1
|
Fu C, Yang D, Long WC, Xiao X, Wang H, Jiang N, Yang Y. Genome-wide identification, molecular evolution and gene expression of P450 gene family in Cyrtotrachelus buqueti. BMC Genomics 2024; 25:453. [PMID: 38720243 PMCID: PMC11080265 DOI: 10.1186/s12864-024-10372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Insect Cytochrome P450 monooxygenase (CYPs or P450s) plays an important role in detoxifying insecticides, causing insect populations to develop resistance. However, the molecular functions of P450 gene family in Cyrtotrachelus buqueti genome are still lacking. RESULTS In this study, 71 CbuP450 genes have been identified. The amino acids length of CbuP450 proteins was between 183 aa ~ 1041 aa. They are proteins with transmembrane domains. The main component of their secondary structure is α-helix and random coils. Phylogenetic analysis showed that C. buqueti and Rhynchophorus ferrugineus were the most closely related. This gene family has 29 high-frequency codons, which tend to use A/T bases and A/T ending codons. Gene expression analysis showed that CbuP450_23 in the female adult may play an important role on high temperature resistance, and CbuP450_17 in the larval may play an important role on low temperature tolerance. CbuP450_10, CbuP450_17, CbuP450_23, CbuP450_10, CbuP450_16, CbuP450_20, CbuP450_23 and CbuP450_ 29 may be related to the regulation of bamboo fiber degradation genes in C. buqueti. Protein interaction analysis indicates that most CbuP450 proteins are mainly divided into three aspects: encoding the biosynthesis of ecdysteroids, participating in the decomposition of synthetic insecticides, metabolizing insect hormones, and participating in the detoxification of compounds. CONCLUSIONS We systematically analyzed the gene and protein characteristics, gene expression, and protein interactions of CbuP450 gene family, revealing the key genes involved in the stress response of CbuP450 gene family in the resistance of C. buqueti to high or low temperature stress, and identified the key CbuP450 proteins involved in important life activity metabolism. These results provided a reference for further research on the function of P450 gene family in C. buqueti.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
| | - Ding Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - Wen Cong Long
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - XiMeng Xiao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - HanYu Wang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, 614000, Sichuan, China.
| |
Collapse
|
2
|
Animal reservoirs for hepatitis E virus within the Paslahepevirus genus. Vet Microbiol 2023; 278:109618. [PMID: 36640568 DOI: 10.1016/j.vetmic.2022.109618] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is responsible for acute hepatitis in humans. It is a single-stranded, positive-sense RNA virus that belongs to the Hepeviridae family. The majority of concerning HEV genotypes belong to the Paslahepevirus genus and are subsequently divided into eight genotypes. HEV genotypes 1 and 2 exclusively infect humans and primates while genotypes 3 and 4 infect both humans and other mammals. Whereas HEV genotypes 5 and 6 are isolated from wild boars and genotypes 7 and 8 were identified from camels in the United Arab Emirates and China, respectively. HEV mainly spreads from humans to humans via the fecal-oral route. However, some genotypes with the capability of zoonotic transmissions, such as 3 and 4 transmit from animals to humans through feces, direct contact, and ingestion of contaminated meat products. As we further continue to uncover novel HEV strains in various animal species, it is becoming clear that HEV has a broad host range. Therefore, understanding the potential animal reservoirs for this virus will allow for better risk management and risk mitigation of infection with HEV. In this review, we mainly focused on animal reservoirs for the members of the species Paslahepevirus balayani and provided a comprehensive list of the host animals identified to date.
Collapse
|
3
|
Yan H, Chi Z, Zhao H, Zhang Y, Zhang Y, Wang Y, Chang S, Zhao P. Application of ORF3 Subunit Vaccine for Avian Hepatitis E Virus. Vet Sci 2022; 9:vetsci9120676. [PMID: 36548837 PMCID: PMC9784926 DOI: 10.3390/vetsci9120676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Avian hepatitis E virus (HEV) is the main etiologic pathogen of chicken big liver and spleen disease which is widely prevalent in China in recent years. However, due to the lack of a highly effective culture system in vitro, a genetically engineered subunit vaccine is the main direction of vaccine development. In this study, ORF3 genes of VaHEV strain from laying hens and YT-aHEV strain from broilers were amplified, respectively, and ORF3 protein was successfully expressed by Escherichia coli prokaryotic expression system. The serum samples were collected periodically to detect avian HEV antibodies by indirect immunofluorescence after specific pathogen free chickens immunized with the two proteins and their mixed proteins, the results showed that all serum samples were positive for antibodies to avian HEV. The antibody-positive chickens were artificially challenged with the cell-adapted strain YT-aHEV strain. The chickens from the immunized control group were infected successfully; no fecal detoxification was detected in the immunized group. In this study, two representative strains of ORF3 subunit vaccines of laying hens and broilers were prepared by prokaryotic expression, the immune effects of different proteins of these were evaluated through immunization and challenge studies in vivo, which provided a new technical possibility for prevention and control of avian HEV.
Collapse
Affiliation(s)
- Hongjian Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Zengna Chi
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Hui Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Yawen Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Yuduo Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
- Correspondence: (S.C.); (P.Z.)
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an 271018, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai’an 271018, China
- Correspondence: (S.C.); (P.Z.)
| |
Collapse
|
4
|
Fu F, Deng Q, Li Q, Zhu W, Guo J, Wei P. Emergence and Molecular Characterization of an Avian Hepatitis E Virus From Donglan Black Chicken in Southern China. Front Vet Sci 2022; 9:901292. [PMID: 36110503 PMCID: PMC9469092 DOI: 10.3389/fvets.2022.901292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Avian hepatitis E virus (HEV) is a major pathogen associated with hepatitis splenomegaly syndrome in chickens and has been reported in China. Phylogenetic trees, Bayesian analysis, positive selection sites screening, and recombination analysis were first used to comprehend the global avian HEVs. All the avian HEV strains, including a new isolate named GX20A1 got from Donglan Black chicken in Guangxi, China, were uniformly defined into four genotypes, and GX20A1, belongs to Genotype 3. The topology of the phylogenetic tree based on the sequences of a 339-bp fragment (coding the helicase) in open reading frame (ORF) 1 of the avian HEVs was consistent with that based on the full-genome sequence. The estimated evolution rate of avian HEVs is 2.73 × 10−3 substitution/site/year (95% confidence interval (CI): 8.01 × 10−4−4.91 × 10−3), and the estimated genetic diversity of the strains experienced a declining phase from 2010 to 2017 and stabilized after 2017. It was further found that the Genotype 3 HEVs, including isolates from Hungary and China, likely originated in the 1930s. Notably, GX20A1 was gathered in the same branch with a Genotype 3 Guangdong isolate CaHEV-GDSZ01, which appeared earlier than GX20A1. In addition, two positive selection sites were identified, one for each of ORF1 and ORF2. Overall, the study revealed that avian HEVs were uniformly defined into four genotypes, and a 339-bp fragment in ORF1 of the viral genome could be used for the classification. A Genotype 3 isolate GX20A1 was first found from Donglan Black chicken and most likely originated from Guangdong.
Collapse
|
5
|
Liu K, Zhao Y, Zhao J, Geng N, Meng F, Wang S, Li J, Zhong Z, Zhu L, Liu S, Li N. The diagnosis and molecular epidemiology investigation of avian hepatitis E in Shandong province, China. BMC Vet Res 2022; 18:56. [PMID: 35078465 PMCID: PMC8788081 DOI: 10.1186/s12917-021-03079-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Avian hepatitis E virus (HEV) is the pathogenic agent of big liver and spleen disease (BLS) and of hepatitis-splenomegaly syndrome (HSS) in chickens, which have caused economic losses to the poultry industry in China. In this study, 18 samples of BLS chickens were collected to reveal the molecular epidemiological characteristics of avian HEV in the province of Shandong, China. RESULTS Gross and microscopic lesions of clinical samples were observed; then, virology detection and genetic analysis of avian HEV were performed. The results showed that there was significant swelling and rupture in the liver and that the spleen was enlarged. Microscopic lesions demonstrated obvious hemorrhage in the liver, with infiltration of heterophilic granulocytes, lymphocytes, and macrophages, as well as the reduction of lymphocytes in the spleen. Eleven of the 18 samples were positive for avian HEV, with a positive rate of 61.11%. More importantly, all avian HEV-positive samples were mixed infections: among these, the mixed infections of avian HEV and chicken infectious anemia virus (CIAV) and avian HEV and fowl adenovirus (FAdV) were the most common. Furthermore, the genetic evolution analysis showed that all avian HEV strains obtained here did not belong to the reported 4 genotypes, thus constituting a potential novel genotype. CONCLUSIONS These results of this study further enrich the epidemiological data on avian HEV in Shandong, prove the genetic diversity of avian HEV in China, and uncover the complex mixed infections of avian HEV clinical samples.
Collapse
Affiliation(s)
- Kuihao Liu
- College of Animal Science and Technology, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian, 271000, Shandong Province, China
| | - Yiran Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian, 271000, Shandong Province, China
| | - Jun Zhao
- College of Animal Science and Technology, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian, 271000, Shandong Province, China
| | - Ningwei Geng
- College of Animal Science and Technology, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian, 271000, Shandong Province, China
| | - Fanliang Meng
- College of Animal Science and Technology, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian, 271000, Shandong Province, China
| | - Siqi Wang
- College of Animal Science and Technology, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian, 271000, Shandong Province, China
| | - Jing Li
- College of Animal Science and Technology, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian, 271000, Shandong Province, China
| | - Zhaobing Zhong
- Taian Daiyue District Administrative Examination and Approval Service Bureau, Taian, 271018, Shandong Province, China
| | - Liya Zhu
- Animal Husbandry and Veterinary Service Centre of Linshu, Linyi, 276700, Shandong Province, China
| | - Sidang Liu
- College of Animal Science and Technology, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian, 271000, Shandong Province, China.
| | - Ning Li
- College of Animal Science and Technology, Shandong Agricultural University, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, 61 Daizong Road, Taian, 271000, Shandong Province, China.
| |
Collapse
|
6
|
Li H, Zhang F, Tan M, Zeng Y, Yang Q, Tan J, Huang J, Huang Y, Kang Z. Research Note: A putative novel subtype of the avian hepatitis E virus of genotype 3, Jiangxi province, China. Poult Sci 2020; 99:6657-6663. [PMID: 33248582 PMCID: PMC7705056 DOI: 10.1016/j.psj.2020.09.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/26/2022] Open
Abstract
In recent years, the avian hepatitis E virus (HEV) has been widely spread in China, causing huge economic losses. Several studies have carried out detailed epidemiologic investigations of the avian HEV, but no data were from Jiangxi province. Since early April 2020, diseases similar to hepatic rupture hemorrhage syndrome caused by the avian HEV occurred in a Roman Brown layer farm in Jiangxi province, indicating this virus may also be epidemic there. To make this assumption clear, 20 liver samples were collected from the sick flock and then analyzed by detailed viral detection, which confirmed that the avian HEV should be responsible for the aforementioned disease (6 of 20). Then, the capsid gene of the virus was sequenced to show the molecular characteristics of the strain circulating in the aforementioned flock. Sequence comparison showed that it shared 80.7 to 94.7% identities with 12 published strains, while phylogenetic analysis confirmed that it belongs to a new subtype of genotype 3. Moreover, basing on a 242 bp fragment, the novel also shared high similarities to reference strains identified as genotypes before, revealing the genotype 3 maybe very popular in China and even can be divided into several subgroups. In conclusion, a novel avian HEV strain was identified in this study, which belongs to a new subtype of genotype 3. The analysis makes up for the molecular epidemiologic data of avian HEV and provides a basis for further understanding the spread of avian HEV in China.
Collapse
Affiliation(s)
- Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Fanfan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Meifang Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yanbing Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Qun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Jia Tan
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China.
| |
Collapse
|
7
|
Wang B, Meng XJ. Hepatitis E virus: host tropism and zoonotic infection. Curr Opin Microbiol 2020; 59:8-15. [PMID: 32810801 DOI: 10.1016/j.mib.2020.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis E virus (HEV), the causative agent of hepatitis E, is an understudied but important pathogen. HEV typically causes self-limiting acute viral hepatitis, however chronic infection with neurological and other extrahepatic manifestations has increasingly become a significant clinical problem. The discovery of swine HEV from pigs and demonstration of its zoonotic potential led to the genetic identification of very diverse HEV strains from more than a dozen other animal species. HEV strains from pig, rabbit, deer, camel, and rat have been shown to cross species barriers and infect humans. Zoonotic HEV infections through consumption of raw or undercooked animal meat or direct contact with infected animals have been reported. The discovery of a large number of animal HEV variants does provide an opportunity to develop useful animal models for HEV. In this mini-review, we discuss recent advances in HEV host range, and cross-species and zoonotic transmission.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|