1
|
Necel A, Dydecka A, Topka-Bielecka G, Wesołowski W, Lewandowska N, Bloch S, Nejman-Faleńczyk B. What, how, and why? - anti-EHEC phages and their application potential in medicine and food industry. J Appl Genet 2025; 66:219-240. [PMID: 39527365 PMCID: PMC11762087 DOI: 10.1007/s13353-024-00918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are pathogens that, only in the United States, cause more than 250,000 foodborne infections a year. Since antibiotics or other antidiarrheal agents may increase the hemolytic-uremic syndrome (HUS) development risk, currently only supportive therapy, including hydration, is used. Therefore, many methods to fight EHEC bacteria focus on their use in food processing to prevent human infection. One of the proposed anti-EHEC agents is bacteriophages, known for their bactericidal effect, host specificity, and lack of cross-resistance with antibiotics. In this review article, we provide an overview of the characteristics like source of isolation, morphology, kinetics of life cycle, and treatment potential of over 130 bacteriophages able to infect EHEC strains. Based on the reviewed literature, we conclude that bacteriophages may play a highly significant role in regulating EHEC propagation. In addition, we also point out the phage features that should be taken into account not only when using bacteriophages but also when examining their properties. This may contribute to accelerating the pace of work on the preventive use of bacteriophages, which is extremely needed in the modern world of the food industry, but also stimulate interest in phages and accelerate regulatory work that would enable the use of bacteriophages also in medicine, to fight the drug-resistant strains.
Collapse
Affiliation(s)
- Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204, Gdansk, Poland.
| | | | | | - Wojciech Wesołowski
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Natalia Lewandowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Sylwia Bloch
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
- BNF - New Bio Force sp. z o.o., Kartuska 420a, 80-125, Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdansk, Poland
- BNF - New Bio Force sp. z o.o., Kartuska 420a, 80-125, Gdańsk, Poland
| |
Collapse
|
2
|
Bryan DW, Hudson LK, Wang J, Denes TG. Characterization of a Diverse Collection of Salmonella Phages Isolated from Tennessee Wastewater. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:90-98. [PMID: 37350991 PMCID: PMC10282790 DOI: 10.1089/phage.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Background Salmonella enterica is one of the most prevalent bacterial foodborne pathogens. Salmonella phages are currently used in biocontrol applications and have potential for use as therapeutics. Materials and Methods Phages were enriched and purified from a diversity of Salmonella host isolates. Morphology was determined with transmission electron microscopy, host ranges were characterized using an efficiency of plaquing assay, and comparative genomic analysis was performed to determine taxonomy. Results Ten phages were isolated and characterized. Phages showed activity against 23 out of the 24 Salmonella serovars evaluated. Two phages also showed activity against Escherichia coli strain B. Phages belonged to five different genera (Ithacavirus, Gelderlandvirus, Kuttervirus, Tlsvirus, and Epseptimavirus), two established species, and eight novel species. Conclusions The phages described here further demonstrate the diversity of S. enterica phages present in wastewater effluent. This work contributes a collection of characterized phages from eastern Tennessee that may be of use in future phage-based applications targeting S. enterica.
Collapse
Affiliation(s)
- Daniel W. Bryan
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Lauren K. Hudson
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Jia Wang
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
3
|
Vasquez I, Retamales J, Parra B, Machimbirike V, Robeson J, Santander J. Comparative Genomics of a Polyvalent Escherichia-Salmonella Phage fp01 and In Silico Analysis of Its Receptor Binding Protein and Conserved Enterobacteriaceae Phage Receptor. Viruses 2023; 15:v15020379. [PMID: 36851593 PMCID: PMC9961651 DOI: 10.3390/v15020379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The polyvalent bacteriophage fp01, isolated from wastewater in Valparaiso, Chile, was described to have lytic activity across bacterial species, including Escherichia coli and Salmonella enterica serovars. Due to its polyvalent nature, the bacteriophage fp01 has potential applications in the biomedical, food and agricultural industries. Also, fundamental aspects of polyvalent bacteriophage biology are unknown. In this study, we sequenced and described the complete genome of the polyvalent phage fp01 (MH745368.2) using long- (MinION, Nanopore) and short-reads (MiSeq, Illumina) sequencing. The bacteriophage fp01 genome has 109,515 bp, double-stranded DNA with an average G+C content of 39%, and 158 coding sequences (CDSs). Phage fp01 has genes with high similarity to Escherichia coli, Salmonella enterica, and Shigella sp. phages. Phylogenetic analyses indicated that the phage fp01 is a new Tequintavirus fp01 specie. Receptor binding protein gp108 was identified as potentially responsible for fp01 polyvalent characteristics, which binds to conserved amino acid regions of the FhuA receptor of Enterobacteriaceae.
Collapse
Affiliation(s)
- Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Julio Retamales
- Instituto de Ciencias Naturales, Universidad de las Américas, Viña del Mar 2520000, Chile
| | - Barbara Parra
- Subdepartment of Molecular Genetics, Public Health Institute of Chile, Santiago 9140000, Chile
| | - Vimbai Machimbirike
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - James Robeson
- Laboratory of Microbiology, Institute of Biology, Pontifical Catholic University of Valparaíso, Valparaiso 2370000, Chile
- Correspondence: (J.R.); (J.S.)
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Science, Memorial University, St. John’s, NL A1C 5S7, Canada
- Correspondence: (J.R.); (J.S.)
| |
Collapse
|
4
|
Wintachai P, Surachat K, Chaimaha G, Septama AW, Smith DR. Isolation and Characterization of a Phapecoctavirus Infecting Multidrug-Resistant Acinetobacter baumannii in A549 Alveolar Epithelial Cells. Viruses 2022; 14:v14112561. [PMID: 36423170 PMCID: PMC9695679 DOI: 10.3390/v14112561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii (MDR A. baumannii) is an emerging pathogen in the ESKAPE group. The global burden of antimicrobial resistance has led to renewed interest in alternative antimicrobial treatment strategies, including phage therapy. This study isolated and characterized a phage vB_AbaM_ ABPW7 (vABPW7) specific to MDR A. baumannii. Morphological analysis showed that phage vABPW7 belongs to the Myoviridae family. Genome analysis showed that the phage DNA genome consists of 148,647 bp and that the phage is a member of the Phapecoctavirus genus of the order Caudovirales. A short latent period and a large burst size indicated that phage vABPW7 was a lytic phage that could potentially be used in phage therapy. Phage vABPW7 is a high-stability phage that has high lytic activity. Phage vABPW7 could effectively reduce biofilm formation and remove preformed biofilm. The utility of phage vABPW7 was investigated in a human A549 alveolar epithelial cell culture model. Phage vABPW7 was not cytotoxic to A549 cells, and the phage could significantly reduce planktonic MDR A. baumannii and MDR A. baumannii adhesion on A549 cells without cytotoxicity. This study suggests that phage vABPW7 has the potential to be developed further as a new antimicrobial agent against MDR A. baumannii.
Collapse
Affiliation(s)
- Phitchayapak Wintachai
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
- Correspondence:
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Ganyalak Chaimaha
- School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | - Abdi Wira Septama
- Research Centre for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), South Tangerang 15314, Banten, Indonesia
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
5
|
An in vitro fermentation model to study the impact of bacteriophages targeting Shiga toxin-encoding Escherichia coli on the colonic microbiota. NPJ Biofilms Microbiomes 2022; 8:74. [PMID: 36163472 PMCID: PMC9512901 DOI: 10.1038/s41522-022-00334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Lytic bacteriophages are considered safe for human consumption as biocontrol agents against foodborne pathogens, in particular in ready-to-eat foodstuffs. Phages could, however, evolve to infect different hosts when passing through the gastrointestinal tract (GIT). This underlines the importance of understanding the impact of phages towards colonic microbiota, particularly towards bacterial families usually found in the colon such as the Enterobacteriaceae. Here we propose in vitro batch fermentation as model for initial safety screening of lytic phages targeting Shiga toxin-producing Escherichia coli (STEC). As inoculum we used faecal material of three healthy donors. To assess phage safety, we monitored fermentation parameters, including short chain fatty acid production and gas production/intake by colonic microbiota. We performed shotgun metagenomic analysis to evaluate the outcome of phage interference with colonic microbiota composition and functional potential. During the 24 h incubation, concentrations of phage and its host were also evaluated. We found the phage used in this study, named E. coli phage vB_EcoS_Ace (Ace), to be safe towards human colonic microbiota, independently of the donors’ faecal content used. This suggests that individuality of donor faecal microbiota did not interfere with phage effect on the fermentations. However, the model revealed that the attenuated STEC strain used as phage host perturbed the faecal microbiota as based on metagenomic analysis, with potential differences in metabolic output. We conclude that the in vitro batch fermentation model used in this study is a reliable safety screening for lytic phages intended to be used as biocontrol agents.
Collapse
|
6
|
Bao H, Zhang H, Zhou Y, Zhu S, Pang M, Zhang X, Wang Y, Wang J, Olaniran A, Xiao Y, Schmidt S, Wang R. Dysbiosis and intestinal inflammation caused by Salmonella Typhimurium in mice can be alleviated by preadministration of a lytic phage. Microbiol Res 2022; 260:127020. [DOI: 10.1016/j.micres.2022.127020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/21/2023]
|
7
|
Yamaki S, Yamazaki K, Kawai Y. Broad host range bacteriophage, EscoHU1, infecting Escherichia coli O157:H7 and Salmonella enterica: Characterization, comparative genomics, and applications in food safety. Int J Food Microbiol 2022; 372:109680. [DOI: 10.1016/j.ijfoodmicro.2022.109680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
|
8
|
Biocontrol Approaches against Escherichia coli O157:H7 in Foods. Foods 2022; 11:foods11050756. [PMID: 35267389 PMCID: PMC8909014 DOI: 10.3390/foods11050756] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli O157:H7 is a well-known water- and food-borne zoonotic pathogen that can cause gastroenteritis in humans. It threatens the health of millions of people each year; several outbreaks of E. coli O157:H7 infections have been linked to the consumption of contaminated plant foods (e.g., lettuce, spinach, tomato, and fresh fruits) and beef-based products. To control E. coli O157:H7 in foods, several physical (e.g., irradiation, pasteurization, pulsed electric field, and high-pressure processing) and chemical (e.g., using peroxyacetic acid; chlorine dioxide; sodium hypochlorite; and organic acids, such as acetic, lactic, and citric) methods have been widely used. Although the methods are quite effective, they are not applicable to all foods and carry intrinsic disadvantages (alteration of sensory properties, toxicity, etc.). Therefore, the development of safe and effective alternative methods has gained increased attention recently. Biocontrol agents, including bacteriophages, probiotics, antagonistic bacteria, plant-derived natural compounds, bacteriocins, endolysins, and enzymes, are rapidly emerging as effective, selective, relatively safe for human consumption, and environmentally friendly alternatives. This paper summarizes advances in the application of biocontrol agents for E. coli O157:H7 control in foods.
Collapse
|
9
|
Zajančkauskaitė A, Noreika A, Rutkienė R, Meškys R, Kaliniene L. Low-Temperature Virus vB_EcoM_VR26 Shows Potential in Biocontrol of STEC O26:H11. Foods 2021; 10:1500. [PMID: 34203373 PMCID: PMC8307508 DOI: 10.3390/foods10071500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O26:H11 is an emerging foodborne pathogen of growing concern. Since current strategies to control microbial contamination in foodstuffs do not guarantee the elimination of O26:H11, novel approaches are needed. Bacteriophages present an alternative to traditional biocontrol methods used in the food industry. Here, a previously isolated bacteriophage vB_EcoM_VR26 (VR26), adapted to grow at common refrigeration temperatures (4 and 8 °C), has been evaluated for its potential as a biocontrol agent against O26:H11. After 2 h of treatment in broth, VR26 reduced O26:H11 numbers (p < 0.01) by > 2 log10 at 22 °C, and ~3 log10 at 4 °C. No bacterial regrowth was observed after 24 h of treatment at both temperatures. When VR26 was introduced to O26:H11-inoculated lettuce, ~2.0 log10 CFU/piece reduction was observed at 4, 8, and 22 °C. No survivors were detected after 4 and 6 h at 8 and 4 °C, respectively. Although at 22 °C, bacterial regrowth was observed after 6 h of treatment, O26:H11 counts on non-treated samples were >2 log10 CFU/piece higher than on phage-treated ones (p < 0.02). This, and the ability of VR26 to survive over a pH range of 3-11, indicates that VR26 could be used to control STEC O26:H11 in the food industry.
Collapse
Affiliation(s)
| | | | | | | | - Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania; (A.Z.); (A.N.); (R.R.); (R.M.)
| |
Collapse
|
10
|
Fong K, Wong CW, Wang S, Delaquis P. How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:83-91. [PMID: 36148040 PMCID: PMC9041489 DOI: 10.1089/phage.2020.0036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel bacteriophages (phages) possessing a broad host range are consistently and routinely reported, yet there is presently no consensus on the definition of "broad host range." As phages are increasingly being used in the development of methods for the detection and biocontrol of human pathogens, it is important to address the limitations associated with the host range. For instance, unanticipated host range breadth may result in the detection of nonpathogenic targets, thereby increasing the false-positive rate. Moreover, a broad host range is generally favored in biocontrol applications despite the risk of undesirable ancillary effects against nontarget species. Here, we discuss the research progress, applications, and implications of broad host range phages with a focus on tailed broad host range phages infecting human pathogens of concern in the Agri-Food sector.
Collapse
Affiliation(s)
- Karen Fong
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, Canada
| | - Catherine W.Y. Wong
- Food, Nutrition and Health, University of British Columbia, Vancouver, Canada
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, Vancouver, Canada
| | - Pascal Delaquis
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, Canada
| |
Collapse
|
11
|
Niu YD, Liu H, Du H, Meng R, Sayed Mahmoud E, Wang G, McAllister TA, Stanford K. Efficacy of Individual Bacteriophages Does Not Predict Efficacy of Bacteriophage Cocktails for Control of Escherichia coli O157. Front Microbiol 2021; 12:616712. [PMID: 33717006 PMCID: PMC7943454 DOI: 10.3389/fmicb.2021.616712] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/18/2021] [Indexed: 01/21/2023] Open
Abstract
Effectiveness of bacteriophages AKFV33 (Tequintavirus, T5) and AHP24 (Rogunavirus, T1), wV7 (Tequatrovirus, T4), and AHP24S (Vequintavirus, rV5), as well as 11 cocktails of combinations of the four phages, were evaluated in vitro for biocontrol of six common phage types of Escherichia coli O157 (human and bovine origins) at different multiplicities of infection (MOIs; 0.01–1,000), temperatures (37 or 22°C), and exposure times (10–22 h). Phage efficacy against O157 was highest at MOI 1,000 (P < 0.001) and after 14-18 h of exposure at 22°C (P < 0.001). The activity of individual phages against O157 did not predict the activity of a cocktail of these phages even at the same temperature and MOI. Combinations of phages were neutral (no better or worse than the most effective constituent phages acting alone), displayed facilitation (greater efficacy than the most effective constituent phages acting alone), or antagonistic (lower efficacy than the most effective constituent phages acting alone). Across MOIs, temperatures, exposure time, and O157 strains, a cocktail of T1, T4, and rV5 was most effective (P < 0.05) against O157, although T1 and rV5 were less effective (P < 0.001) than other individual phages. T5 was the most effective individual phages (P < 0.05), but was antagonistic to other phages, particularly rV5 and T4 + rV5. Interactions among phages were influenced by phage genera and phage combination, O157 strains, MOIs, incubation temperatures, and times. Based on this study, future development of phage cocktails should, as a minimum, include confirmation of a lack of antagonism among constituent phages and preferably confirmation of facilitation or synergistic effects.
Collapse
Affiliation(s)
- Yan D Niu
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Hui Liu
- Hohhot Bureau of Ecology and Environment, Hohhot, China.,Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Hechao Du
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.,College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, China
| | - Ruiqiang Meng
- Inner Mongolia C. P. Livestock Husbandry Co., Ltd., Hohhot, China
| | - El Sayed Mahmoud
- School of Applied Computing, Faculty of Applied Science and Technology, Sheridan College, Oakville, ON, Canada
| | - Guihua Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kim Stanford
- Department of Biological Science, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
12
|
Ding T, Sun H, Pan Q, Zhao F, Zhang Z, Ren H. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Res 2020; 286:198080. [PMID: 32615132 DOI: 10.1016/j.virusres.2020.198080] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/26/2020] [Accepted: 06/27/2020] [Indexed: 10/24/2022]
Abstract
A novel bacteriophage vB_VpaS_PG07 (hereafter designated PG07) that infects Vibrio parahaemolyticus was isolated. The bacteriophage was examined by transmission electron microscopy, and the result showed that PG07 belonged to family Siphoviridae, with an isometric polyhedral head (80 nm in diameter) and a long tail (175 nm in length). The one-step growth curve showed that the latent period and burst size were 10 min and 60 PFUs/infected cell, respectively. PG07 had double-stranded DNA genome of 112, 106 bp with 43.65 % G+C content. A total of 158 putative open reading frames (ORFs) were identified in the genome of PG07, including functional genes associated with integration, nucleotide metabolism and replication, structure and packaging and bacterial lysis. Sixteen tRNA genes were discovered, and no genes associated with pathogenicity and virulence were identified. The genome of PG07 showed very low similarity to phage genomes deposited in public databases (77.65 % nucleotide identity and 9 % query coverage). The newly sequenced PG07 could be considered as a novel T5-like virus. PG07 significantly reduced the mortality of shrimps challenged with V. parahaemolyticus, a bacterium causing acute hepatopancreatic necrosis disease (AHPND). The findings highlight the potential of PG07 as an effective antibacterial agent for phage prophylaxis and phage therapy in aquaculture.
Collapse
Affiliation(s)
- Tongyan Ding
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong, 266109, China; Qingdao Phagepharm Bio-tech Co, Ltd, Shandong, 266109, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-tech Co, Ltd, Shandong, 266109, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co, Ltd, Shandong, 266109, China
| | - Feiyang Zhao
- Qingdao Phagepharm Bio-tech Co, Ltd, Shandong, 266109, China
| | - Zhaozuo Zhang
- Qingdao Phagepharm Bio-tech Co, Ltd, Shandong, 266109, China
| | - Huiying Ren
- Qingdao Agricultural University, College of Veterinary Medicine, Shandong, 266109, China.
| |
Collapse
|