1
|
Yang JF, Liu W, You J. Characterization of molecular mechanisms driving Merkel cell polyomavirus oncogene transcription and tumorigenic potential. PLoS Pathog 2023; 19:e1011598. [PMID: 37647312 PMCID: PMC10468096 DOI: 10.1371/journal.ppat.1011598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is associated with approximately 80% of cases of Merkel cell carcinoma (MCC), an aggressive type of skin cancer. The incidence of MCC has tripled over the past twenty years, but there are currently very few effective targeted treatments. A better understanding of the MCPyV life cycle and its oncogenic mechanisms is needed to unveil novel strategies for the prevention and treatment of MCC. MCPyV infection and oncogenesis are reliant on the expression of the early viral oncoproteins, which drive the viral life cycle and MCPyV+ MCC tumor cell growth. To date, the molecular mechanisms regulating the transcription of the MCPyV oncogenes remain largely uncharacterized. In this study, we investigated how MCPyV early transcription is regulated to support viral infection and MCC tumorigenesis. Our studies established the roles of multiple cellular factors in the control of MCPyV gene expression. Inhibitor screening experiments revealed that the histone acetyltransferases p300 and CBP positively regulate MCPyV transcription. Their regulation of viral gene expression occurs through coactivation of the transcription factor NF-κB, which binds to the viral genome to drive MCPyV oncogene expression in a manner that is tightly controlled through a negative feedback loop. Furthermore, we discovered that small molecule inhibitors specifically targeting p300/CBP histone acetyltransferase activity are effective at blocking MCPyV tumor antigen expression and MCPyV+ MCC cell proliferation. Together, our work establishes key cellular factors regulating MCPyV transcription, providing the basis for understanding the largely unknown mechanisms governing MCPyV transcription that defines its infectious host cell tropism, viral life cycle, and oncogenic potential. Our studies also identify a novel therapeutic strategy against MCPyV+ MCC through specific blockage of MCPyV oncogene expression and MCC tumor growth.
Collapse
Affiliation(s)
- June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
2
|
Falquet M, Prezioso C, Ludvigsen M, Bruun JA, Passerini S, Sveinbjørnsson B, Pietropaolo V, Moens U. Regulation of Transcriptional Activity of Merkel Cell Polyomavirus Large T-Antigen by PKA-Mediated Phosphorylation. Int J Mol Sci 2023; 24:ijms24010895. [PMID: 36614338 PMCID: PMC9820997 DOI: 10.3390/ijms24010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. MCPyV large T-antigen (LTag) and small T-antigen (sTag) are the main oncoproteins involved in MCPyV-induced MCC. A hallmark of MCPyV-positive MCC cells is the expression of a C-terminal truncated LTag. Protein kinase A (PKA) plays a fundamental role in a variety of biological processes, including transcription by phosphorylating and thereby regulating the activity of transcription factors. As MCPyV LTag has been shown to be phosphorylated and acts as a transcription factor for the viral early and late promoter, we investigated whether LTag can be phosphorylayted by PKA, and whether this affects the transcript activity of LTag. Using a phosphorylation prediction algorithm, serine 191, 203, and 265 were identified as putative phosphorylation sites for PKA. Mass spectrometry of in vitro PKA-phosphorylated peptides confirmed phosphorylation of S203 and S265, but not S191. Full-length LTag inhibited early and late promoter activity of MCPyV, whereas the truncated MKL2 LTag variant stimulated both promoters. Single non-phosphorylable, as well as phosphomimicking mutations did not alter the inhibitory effect of full-length LTag. However, the non-phosphorylable mutations abrogated transactivation of the MCPyV promoters by MKL2 LTag, whereas phosphomimicking substitutions restored the ability of MKL2 LTag to activate the promoters. Triple LTag and MKL2 LTag mutants had the same effect as the single mutants. Activation of the PKA signaling pathway did not enhance MCPyV promoter activity, nor did it affect LTag expression levels in MCPyV-positive Merkel cell carcinoma (MCC) cells. Our results show that phosphorylation of truncated LTag stimulates viral promoter activity, which may contribute to higher levels of the viral oncoproteins LTag and sTag. Interfering with PKA-induced LTag phosphorylation/activity may be a therapeutic strategy to treat MCPyV-positive MCC patients.
Collapse
Affiliation(s)
- Mar Falquet
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele, 00163 Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Ludvigsen
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jack-Ansgar Bruun
- Department of Medical Biology, Proteomics Platform, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, 17177 Stockholm, Sweden
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (V.P.); (U.M.)
| | - Ugo Moens
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele, 00163 Rome, Italy
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
3
|
Inhibition of T-antigen expression promoting glycogen synthase kinase 3 impairs merkel cell carcinoma cell growth. Cancer Lett 2022; 524:259-267. [PMID: 34715251 DOI: 10.1016/j.canlet.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Merkel cell carcinoma is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV). Since proliferation of MCPyV-positive MCC tumor cells strictly depends on expression of the virus-encoded T antigens (TA), these proteins theoretically represent ideal targets for different kinds of therapeutic approaches. Here we developed a cell-based assay to identify compounds which specifically inhibit growth of MCC cells by repressing TA expression. Applying this technique we screened a kinase inhibitor library and identified six compounds targeting glycogen synthase kinase 3 (GSK3) such as CHIR99021 as suppressors of TA transcription in MCC cells. Involvement of GSK3α and -β in the regulation of TA-expression was confirmed by combining GSK3A knockout with inducible GSK3B shRNA knockdown since double knockouts could not be generated. Finally, we demonstrate that CHIR99021 exhibits in vivo antitumor activity in an MCC xenograft mouse model suggesting GSK3 inhibitors as potential therapeutics for the treatment of MCC in the future.
Collapse
|
4
|
Genetic Diversity of the Noncoding Control Region of the Novel Human Polyomaviruses. Viruses 2020; 12:v12121406. [PMID: 33297530 PMCID: PMC7762344 DOI: 10.3390/v12121406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The genomes of polyomaviruses are characterized by their tripartite organization with an early region, a late region and a noncoding control region (NCCR). The early region encodes proteins involved in replication and transcription of the viral genome, while expression of the late region generates the capsid proteins. Transcription regulatory sequences for expression of the early and late genes, as well as the origin of replication are encompassed in the NCCR. Cell tropism of polyomaviruses not only depends on the appropriate receptors on the host cell, but cell-specific expression of the viral genes is also governed by the NCCR. Thus far, 15 polyomaviruses have been isolated from humans, though it remains to be established whether all of them are genuine human polyomaviruses (HPyVs). The sequences of the NCCR of these HPyVs show high genetic variability and have been best studied in the human polyomaviruses BK and JC. Rearranged NCCRs in BKPyV and JCPyV, the first HPyVs to be discovered approximately 30 years ago, have been associated with the pathogenic properties of these viruses in nephropathy and progressive multifocal leukoencephalopathy, respectively. Since 2007, thirteen novel PyVs have been isolated from humans: KIPyV, WUPyV, MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, HPyV10, STLPyV, HPyV12, NJPyV, LIPyV and QPyV. This review describes all NCCR variants of the new HPyVs that have been reported in the literature and discusses the possible consequences of NCCR diversity in terms of promoter strength, putative transcription factor binding sites and possible association with diseases.
Collapse
|
5
|
Prezioso C, Bianchi M, Obregon F, Ciotti M, Sarmati L, Andreoni M, Palamara AT, Pascarella S, Moens U, Pietropaolo V. Structural Analysis of Merkel Cell Polyomavirus (MCPyV) Viral Capsid Protein 1 (VP1) in HIV-1 Infected Individuals. Int J Mol Sci 2020; 21:7998. [PMID: 33121182 PMCID: PMC7663277 DOI: 10.3390/ijms21217998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) viral protein 1 (VP1) is the capsid protein that mediates virus attachment to host cell receptors and is the major immune target. Given the limited data on MCPyV VP1 mutations, the VP1 genetic variability was examined in 100 plasma and 100 urine samples from 100 HIV+ individuals. Sequencing of VP1 DNA in 17 urine and 17 plasma specimens, simultaneously MCPyV DNA positive, revealed that 27 samples displayed sequences identical to VP1 of MCC350 strain. VP1 from two urine specimens had either Thr47Ser or Ile115Phe substitution, whereas VP1 of one plasma contained Asp69Val and Ser251Phe substitutions plus deletion (∆) of Tyr79. VP1 DNA in the remaining samples had mutations encoding truncated protein. Three-dimensional prediction models revealed that Asp69Val, Ser251Phe, and Ile115Phe caused neutral effects while Thr47Ser and Tyr79∆ produced a deleterious effect reducing VP1 stability. A549 cells infected with urine or plasma samples containing full-length VP1 variants with substitutions, sustained viral DNA replication and VP1 expression. Moreover, medium harvested from these cells was able to infect new A549 cells. In cells infected by samples with truncated VP1, MCPyV replication was hampered. In conclusion, MCPyV strains with unique mutations in the VP1 gene are circulating in HIV+ patients. These strains display altered replication efficiency compared to the MCC350 prototype strain in A549 cells.
Collapse
Affiliation(s)
- Carla Prezioso
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-degenerative Pathologies, 00163 Rome, Italy;
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Martina Bianchi
- Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University of Rome, 00185 Rome, Italy; (M.B.); (S.P.)
| | - Francisco Obregon
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| | - Marco Ciotti
- Laboratory of Clinical Microbiology and Virology, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy;
| | - Loredana Sarmati
- Infectious Diseases Clinic, Policlinic Tor Vergata, 00133 Rome, Italy; (L.S.); (M.A.)
- Department of System Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Diseases Clinic, Policlinic Tor Vergata, 00133 Rome, Italy; (L.S.); (M.A.)
- Department of System Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Institute Pasteur, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy;
- IRCCS San Raffaele Pisana, Telematic University, 00163 Rome, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, “Sapienza” University of Rome, 00185 Rome, Italy; (M.B.); (S.P.)
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037 Tromsø, Norway;
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy;
| |
Collapse
|
6
|
Yang JF, You J. Regulation of Polyomavirus Transcription by Viral and Cellular Factors. Viruses 2020; 12:E1072. [PMID: 32987952 PMCID: PMC7601649 DOI: 10.3390/v12101072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Polyomavirus infection is widespread in the human population. This family of viruses normally maintains latent infection within the host cell but can cause a range of human pathologies, especially in immunocompromised individuals. Among several known pathogenic human polyomaviruses, JC polyomavirus (JCPyV) has the potential to cause the demyelinating disease progressive multifocal leukoencephalopathy (PML); BK polyomavirus (BKPyV) can cause nephropathy in kidney transplant recipients, and Merkel cell polyomavirus (MCPyV) is associated with a highly aggressive form of skin cancer, Merkel cell carcinoma (MCC). While the mechanisms by which these viruses give rise to the relevant diseases are not well understood, it is clear that the control of gene expression in each polyomavirus plays an important role in determining the infectious tropism of the virus as well as their potential to promote disease progression. In this review, we discuss the mechanisms governing the transcriptional regulation of these pathogenic human polyomaviruses in addition to the best-studied simian vacuolating virus 40 (SV40). We highlight the roles of viral cis-acting DNA elements, encoded proteins and miRNAs that control the viral gene expression. We will also underline the cellular transcription factors and epigenetic modifications that regulate the gene expression of these viruses.
Collapse
Affiliation(s)
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| |
Collapse
|
7
|
Pietropaolo V, Prezioso C, Moens U. Merkel Cell Polyomavirus and Merkel Cell Carcinoma. Cancers (Basel) 2020; 12:E1774. [PMID: 32635198 PMCID: PMC7407210 DOI: 10.3390/cancers12071774] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Viruses are the cause of approximately 15% of all human cancers. Both RNA and DNA human tumor viruses have been identified, with Merkel cell polyomavirus being the most recent one to be linked to cancer. This virus is associated with about 80% of Merkel cell carcinomas, a rare, but aggressive cutaneous malignancy. Despite its name, the cells of origin of this tumor may not be Merkel cells. This review provides an update on the structure and life cycle, cell tropism and epidemiology of the virus and its oncogenic properties. Putative strategies to prevent viral infection or treat virus-positive Merkel cell carcinoma patients are discussed.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (V.P.); (C.P.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|