1
|
Ping X, Li Q, Ding M, Yu Z, Yi Q, Li Y, Gu W, Zhang P, Zhang Z, Zheng L. Hypoxic compound exercise improves cardiac function in Drosophila high fructose diet via KHK. J Mol Cell Cardiol 2025; 201:95-104. [PMID: 39954938 DOI: 10.1016/j.yjmcc.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Overconsumption of fructose has been linked to the development of systemic metabolic and cardiac diseases, yet few studies have focused on the link between cardiac fructose metabolism and the development of heart disease. Low-oxygen complex exercise is considered an effective means of treating and preventing metabolic diseases and improving cardiac function, however, it is unclear, the link between low-oxygen complex exercise and high-fructose-induced heart disease. Therefore, the aim of this study was to investigate the effect of hypoxic complex exercise on heart disease on a high fructose diet. The results of the study found that hypoxic compound exercise improved the upregulation of inflammatory factor Upd3 and systemic fat accumulation in the heart induced by high fructose diet by inhibiting the expression of KHK gene in the heart; and it improved the impaired cardiac rhythmic function and pumping function, improved the disorder of myofilament fiber arrangement, reduced the level of cardiac oxidative stress, and reduced cardiac collagen deposition. In addition, cardiac KHK-specific knockdown had the same effect on high fructose diet hearts. Compared with single KHK cardiac-specific knockdown or hypoxic combination exercise, hypoxic combination exercise combined with KHK cardiac-specific knockdown was superior in improving the high-fructose diet-induced increase in arrhythmia index, systolic and diastolic dysfunction, and decrease in fractional shortening. Therefore, we conclude that hypoxic complex exercise improved high-fructose diet-induced cardiac rhythmic function and pumping dysfunction by reducing KHK expression.
Collapse
Affiliation(s)
- Xu Ping
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Qiufang Li
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Meng Ding
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Zhengwen Yu
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Qin Yi
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Yuepeng Li
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Wenzhi Gu
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Ping Zhang
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Zike Zhang
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China
| | - Lan Zheng
- Hunan Normal University, Hunan Key Laboratory of Physical Fitness and Sports Rehabilitation, Changsha 410012, Hunan, China.
| |
Collapse
|
2
|
Vignaud J, Loiseau C, Côme M, Martin I, Rasoanarivo R, Hérault J, Mayer C, Lépine O, Ulmann L. Combined Effects of Spirulina Liquid Extract and Endurance Training on Aerobic Performance and Muscle Metabolism Adaptation in Wistar Rats. Nutrients 2025; 17:283. [PMID: 39861413 PMCID: PMC11769088 DOI: 10.3390/nu17020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Physical activity, such as running, protects against cardiovascular disease and obesity but can induce oxidative stress. Athletes often consume antioxidants to counteract the overproduction of reactive oxygen and nitrogen species during exercise. Spirulina, particularly its phycocyanin content, activates the Nrf2 pathway, stimulating antioxidant responses. Studies show that phycocyanin enhances antioxidant defenses and reduces inflammation, potentially improving muscle adaptation and recovery. This study evaluates a Spirulina liquid extract (SLE) supplementation during endurance training, hypothesizing that phycocyanin improves oxidant status and performance in soleus and extensor digitorum longus muscles. METHODS Three-week-old male Wistar rats were divided into four groups: a sedentary control group (C), a sedentary group supplemented with SLE (SP), an endurance training group (T), and an endurance training group supplemented with SLE (SPT). After 8 weeks of treadmill training, blood and muscle were collected. Biochemical parameters and gene expression analyses were performed to assess the effects of training and supplementation. RESULTS The maximal aerobic speed improved significantly in the SPT group. Plasma lipid profiles showed a reduction in triglyceridemia, cholesterolemia, and atherogenic index in the trained groups, especially with SLE supplementation. Muscle malondialdehyde levels decreased in the SPT group compared to T. Gene expression analysis revealed upregulation of Nrf2 and mitochondrial biogenesis genes in both muscles, with differences between groups for genes related to glycogen storage and β-oxidation. CONCLUSIONS This study demonstrated that SLE supplementation enhanced exercise performance and promoted muscle molecular adaptations. These findings suggest SLE as a promising functional food supplement for athletes, optimizing recovery and performance.
Collapse
Affiliation(s)
- Jordi Vignaud
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Céline Loiseau
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Martine Côme
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Isabelle Martin
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Rova Rasoanarivo
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Josiane Hérault
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | - Claire Mayer
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| | | | - Lionel Ulmann
- BiOSSE, Biology of Organisms, Stress, Health, Environment, Institut Universitaire de Technologie, Département Génie Biologique, Le Mans Université, 53020 Laval, France; (J.V.); (C.L.); (M.C.); (I.M.); (R.R.); (J.H.); (C.M.)
| |
Collapse
|
3
|
Apryatin SA. The Neurometabolic Function of the Dopamine-Aminotransferase System. Metabolites 2025; 15:21. [PMID: 39852364 PMCID: PMC11767981 DOI: 10.3390/metabo15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES The neurometabolic function is controlled by a complex multi-level physiological system that includes neurochemical, hormonal, immunological, sensory, and metabolic components. Functional disorders of monoamine systems are often detected in clinical practice together with metabolic dysfunctions. An important part of the mentioned pathological conditions are associated with disturbances in protein metabolism, some of the most important biomarkers which are aminotransferases and transcription factors that regulate and direct the most important metabolic reactions. Another important part of energy metabolism is the dopamine-mediated regulation of protein metabolism. METHODS The review describes research results into the dopamine-mediated mechanism of metabolic regulation in humans and animals. Particular attention is paid to the neurometabolic mechanisms of protein metabolism. RESULTS The dopamine-aminotransferase system of the energy metabolism regulation is a separate, independent, regulatory and diagnostically significant biochemical pathway controlled by the hormonal system, the key hormone is cortisol, the key neurotransmitter is dopamine, the key transcription factor is CREB, and the key regulatory enzymes are alanine aminotransferase, aspartate aminotransferase, and tyrosine aminotransferase. CONCLUSIONS This review presents an original study describing the discovery of a new regulatory mechanism for neurometabolic physiological function in humans and animals. A key part of this mechanism is the dopamine-aminotransferase system.
Collapse
Affiliation(s)
- Sergey A Apryatin
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
4
|
Pengam M, Goanvec C, Moisan C, Simon B, Albacète G, Féray A, Guernec A, Amérand A. Moderate intensity continuous versus high intensity interval training: Metabolic responses of slow and fast skeletal muscles in rat. PLoS One 2023; 18:e0292225. [PMID: 37792807 PMCID: PMC10550171 DOI: 10.1371/journal.pone.0292225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
The healthy benefits of regular physical exercise are mainly mediated by the stimulation of oxidative and antioxidant capacities in skeletal muscle. Our understanding of the cellular and molecular responses involved in these processes remain often uncomplete particularly regarding muscle typology. The main aim of the present study was to compare the effects of two types of exercise training protocol: a moderate-intensity continuous training (MICT) and a high-intensity interval training (HIIT) on metabolic processes in two muscles with different typologies: soleus and extensor digitorum longus (EDL). Training effects in male Wistar rats were studied from whole organism level (maximal aerobic speed, morphometric and systemic parameters) to muscle level (transcripts, protein contents and enzymatic activities involved in antioxidant defences, aerobic and anaerobic metabolisms). Wistar rats were randomly divided into three groups: untrained (UNTR), n = 7; MICT, n = 8; and HIIT, n = 8. Rats of the MICT and HIIT groups ran five times a week for six weeks at moderate and high intensity, respectively. HIIT improved more than MICT the endurance performance (a trend to increased maximal aerobic speed, p = 0.07) and oxidative capacities in both muscles, as determined through protein and transcript assays (AMPK-PGC-1α signalling pathway, antioxidant defences, mitochondrial functioning and dynamics). Whatever the training protocol, the genes involved in these processes were largely more significantly upregulated in soleus (slow-twitch fibres) than in EDL (fast-twitch fibres). Solely on the basis of the transcript changes, we conclude that the training protocols tested here lead to specific muscular responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Annie Féray
- EA 4324 ORPHY, Université de Brest, Brest, France
| | | | | |
Collapse
|