1
|
Almuhaideb E, Hasan NA, Grim C, Rashed SM, Parveen S. Comparative evaluation of specimen type and processing conditions for studying oyster microbiomes. Front Microbiol 2025; 15:1504487. [PMID: 39845046 PMCID: PMC11750828 DOI: 10.3389/fmicb.2024.1504487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Metagenomic sequencing is increasingly being employed to understand the assemblage and dynamics of the oyster microbiome. Specimen collection and processing steps can impact the resultant microbiome composition and introduce bias. To investigate this systematically, a total of 54 farmed oysters were collected from Chesapeake Bay between May and September 2019. Six different specimen types and processing methods were evaluated for microbial community composition using shotgun metagenomics, namely fresh oyster homogenate (FOH), oyster homogenate after simulated temperature abuse (AOH), Luria broth-enriched oyster homogenate (EOH), dissected stomach homogenate (DSH), hemolymph (HLM), and stomach-gut content (SGC). In general, DSH, EOH, and FOH yielded the highest DNA concentration, while EOH had the highest microbial reads, followed by DSH, HLM, and FOH. HLM produced the highest bacterial species alpha diversity, followed by AOH, EOH, and SGC. Although alpha diversities did not differ significantly, beta-diversity measurements showed significant dissimilarity among methods (p < 0.05) indicating that the specimen types and processing steps do play an important role in representing the composition of the bacterial community. Bacterial species that had the highest log mean abundance included Cyanobium sp. PCC 7001 in FOH, Vibrio vulnificus in AOH, EOH, and DSH, and lastly Synechococcus sp. CB0205 in the DSH, HML, and SGC samples. EOH displayed higher bacterial hits, distinct microbial composition, and higher values of bacterial, phages, and antimicrobial resistance gene reads. Therefore, if studying the overall oyster microbial community, prioritizing optimum specimen collection and processing methods that align with the overall goal of the study is recommended.
Collapse
Affiliation(s)
- Esam Almuhaideb
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| | - Nur A. Hasan
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, United States
- EzBiome Inc, Gaithersburg, MD, United States
| | - Christopher Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States
| | | | - Salina Parveen
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States
| |
Collapse
|
2
|
Cammarata RV, Barrios ME, Díaz SM, García López G, Fortunato MS, Torres C, Blanco Fernández MD, Mbayed VA. Assessment of Microbiological Quality of Fresh Vegetables and Oysters Produced in Buenos Aires Province, Argentina. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:507-519. [PMID: 34449055 DOI: 10.1007/s12560-021-09496-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Fresh vegetables and shellfish are prone to microbial contamination through irrigation or breeding with sewage-polluted waters, as well as by infected food handlers. In this work, we studied the presence of human and bovine polyomaviruses and human norovirus in fresh lettuces, strawberries and oysters produced in Buenos Aires province, Argentina. In oysters, we also investigated F-specific RNA bacteriophages, indicator Escherichia coli (E. coli) and pathogen bacteria of concern (Salmonella spp., Vibrio spp.). Within vegetables, we found viral contamination of human origin given the presence of human-associated polyomaviruses -MCPyV, HPyV6, JCPyV, and SV40- in lettuce and strawberry samples (16 and 10%, respectively), probably coming from irrigation waters and food handling. Among oysters, human (MCPyV, 4.2%) and bovine (BPyV1, 8.4%) polyomaviruses were detected even with low counts of E. coli. Bacteriophages (n = 3) and Salmonella spp. (n = 1) were also found, while Vibrio spp. was not detected. These results may indicate that the contamination in oysters comes from human and animal excreta, probably present in breeding waters. Norovirus was not detected in any food sample. To our knowledge, this is the first description of SV40 in lettuces and MCPyV and BPyV1 in oysters. The detection of different viral contaminants encourages further studies to evaluate the need for including viral indicators in microbiological standards. The identification of possible sources and routes of contamination using viral markers during routine microbiological controls, such as the polyomaviruses used in this work, would be useful to focus attention on the most hazardous stages of the food production chain.
Collapse
Affiliation(s)
- Robertina Viviana Cammarata
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Junín 956, 1113, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Melina Elizabeth Barrios
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Junín 956, 1113, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Sofía Micaela Díaz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Junín 956, 1113, Buenos Aires, Argentina
- Agencia Nacional de Promoción Científica y Tecnológica, Ministerio de Ciencia y Tecnología, Godoy Cruz 2370, 1425, Buenos Aires, Argentina
| | - Guadalupe García López
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Salud Pública e Higiene Ambiental, Junín 956, 1113, Buenos Aires, Argentina
| | - María Susana Fortunato
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Cátedra de Salud Pública e Higiene Ambiental, Junín 956, 1113, Buenos Aires, Argentina
| | - Carolina Torres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Junín 956, 1113, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - María Dolores Blanco Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Junín 956, 1113, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Viviana Andrea Mbayed
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica. Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Junín 956, 1113, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Del Valle L, Khalili K. Induction of Brain Tumors by the Archetype Strain of Human Neurotropic JCPyV in a Transgenic Mouse Model. Viruses 2021; 13:v13020162. [PMID: 33499370 PMCID: PMC7911272 DOI: 10.3390/v13020162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
JC Virus (JCPyV), a member of the Polyomaviridiæ family, is a human neurotropic virus with world-wide distribution. JCPyV is the established opportunistic infectious agent of progressive multifocal leukoencephalopathy, a fatal demyelinating disease, which results from the cytolytic infection of oligodendrocytes. Mutations in the regulatory region of JCPyV determine the different viral strains. Mad-1 the strain associated with PML contains two 98 base pair repeats, whereas the archetype strain (CY), which is the transmissible form of JCPyV, contains only one 98 tandem with two insertions of 62 and 23 base pairs respectively. The oncogenicity of JCPyV has been suspected since direct inoculation into the brain of rodents and primates resulted in the development of brain tumors and has been attributed to the viral protein, T-Antigen. To further understand the oncogenicity of JCPyV, a transgenic mouse colony containing the early region of the archetype strain (CY), under the regulation of its own promoter was generated. These transgenic animals developed tumors of neural crest origin, including: primitive neuroectodermal tumors, medulloblastomas, adrenal neuroblastomas, pituitary tumors, malignant peripheral nerve sheath tumors, and glioblastomas. Neoplastic cells from all different phenotypes express T-Antigen. The close parallels between the tumors developed by these transgenic animals and human CNS tumors make this animal model an excellent tool for the study of viral oncogenesis.
Collapse
Affiliation(s)
- Luis Del Valle
- Neurological Cancer Research, Stanley S. Scott Cancer Center, Departments of Medicine and Pathology, Louisiana State University Health, New Orleans, LA 70112, USA
- Correspondence: (L.D.V.); (K.K.)
| | - Kamel Khalili
- Department of Neurosciences and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Correspondence: (L.D.V.); (K.K.)
| |
Collapse
|