1
|
Zhang Y, Li H, Chen Y, Li C, Ye H, Qiu J, Liu X, Sun W, Zhang X, Tian N, Zhou Y. Nordihydroguaiaretic acid suppresses ferroptosis and mitigates intervertebral disc degeneration through the NRF2/GPX4 axis. Int Immunopharmacol 2024; 143:113590. [PMID: 39541847 DOI: 10.1016/j.intimp.2024.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a major contributor to low back pain (LBP), while LBP is the leading cause of disability. However, the effective pharmacological interventions for IVDD are still lacking. Studies have elucidated that ferroptosis plays a crucial role in the pathogenesis of IVDD. This study aimed to evaluate the effects of various natural products, specifically screening for those that suppress ferroptosis induced in nucleus pulposus cells (NPCs) via RSL3. Previously, we have identified that a list of natural products in the library may suppress oxidative stress damage in NPCs, while oxidative stress is a major contributor to ferroptosis. The current study sought to verify the ferroptosis inhibitory effect of these products in NPCs. Through screening of the top 20 natural products in the list, we found that Nordihydroguaiaretic acid (NDGA) was the most effective compound to inhibit ferroptosis in NPCs. Mechanism study demonstrated that NDGA may promote the nuclear expression of the key transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2), which subsequently increase the expression of the ferroptosis suppressor gene GPX4, and reduce the degradation of the extracellular matrix (ECM) and suppress the progression of inflammation. In the rat puncture induced IVDD model, intraperitoneal injection of NDGA delayed the progression of IVDD. In conclusion, our study indicates that NDGA is a potential drug for the treatment of IVDD.
Collapse
Affiliation(s)
- Yekai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Hualin Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Yiji Chen
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China; School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Haobo Ye
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Jiawei Qiu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Xiaopeng Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Weiqian Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, 310000 Zhejiang Province, China.
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, 310000 Zhejiang Province, China.
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325088 Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325035 Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, 310000 Zhejiang Province, China.
| |
Collapse
|
2
|
Macena JC, Renzi DF, Grigoletto DF. Chemical and biological properties of nordihydroguaiaretic acid. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
4
|
de Lira MN, Bolini L, Amorim NRT, Silva-Souza HA, Diaz BL, Canetti C, Persechini PM, Bandeira-Melo C. Acute catabolism of leukocyte lipid bodies: Characterization of a nordihydroguaiaretic acid (NDGA)-induced proteasomal-dependent model. Prostaglandins Leukot Essent Fatty Acids 2021; 171:102320. [PMID: 34303171 DOI: 10.1016/j.plefa.2021.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Cytoplasmic availability of leukocyte lipid bodies is controlled by a highly regulated cycle of opposing biogenesis- and catabolism-related events. While leukocyte biogenic machinery is well-characterized, lipid body catabolic mechanisms are yet mostly unknown. Here, we demonstrated that nordihydroguaiaretic acid (NDGA) very rapidly decreases the numbers of pre-formed lipid bodies within lipid body-enriched cytoplasm of mouse leukocytes - macrophages, neutrophils and eosinophils. NDGA mechanisms driving leukocyte lipid body disappearance were not related to loss of cell viability, 5-lipoxygenase inhibition, ATP autocrine/paracrine activity, or biogenesis inhibition. Proteasomal-dependent breakdown of lipid bodies appears to control NDGA-driven leukocyte lipid body reduction, since it was Bortezomib-sensitive in macrophages, neutrophils and eosinophils. Our findings unveil an acute NDGA-triggered lipid body catabolic event - a novel experimental model for the still neglected research area on leukocyte lipid body catabolism, additionally favoring further insights on proteasomal contribution to lipid body breakdown.
Collapse
Affiliation(s)
- Maria N de Lira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Imunobiofisica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; BioMed X Institute (GmbH), Heidelberg, Germany
| | - Lukas Bolini
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália R T Amorim
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hercules A Silva-Souza
- Laboratório de Imunobiofisica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Divisão de Verificação e Estudos Técnico-Científicos, Instituto Nacional de Metrologia Qualidade e Tecnologia, Duque de Caxias Rio de Janeiro, Brazil
| | - Bruno L Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro M Persechini
- Laboratório de Imunobiofisica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; This paper is dedicated to the memory of our dear colleague and friend Pedro M. Persechini, who passed prematurely and whose devotion to understanding the mechanisms of action of NDGA was unsurpassed
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Mala John GS, Takeuchi S, Venkatraman G, Rayala SK. Nordihydroguaiaretic Acid in Therapeutics: Beneficial to Toxicity Profiles and the Search for its Analogs. Curr Cancer Drug Targets 2021; 20:86-103. [PMID: 31642411 DOI: 10.2174/1568009619666191022141547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Nordihydroguaiaretic acid (NDGA) is a plant lignan obtained from creosote bush, Larrea tridentata and is known to possess antioxidant, anticancer activities and is used in traditional medicine in North America and Mexico. However, its prolonged consumption leads to liver damage and kidney dysfunction. Despite its toxicity and side effects, there is little awareness to forbid its consumption and its use in the treatment of medical ailments has continued over the years. Several reports discuss its therapeutic efficiency and its medical applications have tremendously been on the rise to date. There has been a recent surge of interest in the chemical synthesis of NDGA derivatives for therapeutic applications. NDGA derivatives have been developed as better alternatives to NDGA. Although several NDGA derivatives have been chemically synthesized as evidenced by recent literature, there is a paucity of information on their therapeutic efficacies. This review is to highlight the medicinal applications of NDGA, its toxicity evaluations and discuss the chemical derivatives of NDGA synthesized and studied so far and suggest to continue research interests in the development of NDGA analogs for therapeutic applications. We suggest that NDGA derivatives should be investigated more in terms of chemical synthesis with preferred conformational structures and exploit their biological potentials with future insights to explore in this direction to design and develop structurally modified NDGA derivatives for potential pharmacological properties.
Collapse
Affiliation(s)
| | - Satoru Takeuchi
- Factory of Takeuchi Nenshi, TAKENEN, 85NE Takamatsu, Kahoku Ishikawa 929-1215, Japan
| | - Ganesh Venkatraman
- Sri Ramachandra Center for Biomedical Nanotechnology, Sri Ramachandra Institute of Higher Education & Research, Chennai-600116, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology (IIT), Madras, Chennai-600036, India
| |
Collapse
|
6
|
Olaniyi KS, Sabinari IW, Olatunji LA. Oral L-glutamine restores adenosine and glutathione content in the skeletal muscle and adipose tissue of insulin-resistant pregnant rats. Nutrition 2020; 77:110789. [PMID: 32428839 DOI: 10.1016/j.nut.2020.110789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/21/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Mishandling of lipid and glycogen has been documented as a feature of metabolic tissues in insulin resistance-related disorders. However, reports exist detailing that L-glutamine (GLN) protects non-adipose tissue against the deleterious effects of metabolic disorders. Therefore, we hypothesized that GLN would protect skeletal muscle and adipose tissue against the deleterious effects of lipid and glycogen mishandlings by increasing adenosine and glutathione levels in pregnant rats exposed to fructose (FRU)-enriched drinks. METHODS Pregnant Wistar rats weighing 150 to 180 g were randomly assigned to control, GLN, FRU, and FRU + GLN groups (six rats/group). The groups received vehicle (P.o.), glutamine (1 g/kg), FRU (10%; w/v), and FRU + GLN, respectively, for 19 d. RESULTS Data show that FRU caused insulin resistance with corresponding increased blood glucose, circulating and pancreatic insulin levels, and lipid accumulation and glycogen depletion in skeletal muscle, but glycogen accumulation and a decreased lipid profile in adipose tissue. Adenosine and glutathione content decreased, whereas adenosine deaminase, xanthine oxidase, uric acid, and malondialdehyde concentrations increased in both tissues. In addition, glucose-6-phosphate dehydrogenase activity decreased in skeletal muscle but remained unaltered in adipose tissue. However, supplementation with GLN improved perturbed lipid and glycogen with a corresponding increase in adenosine and glutathione. CONCLUSIONS The present results collectively indicate that lipid and glycogen mishandlings caused by high gestational FRU intake result in the depletion of adenosine and glutathione in skeletal muscle and adipose tissue. These findings also suggest that L-glutamine protects against skeletal muscle and adipose tissue dysmetabolism by enhancing adenosine and glutathione.
Collapse
Affiliation(s)
- Kehinde Samuel Olaniyi
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria; Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Isaiah Woru Sabinari
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence Aderemi Olatunji
- HOPE Cardiometabolic Research Team & Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| |
Collapse
|
7
|
Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front Pharmacol 2020; 11:151. [PMID: 32184727 PMCID: PMC7058590 DOI: 10.3389/fphar.2020.00151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand, the oxidation of the catechols to the corresponding quinones my elicit alterations in proteins and DNA that raise safety concerns. This review describes the current knowledge on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic agents, highlighting their mechanism of action and clinical projection towards therapy of neurodegenerative, liver, and kidney disease, as well as cancer.
Collapse
Affiliation(s)
- Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cuadrado
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| |
Collapse
|
8
|
Han L, Bittner S, Dong D, Cortez Y, Dulay H, Arshad S, Shen WJ, Kraemer FB, Azhar S. Creosote bush-derived NDGA attenuates molecular and pathological changes in a novel mouse model of non-alcoholic steatohepatitis (NASH). Mol Cell Endocrinol 2019; 498:110538. [PMID: 31415794 PMCID: PMC7273809 DOI: 10.1016/j.mce.2019.110538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/26/2019] [Accepted: 08/11/2019] [Indexed: 02/06/2023]
Abstract
Creosote bush (Larrea tridentata)-derived nordihydroguaiaretic acid (NDGA) was shown to have profound effects on the core components of metabolic syndrome. This study investigated the in vivo potential of NDGA for prevention or attenuation of the pathophysiologic abnormalities of NASH. A novel dietary NASH model with feeding C57BL/6J mice with a high trans-fat, high cholesterol and high fructose (HTF) diet, was used. The HTF diet fed mice exhibited obesity, insulin resistance, hepatic steatosis, fibrosis, inflammation, ER stress, oxidative stress, and liver injury. NDGA attenuated these metabolic abnormalities as well as hepatic steatosis and fibrosis together with attenuated expression of genes encoding fibrosis, progenitor and macrophage markers with no effect on the levels of mRNAs for lipogenic enzymes. NDGA increased expression of fatty acid oxidation genes. In conclusion, NDGA exerts anti-NASH/anti-fibrotic actions and raises the therapeutic potential of NDGA for treatment of NASH patients with fibrosis and other associated complications.
Collapse
Affiliation(s)
- Lu Han
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Stefanie Bittner
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Dachuan Dong
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Yuan Cortez
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Hunter Dulay
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA
| | - Sara Arshad
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA.
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, CA, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, USA.
| |
Collapse
|
9
|
Singh M, Bittner S, Li Y, Bittner A, Han L, Cortez Y, Inayathullah M, Arif Z, Parthasarathi R, Rajadas J, Shen WJ, Nicolls MR, Kraemer FB, Azhar S. Anti-hyperlipidaemic effects of synthetic analogues of nordihydroguaiaretic acid in dyslipidaemic rats. Br J Pharmacol 2018; 176:369-385. [PMID: 30374952 DOI: 10.1111/bph.14528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/07/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous studies have shown that Creosote bush-derived nordihydroguaiaretic acid (NDGA) exerts beneficial actions on the key components of metabolic syndrome including dyslipidaemia, insulin resistance and hypertension in several relevant rodent models. Here, we synthesized and screened a total of 6 anti-hyperlipidaemic analogues of NDGA and tested their efficacy against hepatic lipid metabolism in a high-fructose diet (HFrD) fed dyslipidaemic rat model. EXPERIMENTAL APPROACH HFrD fed Sprague-Dawley rats treated with NDGA or one of the six analogues were used. Serum samples were analysed for blood metabolites, whereas liver samples were quantified for changes in various mRNA levels by real-time RT-PCR. KEY RESULTS Oral gavage of HFrD-fed rats for 4 days with NDGA analogues 1 and 2 (100 mg·kg-1 ·day-1 ) suppressed the hepatic triglyceride content, whereas the NDGA analogues 2, 3 and 4, like NDGA, decreased the plasma triglyceride levels by 70-75%. qRT-PCR measurements demonstrated that among NDGA analogues 1, 2, 4 and 5, analogue 4 was the most effective at inhibiting the mRNA levels of some key enzymes and transcription factors involved in lipogenesis. All four analogues almost equally inhibited the key genes involved in triglyceride synthesis and fatty acid elongation. Unlike NDGA, none of the analogues affected the genes of hepatic fatty acid oxidation or transport. CONCLUSIONS AND IMPLICATIONS Our data suggest that NDGA analogues 1, 2, 4 and 5, particularly analogue 4, exert their anti-hyperlipidaemic actions by negatively targeting genes of key enzymes and transcription factors involved in lipogenesis, triglyceride synthesis and fatty acid elongation. These analogues have therapeutic potential.
Collapse
Affiliation(s)
- Madhurima Singh
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.,Division of Endocrinology, Gerontology and Metabolism, Standford, CA, USA
| | - Stefanie Bittner
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Yihang Li
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.,Division of Endocrinology, Gerontology and Metabolism, Standford, CA, USA
| | - Alex Bittner
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Lu Han
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.,Division of Endocrinology, Gerontology and Metabolism, Standford, CA, USA
| | - Yuan Cortez
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | | | - Zeeshan Arif
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | | - Jayakumar Rajadas
- Division of Cardiovascular Pharmacology CVI, BioADD Laboratory, Stanford, CA, USA
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.,Division of Endocrinology, Gerontology and Metabolism, Standford, CA, USA
| | - Mark R Nicolls
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.,Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.,Division of Endocrinology, Gerontology and Metabolism, Standford, CA, USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA.,Division of Endocrinology, Gerontology and Metabolism, Standford, CA, USA
| |
Collapse
|
10
|
Chan JKW, Bittner S, Bittner A, Atwal S, Shen WJ, Inayathullah M, Rajada J, Nicolls MR, Kraemer FB, Azhar S. Nordihydroguaiaretic Acid, a Lignan from Larrea tridentata (Creosote Bush), Protects Against American Lifestyle-Induced Obesity Syndrome Diet-Induced Metabolic Dysfunction in Mice. J Pharmacol Exp Ther 2018; 365:281-290. [PMID: 29472517 PMCID: PMC5878670 DOI: 10.1124/jpet.117.243733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/16/2018] [Indexed: 12/30/2022] Open
Abstract
To determine the effects of nordihydroguaiaretic acid (NDGA) on metabolic and molecular changes in response to feeding a typical American fast food or Western diet, mice were fed an American lifestyle-induced obesity syndrome (ALIOS) diet and subjected to metabolic analysis. Male C57BL/6J mice were randomly assigned to the ALIOS diet, the ALIOS diet supplemented with NDGA (NDGA+ALIOS), or a control diet and were maintained on the specific diet for 8 weeks. Mice fed the ALIOS diet showed increased body, liver, and epididymal fat pad weight as well as increased plasma alanine transaminase (ALT) and aspartate aminotransferase (AST) levels (a measure of liver injury) and liver triglyceride content. Coadministration of NDGA normalized body and epididymal fat pad weight, ALT and AST levels, and liver triglycerides. NDGA treatment also improved insulin sensitivity but not glucose intolerance in mice fed the ALIOS diet. In mice fed the NDGA+ALIOS diet, NDGA supplementation induced peroxisome proliferator-activated receptor α (PPARα; the master regulator of fatty acid oxidation) and mRNA levels of carnitine palmitoyltransferases Cpt1c and Cpt2, key genes involved in fatty acid oxidation, compared with the ALIOS diet. NDGA significantly reduced liver endoplasmic reticulum (ER) stress response C/EBP homologous protein, compared with chow or the ALIOS diet, and also ameliorated ALIOS diet-induced elevation of apoptosis signaling protein, caspase 3. Likewise, NDGA downregulated the ALIOS diet-induced mRNA levels of Pparg, fatty acid synthase Fasn, and diacylglycerol acyltransferase Dgat2 NDGA treatment of ALIOS-fed mice upregulated the hepatic expression of antioxidant enzymes, glutathione peroxidase 4, and peroxiredoxin 3 proteins. In conclusion, we provide evidence that NDGA improves metabolic dysregulation by simultaneously modulating the PPARα transcription factor and key genes involved in fatty acid oxidation, key antioxidant and lipogenic enzymes, and apoptosis and ER stress signaling pathways.
Collapse
Affiliation(s)
- Jackie K W Chan
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Stefanie Bittner
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Alex Bittner
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Suman Atwal
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Wen-Jun Shen
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Mohammed Inayathullah
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Jayakumar Rajada
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Mark R Nicolls
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Fredric B Kraemer
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| | - Salman Azhar
- Geriatrics Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.); and Division of Endocrinology, Gerontology, and Metabolism (J.K.W.C., S.B., A.B., S.At., W.-J.S., F.B.K., S.Az.), BioADD Laboratory, and Divisions of Cardiovascular Pharmacology CVI (M.I., J.R.) and Pulmonary and Critical Care Medicine (M.R.N.), Stanford University, Stanford, California
| |
Collapse
|
11
|
Nowacka-Woszuk J, Szczerbal I, Malinowska AM, Chmurzynska A. Transgenerational effects of prenatal restricted diet on gene expression and histone modifications in the rat. PLoS One 2018; 13:e0193464. [PMID: 29474484 PMCID: PMC5825138 DOI: 10.1371/journal.pone.0193464] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022] Open
Abstract
Dietary triggers acting on a developing fetus can affect the functioning of the body in later life; this can be observed on various levels, including epigenetic modifications and gene expression. Early-life programmed changes may be transmitted to successive generations. In this study, the impact of prenatal restricted diet was studied in four generations of rats. We hypothesized that this diet can induce changes in the expression of major genes involved in two epigenetic mechanisms: DNA methylation and histone modifications. The transcript level of six genes involved in these processes (Dnmt1, Dnmt3a, Dnmt3b, Mecp2, Hdac1, and Sin3a) was therefore determined in three tissues (liver, adipose, and muscle). This diet was found to have no effect on the F0 pregnant females. In the F1 progeny (fetuses at day 19 of pregnancy and 4-week-old rats) significant differences in the expression of the genes were observed mostly in the liver; in subsequent generations, we therefore studied only this tissue. Among the genes encoding DNA methyltransferases, significant changes were observed for Dnmt1 in the F1 animals from the restricted group, but these were no longer evident in F2 and F3. The Dnmt3a and Dnmt3b genes showed no differences in mRNA level in F1 fetuses. Concerning the transcript level of the Mecp2 gene only in F1 generation significant changes were found. For the histone modification genes, an increase in the expression of Hdac1 in fetus liver was found in F1 and F2, while its level decreased in F3. The abundance of the Sin3a transcript varied in all generations. It was also found that the mRNA levels of the studied genes correlated highly positive with each other, but only in fetuses from the F1 restricted group. The DNA methylation cell potential, defined as the ratio of SAM (S-adenosylmethionine) to SAH (S-adenosylhomocysteine), was measured in the liver, with no alterations being found in the restricted groups. Evaluation of global histone H3 acetylation showed that it underwent a significant increase in the fetal livers of F1, while during aging (four-week old animals) this difference was no longer maintained. A tendency of increased H3 acetylation in fetuses was also detected in F2 generation. In F1 fetuses from restricted group the increased H3 acetylation positively correlated with transcriptional status of the studied genes. Our results indicate that the prenatal restriction diet can affect the activity of genes involved in epigenetic mechanisms in the liver across generations. Moreover, this feeding type influenced the global histone H3 acetylation in fetal liver.
Collapse
Affiliation(s)
- Joanna Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, Poznan, Poland
- * E-mail:
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, Poznan, Poland
| | - Anna M. Malinowska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego 31, Poznan, Poland
| | - Agata Chmurzynska
- Institute of Human Nutrition and Dietetics, Poznan University of Life Sciences, Wojska Polskiego 31, Poznan, Poland
| |
Collapse
|
12
|
Fan X, Liu H, Liu M, Wang Y, Qiu L, Cui Y. Increased utilization of fructose has a positive effect on the development of breast cancer. PeerJ 2017; 5:e3804. [PMID: 28970966 PMCID: PMC5622605 DOI: 10.7717/peerj.3804] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023] Open
Abstract
Rapid proliferation and Warburg effect make cancer cells consume plenty of glucose, which induces a low glucose micro-environment within the tumor. Up to date, how cancer cells keep proliferating in the condition of glucose insufficiency still remains to be explored. Recent studies have revealed a close correlation between excessive fructose consumption and breast cancer genesis and progression, but there is no convincing evidence showing that fructose could directly promote breast cancer development. Herein, we found that fructose, not amino acids, could functionally replace glucose to support proliferation of breast cancer cells. Fructose endowed breast cancer cells with the colony formation ability and migratory capacity as effective as glucose. Interestingly, although fructose was readily used by breast cancer cells, it failed to restore proliferation of non-tumor cells in the absence of glucose. These results suggest that fructose could be relatively selectively employed by breast cancer cells. Indeed, we observed that a main transporter of fructose, GLUT5, was highly expressed in breast cancer cells and tumor tissues but not in their normal counterparts. Furthermore, we demonstrated that the fructose diet promoted metastasis of 4T1 cells in the mouse models. Taken together, our data show that fructose can be used by breast cancer cells specifically in glucose-deficiency, and suggest that the high-fructose diet could accelerate the progress of breast cancer in vivo.
Collapse
Affiliation(s)
- Xiajing Fan
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hongru Liu
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Miao Liu
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuanyuan Wang
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Qiu
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanfen Cui
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|