus (FMDV), equipped with higher mutational frequency challenges the efficacy of the existing vaccine and control measures. This study, including 32 districts and 71 outbreaks to reveal epidemiological patterns and mutational trends of FMDV over the past 10 years (2012-2021), reported a 54.7% prevalence of FMD, with the majority of outbreaks occurring during the rainy season. Different risk factors such as age, gender, farming system, and vaccination status demonstrated a significant association with FMD cases which was confirmed by the χ 2 test (p < 0.05). VP1 sequence analyses reported the predominance of serotype O (85%) over serotype A (11%) and serotype Asia 1 (4%). Bangladesh has foreseen the emergence of several novel FMDV strains during this decade. Novel sublineages, Ind-2001BD1 (Ind-2001e) and Ind-2001BD2, were reported under serotype O, the G-IX lineage of serotype Asia 1 emerged in 2018, and most recently in 2021, a new genotype named MYMBD21 under the lineage SA-2018 was detected for the first time in Bangladesh. Until now, Ind-2001e (Ind-2001BD1) sublineage under serotype O became the predominant sublineage in Bangladesh. From the mutational trend analysis, highly variable sites were observed at positions 138 and 140 within the G-H loop for serotype O. For serotype A and Asia 1, 45th and 44th residues within the B-C loop showed the highest amino acid variations, respectively. A changing mutational pattern among the 2019-2021 FMDV O and A isolates was also observed. The findings of the study would be crucial to understand the FMD situation and designing necessary preventive steps according to the progressive control pathway for FMD control in Bangladesh.
Collapse
Affiliation(s)
| | - Humaira Anjume
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
- Jashore University of Science and Technology, Jashore, Bangladesh
| | - Masuda Akther
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - K. M. Mazharul Alam
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Ashabul Yeamin
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Salma Akter
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - M. Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
| | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka 1000, Bangladesh
- Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
8
|
Jahangiri S, Rahimnejad M, Nasrollahi Boroujeni N, Ahmadi Z, Motamed Fath P, Ahmadi S, Safarkhani M, Rabiee N. Viral and non-viral gene therapy using 3D (bio)printing. J Gene Med 2022; 24:e3458. [PMID: 36279107 DOI: 10.1002/jgm.3458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 12/30/2022] Open
Abstract
The overall success in launching discovered drugs is tightly restricted to the high rate of late-stage failures, which ultimately inhibits the distribution of medicines in markets. As a result, it is imperative that methods reliably predict the effectiveness and, more critically, the toxicity of medicine early in the drug development process before clinical trials be continuously innovated. We must stay up to date with the fast appearance of new infections and diseases by rapidly developing the requisite vaccinations and medicines. Modern in vitro models of disease may be used as an alternative to traditional disease models, and advanced technology can be used for the creation of pharmaceuticals as well as cells, drugs, and gene delivery systems to expedite the drug discovery procedure. Furthermore, in vitro models that mimic the spatial and chemical characteristics of native tissues, such as a 3D bioprinting system or other technologies, have proven to be more effective for drug screening than traditional 2D models. Viral and non-viral gene delivery vectors are a hopeful tool for combinatorial gene therapy, suggesting a quick way of simultaneously deliver multiple genes. A 3D bioprinting system embraces an excellent potential for gene delivery into the different cells or tissues for different diseases, in tissue engineering and regeneration medicine, in which the precise nucleic acid is located in the 3D printed tissues and scaffolds. Non-viral nanocarriers, in combination with 3D printed scaffolds, are applied to their delivery of genes and controlled release properties. There remains, however, a big obstacle in reaching the full potential of 3D models because of a lack of in vitro manufacturing of live tissues. Bioprinting advancements have made it possible to create biomimetic constructions that may be used in various drug discovery research applications. 3D bioprinting also benefits vaccinations, medicines, and relevant delivery methods because of its flexibility and adaptability. This review discusses the potential of 3D bioprinting technologies for pharmaceutical studies.
Collapse
Affiliation(s)
- Sepideh Jahangiri
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.,Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Maedeh Rahimnejad
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Biomedical Engineering Institute, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Narges Nasrollahi Boroujeni
- Bioprocess Engineering Research Group, Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Ahmadi
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC, Australia.,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Puria Motamed Fath
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Safarkhani
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, South Korea.,School of Engineering, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
9
|
Stutz H. Advances and applications of electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review. J Pharm Biomed Anal 2022; 222:115089. [DOI: 10.1016/j.jpba.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
10
|
R.Swartz A, Shieh Y, Gulasarian A, Olson J, R.Rustandi R. Binding of Coxsackievirus A21 procapsids to immobilized glutathione depends on cell culture conditions during infection. Virology 2022; 573:167-175. [DOI: 10.1016/j.virol.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
|
11
|
A/Raouf Y, Ibrahim I. Diversity of SAT2 foot-and-mouth disease virus in Sudan: implication for diagnosis and control. Vet Res Commun 2022; 46:789-798. [PMID: 35233700 DOI: 10.1007/s11259-022-09899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
Like other East African countries, Sudan experienced circulation of more than one topotype of SAT2 foot-and-mouth disease virus (FMDV). In Sudan, topotype XIII of SAT2 virus was recorded in 1977 and 2008 and topotype VII in 2007, 2010, 2013, 2014 and 2017. This work evaluated the impact of such diversity on diagnosis and control. After one or three doses of a vaccine derived from a Sudanese SAT2 virus of topotype VII originated in 2010, heterologous neutralizing antibody titres with Sudanese SAT2 viruses in 2008 were ≤ 1.2 log 10, not consistent with likely protection. Simultaneously, homologous titres were 1.65 (after one dose) or 1.95 and 2.55 log10 (after 3 doses). When r1 values between the vaccine virus and the SAT2 viruses isolated in 2008, whilst topotype XIII was circulating, were derived, values (≈ 0.00) suggested similarly poor antigenic relationship and unlikely cross protection. Concurrently, SAT2 positive field sera from Sudan in 2016 were not unvaryingly identified by virus neutralization tests (VNT) employing SAT2 viruses from 2010 and 2008. Proportions of positive sera by SAT2 virus from 2010 were always higher than those by viruses from 2008; consistent with the more frequent and recent circulation of topotype VII prior to 2016. Proportions by SAT2 virus from 2010 were 0.68 (± 0.1) in one location (n = 72), 0.39 (± 0.1) in another one (n = 94) and 0.52 (± 0.1) in the whole test group (n = 166). Corresponding values by viruses of 2008 were 0.53 (± 0.1), 0.27 (± 0.1) and 0.38 (± 0.1). In the whole test group, differences were statistically significant (p = .02339). Like post-vaccination sera, field sera (natural immunity) showed no considerable cross neutralization between topotype VII and presumably XIII; almost 45% (43/96) of SAT2 positive field sera were positive to one topotype but not to the other. Experimental and surveillance findings emphasized the implication of SAT2 diversity in Sudan. It is concluded that it is difficult to control SAT2 infection in Sudan using a monovalent vaccine. Beside a prophylactic vaccine from topotype VII, stockpiling of antigens from topotype XIII and enhanced virological surveillance with rapid genotyping and matching studies are necessary approaches. When more frequent circulation of more than one SAT2 topotype occurs, retrospective diagnosis by serological surveys could be problematic or imprecise.
Collapse
Affiliation(s)
- Yazeed A/Raouf
- Department of Foot-and-Mouth Disease, Central Veterinary Research Laboratory (CVRL), Soba, P.O. Box 8067, Al Amarat, Khartoum, Sudan.
| | - Inas Ibrahim
- Department of Foot-and-Mouth Disease, Central Veterinary Research Laboratory (CVRL), Soba, P.O. Box 8067, Al Amarat, Khartoum, Sudan
| |
Collapse
|
12
|
Human Immunodeficiency Viruses Pseudotyped with SARS-CoV-2 Spike Proteins Infect a Broad Spectrum of Human Cell Lines through Multiple Entry Mechanisms. Viruses 2021; 13:v13060953. [PMID: 34064066 PMCID: PMC8224355 DOI: 10.3390/v13060953] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19), enters cells through attachment to the human angiotensin converting enzyme 2 (hACE2) via the receptor-binding domain (RBD) in the surface/spike (S) protein. Several pseudotyped viruses expressing SARS-CoV-2 S proteins are available, but many of these can only infect hACE2-overexpressing cell lines. Here, we report the use of a simple, two-plasmid, pseudotyped virus system comprising a SARS-CoV-2 spike-expressing plasmid and an HIV vector with or without vpr to investigate the SARS-CoV-2 entry event in various cell lines. When an HIV vector without vpr was used, pseudotyped SARS-CoV-2 viruses produced in the presence of fetal bovine serum (FBS) were able to infect only engineered hACE2-overexpressing cell lines, whereas viruses produced under serum-free conditions were able to infect a broader range of cells, including cells without hACE2 overexpression. When an HIV vector containing vpr was used, pseudotyped viruses were able to infect a broad spectrum of cell types regardless of whether viruses were produced in the presence or absence of FBS. Infection sensitivities of various cell types did not correlate with mRNA abundance of hACE2, TMPRSS2, or TMPRSS4. Pseudotyped SARS-CoV-2 viruses and replication-competent SARS-CoV-2 virus were equally sensitive to neutralization by an anti-spike RBD antibody in cells with high abundance of hACE2. However, the anti-spike RBD antibody did not block pseudotyped viral entry into cell lines with low abundance of hACE2. We further found that CD147 was involved in viral entry in A549 cells with low abundance of hACE2. Thus, our assay is useful for drug and antibody screening as well as for investigating cellular receptors, including hACE2, CD147, and tyrosine-protein kinase receptor UFO (AXL), for the SARS-CoV-2 entry event in various cell lines.
Collapse
|
13
|
Kim AY, Kim H, Park SY, Park SH, Lee JM, Kim JS, Park JW, Park CK, Park JH, Ko YJ. Investigation of the optimal medium and application strategy for foot-and-mouth disease vaccine antigen production. J Appl Microbiol 2021; 131:1113-1122. [PMID: 33544957 DOI: 10.1111/jam.15024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 11/03/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
AIMS For the effective production of 146S particles, which determines foot-and-mouth disease (FMD) vaccine efficacy, we aimed to identify the optimal medium that is easy-to-use, productive and economically affordable for the large-scale production of FMD vaccine. METHODS AND RESULTS Nine combinations of cell growth media and replacement media were tested for virus propagation. Apart from the replacement strategy, we tested a simple addition strategy involving the addition of 30% v/v of fresh medium to the total spent medium using the Cellvento BHK-200 (Vento). Unlike other tested media that produced poor yields of 146S particles when the spent media were not eliminated, Vento exhibited high productivity with the 30% addition strategy. CONCLUSIONS Considering its lower price and media consumption compared to those of other media that require media replacement, the 30% addition strategy of Vento is highly effective. Furthermore, owing to its simple application strategy, it makes the scale-up process easy and helps in saving the time and labour involved in spent media removal. SIGNIFICANCE AND IMPACT OF THE STUDY Through the first comparative assessment of commercial media for the 146S particle recovery, this study suggests the best practical medium for the industrial-scale production of FMD vaccines.
Collapse
Affiliation(s)
- A-Y Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - H Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea.,College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - S Y Park
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - S H Park
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - J-M Lee
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - J-S Kim
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - J-W Park
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - C-K Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu, Republic of Korea
| | - J-H Park
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| | - Y-J Ko
- Animal and Plant Quarantine Agency, Gimcheon, Gyeonsangbuk-do, Republic of Korea
| |
Collapse
|
14
|
Single Amino Acid Substitutions Surrounding the Icosahedral Fivefold Symmetry Axis Are Critical for Alternative Receptor Usage of Foot-and-Mouth Disease Virus. Viruses 2020; 12:v12101147. [PMID: 33050303 PMCID: PMC7650640 DOI: 10.3390/v12101147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022] Open
Abstract
The integrins function as the primary receptor molecules for the pathogenic infection of foot-and-mouth disease virus (FMDV) in vivo, while the acquisition of a high affinity for heparan sulfate (HS) of some FMDV variants could be privileged to facilitate viral infection and expanded cell tropism in vitro. Here, we noted that a BHK-adapted Cathay topotype derivative (O/HN/CHA/93tc) but not its genetically engineered virus (rHN), was able to infect HS-positive CHO-K1 cells and mutant pgsD-677 cells. There were one or three residue changes in the capsid proteins of O/HN/CHA/93tc and rHN, as compared with that of their tissue-originated isolate (O/HN/CHA/93wt). The phenotypic properties of a set of site-directed mutants of rHN revealed that E83K of VP1 surrounding the fivefold symmetry axis was necessary for the integrin-independent infection of O/HN/CHA/93tc. L80 in VP2 was essential for the occurrence of E83K in VP1 during the adaptation of O/HN/CHA/93wt to BHK-21 cells. L80M in VP2 and D138G in VP1 of rHN was deleterious, which could be compensated by K83R of VP1 for restoring an efficient infection of integrin-negative CHO cell lines. These might have important implications for understanding the molecular and evolutionary mechanisms of the recognition and binding of FMDV with alternative cellular receptors.
Collapse
|
15
|
Dill V, Zimmer A, Beer M, Eschbaumer M. Targeted Modification of the Foot-And-Mouth Disease Virus Genome for Quick Cell Culture Adaptation. Vaccines (Basel) 2020; 8:E583. [PMID: 33022922 PMCID: PMC7712165 DOI: 10.3390/vaccines8040583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes the highly contagious foot-and-mouth disease, which is characterized by the appearance of vesicles in and around the mouth and feet of cloven-hoofed animals. BHK-21 cells are the cell line of choice for the propagation of FMDV for vaccine production worldwide but vary in their susceptibility for different FMDV strains. Previous studies showed that the FMDV resistance of a certain BHK cell line can be overcome by using a closely related but permissive cell line for the pre-adaptation of the virus, but the adapted strains were found to harbor several capsid mutations. In this study, these adaptive mutations were introduced into the original Asia-1 Shamir isolate individually or in combination to create a panel of 17 Asia-1 mutants by reverse genetics and examine the effects of the mutations on receptor usage, viral growth, immunogenicity and stability. A single amino acid exchange from glutamic acid to lysine at position 202 in VP1 turned out to be of major importance for productive infection of the suspension cell line BHK-2P. In consequence, two traditionally passage-derived strains and two recombinant viruses with a minimum set of mutations were tested in vivo. While the passaged-derived viruses showed a reduced particle stability, the genetically modified viruses were more stable but did not confer a protective immune response against the original virus isolate.
Collapse
Affiliation(s)
- Veronika Dill
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (V.D.); (M.B.)
| | - Aline Zimmer
- Merck KGaA, Merck Life Sciences, Upstream R&D, 64293 Darmstadt, Germany;
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (V.D.); (M.B.)
| | - Michael Eschbaumer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (V.D.); (M.B.)
| |
Collapse
|
16
|
Lee G, Hwang JH, Kim A, Park JH, Lee MJ, Kim B, Kim SM. Analysis of Amino Acid Mutations of the Foot-and-Mouth Disease Virus Serotype O Using both Heparan Sulfate and JMJD6 Receptors. Viruses 2020; 12:v12091012. [PMID: 32927791 PMCID: PMC7551012 DOI: 10.3390/v12091012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/04/2023] Open
Abstract
Foot-and-mouth disease (FMD) is an economically devastating animal disease. Adapting the field virus to cells is critical to the vaccine production of FMD viruses (FMDV), and heparan sulfate (HS) and Jumonji C-domain-containing protein 6 (JMJD6) are alternative receptors of cell-adapted FMDV. We performed serial passages of FMDV O/SKR/Andong/2010, classified as the O/Mya-98 topotype/lineage and known as a highly virulent strain, to develop a vaccine seed virus. We traced changes in the amino acid sequences of the P1 region, plaque phenotypes, and the receptor usage of the viruses, and then structurally analyzed the mutations. VP3 H56R and D60G mutations were observed in viruses using the HS receptor and led to changes in the hydrogen bonding between VP3 56 and 60. A VP1 P208L mutation was observed in the virus using the JMJD6 receptor during cell adaptation, enabling the interaction with JMJD6 through the formation of a new hydrogen bond with JMJD6 residue 300. Furthermore, VP1 208 was near the VP1 95/96 amino acids, previously reported as critical mutations for JMJD6 receptor interactions. Thus, the mutation at VP1 208 could be critical for cell adaptation related to the JMJD6 receptor and may serve as a basis for mechanism studies on FMDV cell adaptation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Su-Mi Kim
- Correspondence: ; Tel.: +82-054-912-0907; Fax: +82-054-912-0890
| |
Collapse
|
17
|
Shpichka A, Bikmulina P, Peshkova M, Kosheleva N, Zurina I, Zahmatkesh E, Khoshdel-Rad N, Lipina M, Golubeva E, Butnaru D, Svistunov A, Vosough M, Timashev P. Engineering a Model to Study Viral Infections: Bioprinting, Microfluidics, and Organoids to Defeat Coronavirus Disease 2019 (COVID-19). Int J Bioprint 2020; 6:302. [PMID: 33089000 PMCID: PMC7557357 DOI: 10.18063/ijb.v6i4.302] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
While the number of studies related to severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is constantly growing, it is essential to provide a framework of modeling viral infections. Therefore, this review aims to describe the background presented by earlier used models for viral studies and an approach to design an "ideal" tissue model for SARS-CoV-2 infection. Due to the previous successful achievements in antiviral research and tissue engineering, combining the emerging techniques such as bioprinting, microfluidics, and organoid formation are considered to be one of the best approaches to form in vitro tissue models. The fabrication of an integrated multi-tissue bioprinted platform tailored for SARS-CoV-2 infection can be a great breakthrough that can help defeat coronavirus disease in 2019.
Collapse
Affiliation(s)
- Anastasia Shpichka
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Bikmulina
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Maria Peshkova
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Nastasia Kosheleva
- Department of Molecular and Cell Pathophysiology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Department of Embryology, Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Irina Zurina
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Molecular and Cell Pathophysiology, FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Ensieh Zahmatkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marina Lipina
- Department of Traumatology, Orthopedics and Disaster Surgery, Sechenov University, Moscow, Russia
| | - Elena Golubeva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Denis Butnaru
- Rector’s Office, Sechenov University, Moscow, Russia
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Peter Timashev
- Department of Advanced Biomaterials, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Department of Polymers and Composites, NN Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
18
|
Cell culture propagation of foot-and-mouth disease virus: adaptive amino acid substitutions in structural proteins and their functional implications. Virus Genes 2019; 56:1-15. [PMID: 31776851 PMCID: PMC6957568 DOI: 10.1007/s11262-019-01714-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 11/18/2022]
Abstract
Foot-and-mouth disease is endemic in livestock in large parts of Africa and Asia, where it is an important driver of food insecurity and a major obstacle to agricultural development and the international trade in animal products. Virtually all commercially available vaccines are inactivated whole-virus vaccines produced in cell culture, but the adaptation of a field isolate of the virus to growth in culture is laborious and time-consuming. This is of particular concern for the development of vaccines to newly emerging virus lineages, where long lead times from virus isolate to vaccine can delay the implementation of effective control programs. High antigen yields in production cells are also necessary to make vaccines affordable for less developed countries in endemic areas. Therefore, a rational approach to cell culture adaptation that combines prior knowledge of common adaptive mutations and reverse genetics techniques is urgently required. This review provides an overview of amino acid exchanges in the viral capsid proteins in the context of adaptation to cell culture.
Collapse
|
19
|
Khoo YSK, Ghani AA, Navamukundan AA, Jahis R, Gamil A. Unique product quality considerations in vaccine development, registration and new program implementation in Malaysia. Hum Vaccin Immunother 2019; 16:530-538. [PMID: 31652090 PMCID: PMC7227723 DOI: 10.1080/21645515.2019.1667206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
This review aims to present the unique considerations for manufacturing and the regulation of new vaccines in Muslim-populated countries such as Malaysia. Our specific objectives are to highlight vaccine production and the ingredients of concern, summarize the current mechanism for ruling and recommendations on new vaccines, outline the different steps in decision-making on incorporating a new vaccine into the National Immunization Program, describe its issues and challenges, and explore the commercial viability and challenges of producing local permissible (halal) vaccines. Through this review, we hope readers understand that alternatives are present to replace ingredients of concern in vaccines. Halal certification and introduction of a new vaccine into a program are strictly conducted and health-care providers must be prepared to educate the public on this. At the same time, it is hoped that the production of halal vaccine in Malaysia will promote self-reliance in Muslim-populated countries.
Collapse
Affiliation(s)
- Yvonne S K Khoo
- National Pharmaceutical Regulatory Agency, Ministry of Health, Malaysia, Petaling Jaya, Selangor, Malaysia
| | - A Ab Ghani
- National Pharmaceutical Regulatory Agency, Ministry of Health, Malaysia, Petaling Jaya, Selangor, Malaysia
| | | | - R Jahis
- Disease Control Division, Ministry of Health, Malaysia, Putrajaya, Malaysia
| | - A Gamil
- Pfizer Inc, Emerging Markets Vaccines Medical and Scientific Affairs, Dubai, United Arab Emirates
| |
Collapse
|