1
|
Bessen MA, Gayen CD, Doig RLO, Dorrian RM, Quarrington RD, Mulaibrahimovic A, Kurtcuoglu V, Walls AC, Leonard AV, Jones CF. Cerebrospinal fluid dynamics and subarachnoid space occlusion following traumatic spinal cord injury in the pig: an investigation using magnetic resonance imaging. Fluids Barriers CNS 2025; 22:6. [PMID: 39810197 PMCID: PMC11730158 DOI: 10.1186/s12987-024-00595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig. METHODS A thoracic contusion SCI was induced in female domestic pigs (22-29 kg) via a weight drop apparatus (N = 5, 10 cm; N = 5, 20 cm). Magnetic resonance imaging (MRI) was performed pre-SCI and 3, 7 and 14 days post-SCI. SAS occlusion length (cranial-caudal), and injury site SAS area (cross-sectional), were measured on T2-weighted MRI. CSF dynamics, specifically peak cranial/caudal mean velocity (cm/s), and the corresponding time to peak (% of cardiac cycle), were measured on cardiac gated, axial phase-contrast MRI obtained at C2/C3, T8/T9, T11/T12 and L1/L2. Linear-mixed effects models, with a significance level of α = 0.05, were developed to assess the effect of: (1) injury group and time point on SAS occlusion measures; and (2), time point and spinal level, adjusted by injury group, on CSF dynamics. RESULTS For both injury groups, SAS occlusion length decreased from 3 to 7 days post-SCI, and 7 to 14 days post-SCI. The cross-sectional SAS area decreased after SCI, and increased to 14 days post-SCI, in both groups. At all spinal levels, peak cranial/caudal mean velocity and the time to peak caudal mean velocity decreased at day 3 post-SCI. From 3 to 14 days post-SCI, peak caudal mean velocity and the time to peak caudal mean velocity increased towards baseline values, at all spinal levels. CONCLUSIONS Spinal-level specific changes to CSF dynamics, with concurrent changes to SAS occlusion, occurred after SCI in the pig, suggesting that CSF pulsatility and craniospinal compliance were altered in the sub-acute post-traumatic period. These results suggest that PC-MRI derived CSF dynamics may provide a non-invasive method to investigate functional alterations to the spinal intrathecal space following traumatic SCI.
Collapse
Affiliation(s)
- Madeleine Amy Bessen
- Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia
- Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Christine Diana Gayen
- Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, Frome Rd, Adelaide, SA, 5005, Australia
| | - Ryan L O'Hare Doig
- Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, Level 7, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5005, Australia
| | - Ryan Michael Dorrian
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, Frome Rd, Adelaide, SA, 5005, Australia
| | - Ryan David Quarrington
- Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia
- Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Adnan Mulaibrahimovic
- Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia
- Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Zurich Center of Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
- Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Angela Catherine Walls
- Clinical and Research Imaging Centre, South Australian Health and Medical Research Institute, National Imaging Facility, Northern Pod, SAHMRI, North Terrace, Adelaide, SA, 5005, Australia
| | - Anna Victoria Leonard
- Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, Frome Rd, Adelaide, SA, 5005, Australia
| | - Claire Frances Jones
- Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.
- School of Electrical and Mechanical Engineering, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, Adelaide, SA, 5005, Australia.
| |
Collapse
|
2
|
Wang Z, Majidi M, Li C, Ardekani A. Numerical study of the effects of minor structures and mean velocity fields in the cerebrospinal fluid flow. Fluids Barriers CNS 2024; 21:102. [PMID: 39696350 DOI: 10.1186/s12987-024-00604-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space. It has been shown by Lawrence et al. (J Fluid Mech 861:679-720, 2019) that dominant physical mechanisms, such as steady streaming and Stokes drift, are key to facilitating mass transport within the spinal canal. In this study, we computationally modeled pulsatile cerebrospinal fluid flow fields and Lagrangian velocity field within the spinal subarachnoid space. Our findings highlight the essential role of minor structures, such as nerve roots, denticulate ligaments, and the wavy arachnoid membrane, in modulating flow and transport dynamics within the spinal subarachnoid space. We found that these structures can enhance fluid transport. We also emphasized the need for particle tracking in computational studies of mass transport within the spinal subarachnoid space. Our research illuminates the relationship between the geometry of the spinal canal and transport dynamics, characterized by a large upward cycle-averaged Lagrangian velocity zone in the wider region of the geometry, as opposed to a downward zone in the narrower region and areas close to the wall. This highlights the potential for optimizing intrathecal injection protocols by harnessing natural flow dynamics within the spinal canal.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA
| | - Mohammad Majidi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA
| | - Chenji Li
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA
| | - Arezoo Ardekani
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, 47907, IN, USA.
| |
Collapse
|
3
|
Ponticorvo S, Paasonen J, Stenroos P, Salo RA, Tanila H, Filip P, Rothman DL, Eberly LE, Garwood M, Metzger GJ, Gröhn O, Michaeli S, Mangia S. Resting-state functional MRI of the nose as a novel investigational window into the nervous system. Sci Rep 2024; 14:26352. [PMID: 39487180 PMCID: PMC11530622 DOI: 10.1038/s41598-024-77615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Besides being responsible for olfaction and air intake, the nose contains abundant vasculature and autonomic nervous system innervations, and it is a cerebrospinal fluid clearance site. Therefore, the nose is an attractive target for functional MRI (fMRI). Yet, nose fMRI has not been possible so far due to signal losses originating from nasal air-tissue interfaces. Here, we demonstrated feasibility of nose fMRI by using novel ultrashort/zero echo time (TE) MRI. Results obtained in the resting-state from 13 healthy participants at 7T and in 5 awake mice at 9.4T revealed a highly reproducible resting-state nose functional network that likely reflects autonomic nervous system activity. Another network observed in humans involves the nose, major brain vessels and CSF spaces, presenting a temporal dynamic that correlates with heart rate and breathing rate. These resting-state nose functional signals should help elucidate peripheral and central nervous system integrations.
Collapse
Affiliation(s)
- Sara Ponticorvo
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Jaakko Paasonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petteri Stenroos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo A Salo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heikki Tanila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pavel Filip
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Neurology, General University Hospital, Charles University, Prague, Czech Republic
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University, New Haven, CT, US
| | - Lynn E Eberly
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Michael Garwood
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Gregory J Metzger
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Liu X. Decoupling Between Brain Activity and Cerebrospinal Fluid Movement in Neurological Disorders. J Magn Reson Imaging 2024; 60:1743-1752. [PMID: 37991132 PMCID: PMC11109023 DOI: 10.1002/jmri.29148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Recent research has identified a link between the global mean signal of resting-state functional MRI (fMRI) and macro-scale cerebrospinal fluid movement, indicating the potential link between this resting-state dynamic and brain waste clearance. Consistent with this notion, the strength of this coupling has been associated with multiple neurodegenerative disease pathologies, especially the build-up of toxic proteins. This article aimed to review the latest advancements in this research area, emphasizing studies on spontaneous global brain activity that is tightly linked to the global mean resting-state fMRI signal, and aimed to discuss potential mechanisms through which this activity and associated physiological modulations might affect brain waste clearance. The available evidence supports the presence of a highly organized global brain activity that is linked to arousal and memory systems. This global brain dynamic, along with its associated physiological modulations, has the potential to influence brain waste clearance through multiple pathways through multiple pathways. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Xin L, Madarasz A, Ivan DC, Weber F, Aleandri S, Luciani P, Locatelli G, Proulx ST. Impairment of spinal CSF flow precedes immune cell infiltration in an active EAE model. J Neuroinflammation 2024; 21:272. [PMID: 39444001 PMCID: PMC11520187 DOI: 10.1186/s12974-024-03247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Accumulation of immune cells and proteins in the subarachnoid space (SAS) is found during multiple sclerosis and in the animal model experimental autoimmune encephalomyelitis (EAE). Whether the flow of cerebrospinal fluid (CSF) along the SAS of the spinal cord is impacted is yet unknown. Combining intravital near-infrared (NIR) imaging with histopathological analyses, we observed a significantly impaired bulk flow of CSF tracers within the SAS of the spinal cord prior to EAE onset, which persisted until peak stage and was only partially recovered during chronic disease. The impairment of spinal CSF flow coincided with the appearance of fibrin aggregates in the SAS, however, it preceded immune cell infiltration and breakdown of the glia limitans superficialis. Conversely, cranial CSF efflux to cervical lymph nodes was not altered during the disease course. Our study highlights an early and persistent impairment of spinal CSF flow and suggests it as a sensitive imaging biomarker for pathological changes within the leptomeninges.
Collapse
Affiliation(s)
- Li Xin
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Adrian Madarasz
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Florian Weber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Giuseppe Locatelli
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland.
| |
Collapse
|
6
|
Eisen A, Nedergaard M, Gray E, Kiernan MC. The glymphatic system and Amyotrophic lateral sclerosis. Prog Neurobiol 2024; 234:102571. [PMID: 38266701 DOI: 10.1016/j.pneurobio.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/18/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The glymphatic system and the meningeal lymphatic vessels provide a pathway for transport of solutes and clearance of toxic material from the brain. Of specific relevance to ALS, this is applicable for TDP-43 and glutamate, both major elements in disease pathogenesis. Flow is propelled by arterial pulsation, respiration, posture, as well as the positioning and proportion of aquaporin-4 channels (AQP4). Non-REM slow wave sleep is the is key to glymphatic drainage which discontinues during wakefulness. In Parkinson's disease and Alzheimer's disease, sleep impairment is known to predate the development of characteristic clinical features by several years and is associated with progressive accumulation of toxic proteinaceous products. While sleep issues are well described in ALS, consideration of preclinical sleep impairment or the potential of a failing glymphatic system in ALS has rarely been considered. Here we review how the glymphatic system may impact ALS. Preclinical sleep impairment as an unrecognized major risk factor for ALS is considered, while potential therapeutic options to improve glymphatic flow are explored.
Collapse
Affiliation(s)
- Andrew Eisen
- Department of Neurology, University of British Columbia, Vancouver, Canada.
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School and Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Emma Gray
- Department of Neurology, Royal Prince Alfred Hospital and University of Sydney, NSW 2050, Australia
| | | |
Collapse
|
7
|
Kreple CJ, Gajagowni S, Jockel-Balsaratti J, Bucelli RC, Miller TM. Lumbar punctures are safe in patients with ALS and have a risk profile similar to that in the non-ALS population. Muscle Nerve 2023; 68:771-775. [PMID: 37566385 DOI: 10.1002/mus.27956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION/AIMS Analysis of biofluids, especially cerebrospinal fluid (CSF), is critically important for amyotrophic lateral sclerosis (ALS) research. Collection of CSF is typically performed by lumbar puncture (LP). Previous studies have demonstrated the safety of LPs in patients with other neurodegenerative diseases, such as Alzheimer's disease, although there are no published studies of the safety of LPs in patients with ALS. We performed a retrospective analysis of complications resulting from LPs. METHODS This is a retrospective study of LPs performed between 2015 and 2021 on a total of 233 participants (healthy controls [n = 63], ALS [n = 154], and disease controls [n = 16]) as part of clinical research studies at the Washington University ALS Center. We used bivariate logistical analyses looking for associations between participant characteristics and adverse events (AEs), and likelihood ratio tests were used for significance testing. RESULTS We found an overall AE rate of 21.03%. AEs included headache, back pain, vasovagal syncope, and severe headache requiring epidural blood patch. Participants with ALS were not more likely to experience post-LP AEs compared to controls (odds ratio [OR] 0.61 [0.32-1.18]). Post-LP headaches were significantly less likely in participants with ALS (OR 0.36 [0.15-0.83]). DISCUSSION Our findings demonstrate that LP is a safe procedure for participants with ALS, with a similar or lower rate of AEs than in participants without ALS.
Collapse
Affiliation(s)
- Collin J Kreple
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | - Jennifer Jockel-Balsaratti
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri, USA
| | - Robert C Bucelli
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri, USA
| | - Timothy M Miller
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
8
|
Alaminos-Quesada J, Gutiérrez-Montes C, Coenen W, Sánchez A. Stationary flow driven by non-sinusoidal time-periodic pressure gradients in wavy-walled channels. APPLIED MATHEMATICAL MODELLING 2023; 122:693-705. [PMID: 37485297 PMCID: PMC10359023 DOI: 10.1016/j.apm.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The classical problem of secondary flow driven by a sinusoidally varying pressure gradient is extended here to address periodic pressure gradients of complex waveform, which are present in many oscillatory physiological flows. A slender two-dimensional wavy-walled channel is selected as a canonical model problem. Following standard steady-streaming analyses, valid for small values of the ratio ε of the stroke length of the pulsatile motion to the channel wavelength, the spatially periodic flow is described in terms of power-law expansions of ε , with the Womersley number assumed to be of order unity. The solution found at leading order involves a time-periodic velocity with a zero time-averaged value at any given point. As in the case of a sinusoidal pressure gradient, effects of inertia enter at the following order to induce a steady flow in the form of recirculating vortices with zero net flow rate. An improved two-term asymptotic description of this secondary flow is sought by carrying the analysis to the following order. It is found that, when the pressure gradient has a waveform with multiple harmonics, the resulting velocity corrections display a nonzero flow rate, not present in the single-frequency case, which enables stationary convective transport along the channel. Direct numerical simulations for values of ε of order unity are used to investigate effects of inertia and delineate the range of validity of the asymptotic limit ε ≪ 1 . The comparisons of the time-averaged velocity obtained numerically with the two-term asymptotic description reveals that the latter remains remarkably accurate for values of ε exceeding 0.5. As an illustrative example, the results of the model problem are used to investigate the cerebrospinal-fluid flow driven along the spinal canal by the cardiac and respiratory cycles, characterized by markedly non-sinusoidal waveforms.
Collapse
Affiliation(s)
- J. Alaminos-Quesada
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093-0411, California, USA
| | - C. Gutiérrez-Montes
- Department of Mechanical and Mining Engineering, University of Jaén, 23071, Spain
- Andalusian Institute for Earth System Research, University of Jaén, Campus de las Lagunillas, 23071 Jaén, Spain
| | - W. Coenen
- Grupo de Mecánica de Fluidos, Universidad Carlos III de Madrid, Leganés, 28911, Spain
| | - A.L. Sánchez
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, 92093-0411, California, USA
| |
Collapse
|
9
|
Kim GH, Song T, Lee J, Jang DH. Syringomyelia: A New Phenotype of SPG11-Related Hereditary Spastic Paraplegia? BRAIN & NEUROREHABILITATION 2023; 16:e14. [PMID: 37554253 PMCID: PMC10404805 DOI: 10.12786/bn.2023.16.e14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 08/10/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) refers to a group of neurodegenerative disorders affecting motor neurons in the central nervous system. HSP type 11 is the most frequent subtype of autosomal recessive HSPs. Caused by pathogenic variants in SPG11, HSP type 11 has a heterogeneous clinical presentation, including various degrees of cognitive dysfunction, spasticity and weakness predominantly in the lower extremities among other features. An 8-year-old boy visited our rehabilitation clinic with a chief complaint of intellectual impairment. Motor weakness was not apparent, but he exhibited a mild limping gait with physical signs of upper motor neuron involvement. Next generation sequencing revealed biallelic pathogenic variants, c.2163dupT and c.5866+1G>A in SPG11, inherited biparentally which was confirmed by Sanger sequencing. Brain imaging study showed thinning of corpus callosum, consistent with previous reports, however whole spine imaging study revealed extensive syringomyelia in his spinal cord, a rare finding in HSP type 11. Further studies are needed to determine whether this finding is a true phenotype associated with HSP type 11.
Collapse
Affiliation(s)
- Ga Hye Kim
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Taeyoung Song
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, College of Medicine, Incheon St. Mary’s Hospital, The Catholic University of Korea, Incheon, Korea
| | - Dae-Hyun Jang
- Department of Rehabilitation Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| |
Collapse
|
10
|
Bessen MA, Gayen CD, Quarrington RD, Walls AC, Leonard AV, Kurtcuoglu V, Jones CF. Characterising spinal cerebrospinal fluid flow in the pig with phase-contrast magnetic resonance imaging. Fluids Barriers CNS 2023; 20:5. [PMID: 36653870 PMCID: PMC9850564 DOI: 10.1186/s12987-022-00401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Detecting changes in pulsatile cerebrospinal fluid (CSF) flow may assist clinical management decisions, but spinal CSF flow is relatively understudied. Traumatic spinal cord injuries (SCI) often cause spinal cord swelling and subarachnoid space (SAS) obstruction, potentially causing pulsatile CSF flow changes. Pigs are emerging as a favoured large animal SCI model; therefore, the aim of this study was to characterise CSF flow along the healthy pig spine. METHODS Phase-contrast magnetic resonance images (PC-MRI), retrospectively cardiac gated, were acquired for fourteen laterally recumbent, anaesthetised and ventilated, female domestic pigs (22-29 kg). Axial images were obtained at C2/C3, T8/T9, T11/T12 and L1/L2. Dorsal and ventral SAS regions of interest (ROI) were manually segmented. CSF flow and velocity were determined throughout a cardiac cycle. Linear mixed-effects models, with post-hoc comparisons, were used to identify differences in peak systolic/diastolic flow, and maximum velocity (cranial/caudal), across spinal levels and dorsal/ventral SAS. Velocity wave speed from C2/C3 to L1/L2 was calculated. RESULTS PC-MRI data were obtained for 11/14 animals. Pulsatile CSF flow was observed at all spinal levels. Peak systolic flow was greater at C2/C3 (dorsal: - 0.32 ± 0.14 mL/s, ventral: - 0.15 ± 0.13 mL/s) than T8/T9 dorsally (- 0.04 ± 0.03 mL/s; p < 0.001), but not different ventrally (- 0.08 ± 0.08 mL/s; p = 0.275), and no difference between thoracolumbar levels (p > 0.05). Peak diastolic flow was greater at C2/C3 (0.29 ± 0.08 mL/s) compared to T8/T9 (0.03 ± 0.03 mL/s, p < 0.001) dorsally, but not different ventrally (p = 1.000). Cranial and caudal maximum velocity at C2/C3 were greater than thoracolumbar levels dorsally (p < 0.001), and T8/T9 and L1/L2 ventrally (p = 0.022). Diastolic velocity wave speed was 1.41 ± 0.39 m/s dorsally and 1.22 ± 0.21 m/s ventrally, and systolic velocity wave speed was 1.02 ± 0.25 m/s dorsally and 0.91 ± 0.22 m/s ventrally. CONCLUSIONS In anaesthetised and ventilated domestic pigs, spinal CSF has lower pulsatile flow and slower velocity wave propagation, compared to humans. This study provides baseline CSF flow at spinal levels relevant for future SCI research in this animal model.
Collapse
Affiliation(s)
- Madeleine Amy Bessen
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia
| | - Christine Diana Gayen
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, The University of Adelaide, Frome Road, Adelaide, SA 5005 Australia
| | - Ryan David Quarrington
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304School of Electrical and Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia
| | - Angela Catherine Walls
- grid.430453.50000 0004 0565 2606Clinical and Research Imaging Centre, South Australian Health and Medical Research Institute, National Imaging Facility, Northern Pod, SAHMRI, North Terrace, Adelaide, SA 5000 Australia
| | - Anna Victoria Leonard
- grid.1010.00000 0004 1936 7304Translational Neuropathology Laboratory, School of Biomedicine, The University of Adelaide, Level 2, Helen Mayo North Building, The University of Adelaide, Frome Road, Adelaide, SA 5005 Australia
| | - Vartan Kurtcuoglu
- grid.7400.30000 0004 1937 0650Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Claire Frances Jones
- grid.1010.00000 0004 1936 7304Adelaide Spinal Research Group and Centre for Orthopaedics and Trauma Research, Adelaide Medical School, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.1010.00000 0004 1936 7304School of Electrical and Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005 Australia ,grid.416075.10000 0004 0367 1221Department of Orthopaedics, Royal Adelaide Hospital, Adelaide, SA 5000 Australia
| |
Collapse
|
11
|
de Freitas RM, Capogrosso M, Nomura T, Milosevic M. Optimizing sensory fiber activation during cervical transcutaneous spinal stimulation using different electrode configurations: A computational analysis. Artif Organs 2022; 46:2015-2026. [PMID: 35642297 DOI: 10.1111/aor.14323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cervical transcutaneous spinal cord stimulation (tSCS) is a rehabilitation tool which has been used to promote upper-limb motor recovery after spinal cord injury. Importantly, optimizing sensory fiber activation at specific spinal segments could enable activity-dependent neuromodulation during rehabilitation. METHODS An anatomically realistic cervical tSCS computational model was used to analyze the activation of α-motor and Aα-sensory fibers at C7 and C8 spinal segments using nine cathode electrode configurations. Specifically, the cathode was simulated at three vertebral level positions: C6, C7, and T1; and in three sizes: 5.0 x 5.0, 3.5 x 3.5; and 2.5 x 2.5 cm2 , while the anode was on the anterior neck. Finite element method was used to estimate the electric potential distribution along α-motor and Aα-sensory fibers, and computational models were applied to simulate the fiber membrane dynamics during tSCS. The minimum stimulation intensity necessary to activate the fibers (activation threshold) was estimated and compared across cathode configurations in an effort to optimize sensory fiber activation. RESULTS Our results showed that nerve fibers at both C7 and C8 spinal segments were recruited at lower stimulation intensities when the cathode was positioned over the C7 or T1 vertebra compared with the C6 position. Sensory fibers were activated at lower stimulation intensities using smaller electrodes, which could also affect the degree of nerve fiber activation across different positions. Importantly, Aα-sensory fibers were consistently recruited before α-motor fibers. CONCLUSIONS These results imply that cathode positioning could help optimize preferential activation of hand muscles during cervical tSCS.
Collapse
Affiliation(s)
- Roberto M de Freitas
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Japan
| | - Marco Capogrosso
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, USA.,Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Japan
| |
Collapse
|
12
|
de Freitas RM, Capogrosso M, Nomura T, Milosevic M. Preferential activation of proprioceptive and cutaneous sensory fibers compared to motor fibers during cervical transcutaneous spinal cord stimulation: A computational study. J Neural Eng 2022; 19. [PMID: 35472720 DOI: 10.1088/1741-2552/ac6a7c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/25/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cervical transcutaneous spinal cord stimulation (tSCS) is a promising technology that can support motor function recovery of upper-limbs after spinal cord injury. Its efficacy may depend on the ability to recruit sensory afferents, conveying excitatory inputs onto motoneurons. Therefore, understanding its physiological mechanisms is critical to accelerate its development towards clinical applications. In this study, we used an anatomically realistic cervical tSCS computational model to compare α-motor, Aα-sensory, and Aβ-sensory fiber activation thresholds and activation sites. APPROACH We developed a 3D geometry of the cervical body and tSCS electrodes with a cathode centred at the C7 spinous process and an anode placed over the anterior neck. The geometrical model was used to estimate the electric potential distributions along motor and sensory fiber trajectories at the C7 spinal level using a finite element method. We implemented dedicated motor and sensory fiber models to simulate the α-motor and Aα-sensory fibers using 12, 16, and 20 µm diameter fibers, and Aβ-sensory fibers using 6, 9, and 12 µm diameter fibers. We estimated nerve fiber activation thresholds and sites for a 2 ms monophasic stimulating pulse and compared them across the fiber groups. MAIN RESULTS Our results showed lower activation thresholds of Aα- and Aβ-sensory fibers compared with α-motor fibers, suggesting preferential sensory fiber activation. We also found no differences between activation thresholds of Aα-sensory and large Aβ-sensory fibers, implying their co-activation. The activation sites were located at the dorsal and ventral root levels. SIGNIFICANCE Using a realistic computational model, we demonstrated preferential activation of dorsal root Aα- and Aβ-sensory fibers compared with ventral root α-motor fibers during cervical tSCS. These findings suggest high proprioceptive and cutaneous contributions to neural activations during cervical tSCS, which inform the underlying mechanisms of upper-limb functional motor recovery.
Collapse
Affiliation(s)
- Roberto M de Freitas
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, 560-8531, JAPAN
| | - Marco Capogrosso
- University of Pittsburgh, 3520, Fifth Av., Pittsburgh, Pennsylvania, 15261, UNITED STATES
| | - Taishin Nomura
- Department of Mechanical Science and Bioengineering, Osaka University, Machikaneyama 1-3, Toyonaka City, Osaka 560- 8531, Toyonaka, 5608531, JAPAN
| | - Matija Milosevic
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, J520, Toyonaka, Osaka, 560-8531, JAPAN
| |
Collapse
|
13
|
Motallebnejad P, Rajesh VV, Azarin SM. Evaluating the Role of IL-1β in Transmigration of Triple Negative Breast Cancer Cells Across the Brain Endothelium. Cell Mol Bioeng 2022; 15:99-114. [PMID: 35096187 PMCID: PMC8761198 DOI: 10.1007/s12195-021-00710-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION In vivo, breast cancer cells spend on average 3-7 days adhered to the endothelial cells inside the vascular lumen before entering the brain. IL-1β is one of the highly upregulated molecules in brain-seeking triple negative breast cancer (TNBC) cells. In this study, the effect of IL-1β on the blood-brain barrier (BBB) and astrocytes and its role in transmigration of TNBC cells were evaluated. METHODS The effect of IL-1β on transendothelial electrical resistance, gene and protein expression of human induced pluripotent stem cell-derived brain-specific microvascular endothelial-like cells (iBMECs) was studied. Transport of IL-1β across the iBMEC layer was investigated and the effect of IL-1β treatment of astrocytes on their cytokine and chemokine secretome was evaluated with a cytokine membrane array. Using BBB-on-a-chip devices, transmigration of MDA-MB-231 cells and their brain-seeking variant (231BR) across the iBMECs was studied, and the effect of an IL-1β neutralizing antibody on TNBC cell transmigration was investigated. RESULTS We showed that IL-1β reduces BBB integrity and induces endothelial-to-mesenchymal transition in iBMECs. IL-1β crosses the iBMEC layer and induces secretion of multiple chemokines by astrocytes, which can enhance TNBC cell transmigration across the BBB. Transmigration assays in a BBB-on-a-chip device showed that 231BR cells have a higher rate of transmigration across the iBMECs compared to MDA-MB-231 cells, and IL-1β pretreatment of BBB-on-a-chip devices increases the number of transmigrated MDA-MB-231 cells. Finally, we demonstrated that neutralizing IL-1β reduces the rate of 231BR cell transmigration. CONCLUSION IL-1β plays a significant role in transmigration of brain-seeking TNBC cells across the BBB. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12195-021-00710-y.
Collapse
Affiliation(s)
- Pedram Motallebnejad
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Vinayak V. Rajesh
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| | - Samira M. Azarin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
14
|
Khani M, Burla GKR, Sass LR, Arters ON, Xing T, Wu H, Martin BA. Human in silico trials for parametric computational fluid dynamics investigation of cerebrospinal fluid drug delivery: impact of injection location, injection protocol, and physiology. Fluids Barriers CNS 2022; 19:8. [PMID: 35090516 PMCID: PMC8796513 DOI: 10.1186/s12987-022-00304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022] Open
Abstract
Background Intrathecal drug delivery has a significant role in pain management and central nervous system (CNS) disease therapeutics. A fluid-physics based tool to assist clinicians in choosing specific drug doses to the spine or brain may help improve treatment schedules. Methods This study applied computational fluid dynamics (CFD) and in vitro model verification to assess intrathecal drug delivery in an anatomically idealized model of the human CSF system with key anatomic features of the CNS. Key parameters analyzed included the role of (a) injection location including lumbar puncture (LP), cisterna magna (CM) and intracerebroventricular (ICV), (b) LP injection rate, injection volume, and flush volume, (c) physiologic factors including cardiac-induced and deep respiration-induced CSF stroke volume increase. Simulations were conducted for 3-h post-injection and used to quantify spatial–temporal tracer concentration, regional area under the curve (AUC), time to maximum concentration (Tmax), and maximum concentration (Cmax), for each case. Results CM and ICV increased AUC to brain regions by ~ 2 logs compared to all other simulations. A 3X increase in bolus volume and addition of a 5 mL flush both increased intracranial AUC to the brain up to 2X compared to a baseline 5 mL LP injection. In contrast, a 5X increase in bolus rate (25 mL/min) did not improve tracer exposure to the brain. An increase in cardiac and respiratory CSF movement improved tracer spread to the brain, basal cistern, and cerebellum up to ~ 2 logs compared to the baseline LP injection. Conclusion The computational modeling approach provides ability to conduct in silico trials representative of CSF injection protocols. Taken together, the findings indicate a strong potential for delivery protocols to be optimized to reach a target region(s) of the spine and/or brain with a needed therapeutic dose. Parametric modification of bolus rate/volume and flush volume was found to have impact on tracer distribution; albeit to a smaller degree than injection location, with CM and ICV injections resulting in greater therapeutic dose to brain regions compared to LP. CSF stroke volume and frequency both played an important role and may potentially have a greater impact than the modest changes in LP injection protocols analyzed such as bolus rate, volume, and flush. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00304-4.
Collapse
|
15
|
Mair LO, Adam G, Chowdhury S, Davis A, Arifin DR, Vassoler FM, Engelhard HH, Li J, Tang X, Weinberg IN, Evans EE, Bulte JW, Cappelleri DJ. Soft Capsule Magnetic Millirobots for Region-Specific Drug Delivery in the Central Nervous System. Front Robot AI 2021; 8:702566. [PMID: 34368238 PMCID: PMC8340882 DOI: 10.3389/frobt.2021.702566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023] Open
Abstract
Small soft robotic systems are being explored for myriad applications in medicine. Specifically, magnetically actuated microrobots capable of remote manipulation hold significant potential for the targeted delivery of therapeutics and biologicals. Much of previous efforts on microrobotics have been dedicated to locomotion in aqueous environments and hard surfaces. However, our human bodies are made of dense biological tissues, requiring researchers to develop new microrobotics that can locomote atop tissue surfaces. Tumbling microrobots are a sub-category of these devices capable of walking on surfaces guided by rotating magnetic fields. Using microrobots to deliver payloads to specific regions of sensitive tissues is a primary goal of medical microrobots. Central nervous system (CNS) tissues are a prime candidate given their delicate structure and highly region-specific function. Here we demonstrate surface walking of soft alginate capsules capable of moving on top of a rat cortex and mouse spinal cord ex vivo, demonstrating multi-location small molecule delivery to up to six different locations on each type of tissue with high spatial specificity. The softness of alginate gel prevents injuries that may arise from friction with CNS tissues during millirobot locomotion. Development of this technology may be useful in clinical and preclinical applications such as drug delivery, neural stimulation, and diagnostic imaging.
Collapse
Affiliation(s)
- Lamar O. Mair
- Weinberg Medical Physics, Inc., North Bethesda, MD, United States
| | - Georges Adam
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Sagar Chowdhury
- Weinberg Medical Physics, Inc., North Bethesda, MD, United States
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Aaron Davis
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - Dian R. Arifin
- Russel H. Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Fair M. Vassoler
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Herbert H. Engelhard
- Affiliated Neurosurgery Corporation, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Jinxing Li
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Xinyao Tang
- Weinberg Medical Physics, Inc., North Bethesda, MD, United States
| | | | - Emily E. Evans
- Department of Physics, Elon University, Elon, NC, United States
| | - Jeff W.M. Bulte
- Russel H. Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Departments of Oncology, Biomedical Engineering and Chemical and Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David J. Cappelleri
- Multi-Scale Robotics and Automation Lab, School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
16
|
Miyazaki Y, Usawa M, Kawai S, Yee J, Muto M, Tagawa Y. Dynamic mechanical interaction between injection liquid and human tissue simulant induced by needle-free injection of a highly focused microjet. Sci Rep 2021; 11:14544. [PMID: 34267280 PMCID: PMC8282861 DOI: 10.1038/s41598-021-94018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
This study investigated the fluid-tissue interaction of needle-free injection by evaluating the dynamics of the cavity induced in body-tissue simulant and the resulting unsteady mechanical stress field. Temporal evolution of cavity shape, stress intensity field, and stress vector field during the injection of a conventional injection needle, a proposed highly focused microjet (tip diameter much smaller than capillary nozzle), and a typical non-focused microjet in gelatin were measured using a state-of-the-art high-speed polarization camera, at a frame rate up to 25,000 f.p.s. During the needle injection performed by an experienced nurse, high stress intensity lasted for an order of seconds (from beginning of needle penetration until end of withdrawal), which is much longer than the order of milliseconds during needle-free injections, causing more damage to the body tissue. The cavity induced by focused microjet resembled a funnel which had a narrow tip that penetrated deep into tissue simulant, exerting shear stress in low intensity which diffused through shear stress wave. Whereas the cavity induced by non-focused microjet rebounded elastically (quickly expanded into a sphere and shrank into a small cavity which remained), exerting compressive stress on tissue simulant in high stress intensity. By comparing the distribution of stress intensity, tip shape of the focused microjet contributed to a better performance than non-focused microjet with its ability to penetrate deep while only inducing stress at lower intensity. Dynamic mechanical interaction revealed in this research uncovered the importance of the jet shape for the development of minimally invasive medical devices.
Collapse
Affiliation(s)
- Yuta Miyazaki
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Masashi Usawa
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Shuma Kawai
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Jingzu Yee
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Masakazu Muto
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yoshiyuki Tagawa
- Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Japan.
| |
Collapse
|
17
|
MISRA JC, DANDAPAT S, ADHIKARY SD. WAVE PROPAGATION IN THE CRANIUM AND THE CEREBROSPINAL FLUID. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519420500451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, wave propagation in head generated by a local axisymmetric impact on its outer surface is studied. The skull material is treated as isotropic and homogeneous, but presence of the cerebrospinal fluid (considered as a compressible but inviscid irrotational fluid) inside the cranium has been accounted for in the analysis. Some numerical results obtained on the basis of the analytical study, are also presented.
Collapse
Affiliation(s)
- J. C. MISRA
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah 711103, India
| | - S. DANDAPAT
- Indian Institute of Technology, Kharagpur, India
| | | |
Collapse
|
18
|
Khani M, Fu AQ, Pluid J, Gibbs CP, Oshinski JN, Xing T, Stewart GR, Zeller JR, Martin BA. Intrathecal catheter implantation decreases cerebrospinal fluid dynamics in cynomolgus monkeys. PLoS One 2020; 15:e0244090. [PMID: 33378399 PMCID: PMC7773283 DOI: 10.1371/journal.pone.0244090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/02/2020] [Indexed: 11/23/2022] Open
Abstract
A detailed understanding of the CSF dynamics is needed for design and optimization of intrathecal drug delivery devices, drugs, and protocols. Preclinical research using large-animal models is important to help define drug pharmacokinetics-pharmacodynamics and safety. In this study, we investigated the impact of catheter implantation in the sub-dural space on CSF flow dynamics in Cynomolgus monkeys. Magnetic resonance imaging (MRI) was performed before and after catheter implantation to quantify the differences based on catheter placement location in the cervical compared to the lumbar spine. Several geometric and hydrodynamic parameters were calculated based on the 3D segmentation and flow analysis. Hagen-Poiseuille equation was used to investigate the impact of catheter implantation on flow reduction and hydraulic resistance. A linear mixed-effects model was used in this study to investigate if there was a statistically significant difference between cervical and lumbar implantation, or between two MRI time points. Results showed that geometric parameters did not change statistically across MRI measurement time points and did not depend on catheter location. However, catheter insertion did have a significant impact on the hydrodynamic parameters and the effect was greater with cervical implantation compared to lumbar implantation. CSF flow rate decreased up to 55% with the catheter located in the cervical region. The maximum flow rate reduction in the lumbar implantation group was 21%. Overall, lumbar catheter implantation disrupted CSF dynamics to a lesser degree than cervical catheter implantation and this effect remained up to two weeks post-catheter implantation in Cynomolgus monkeys.
Collapse
Affiliation(s)
- Mohammadreza Khani
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States of America
- Alcyone Therapeutics, Lowell, MA, United States of America
| | - Audrey Q. Fu
- Department of Statistical Science, University of Idaho, Moscow, ID, United States of America
| | - Joshua Pluid
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States of America
| | - Christina P. Gibbs
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States of America
| | - John N. Oshinski
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States of America
| | - Tao Xing
- Department of Mechanical Engineering, University of Idaho, Moscow, ID, United States of America
| | - Gregory R. Stewart
- Alcyone Therapeutics, Lowell, MA, United States of America
- Voyager Therapeutics, Cambridge, MA, United States of America
| | | | - Bryn A. Martin
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States of America
- Alcyone Therapeutics, Lowell, MA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Ng Kee Kwong KC, Mehta AR, Nedergaard M, Chandran S. Defining novel functions for cerebrospinal fluid in ALS pathophysiology. Acta Neuropathol Commun 2020; 8:140. [PMID: 32819425 PMCID: PMC7439665 DOI: 10.1186/s40478-020-01018-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the considerable progress made towards understanding ALS pathophysiology, several key features of ALS remain unexplained, from its aetiology to its epidemiological aspects. The glymphatic system, which has recently been recognised as a major clearance pathway for the brain, has received considerable attention in several neurological conditions, particularly Alzheimer's disease. Its significance in ALS has, however, been little addressed. This perspective article therefore aims to assess the possibility of CSF contribution in ALS by considering various lines of evidence, including the abnormal composition of ALS-CSF, its toxicity and the evidence for impaired CSF dynamics in ALS patients. We also describe a potential role for CSF circulation in determining disease spread as well as the importance of CSF dynamics in ALS neurotherapeutics. We propose that a CSF model could potentially offer additional avenues to explore currently unexplained features of ALS, ultimately leading to new treatment options for people with ALS.
Collapse
Affiliation(s)
- Koy Chong Ng Kee Kwong
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| |
Collapse
|
20
|
Sonnabend K, Brinker G, Maintz D, Bunck AC, Weiss K. Cerebrospinal fluid pulse wave velocity measurements: In vitro and in vivo evaluation of a novel multiband cine phase-contrast MRI sequence. Magn Reson Med 2020; 85:197-208. [PMID: 32783240 DOI: 10.1002/mrm.28430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE Intracranial and intraspinal compliance are parameters of interest in the diagnosis and prediction of treatment outcome in patients with normal pressure hydrocephalus and other forms of communicating hydrocephalus. A noninvasive method to estimate the spinal cerebrospinal fluid (CSF) pulse wave velocity (PWV) as a measure of compliance was developed using a multiband cine phase-contrast MRI sequence and a foot-to-foot algorithm. METHODS We used computational simulations to estimate the accuracy of the MRI acquisition and transit-time algorithm. In vitro measurements were performed to investigate the reproducibility and accuracy of the measurements under controlled conditions. In vivo measurements in 20 healthy subjects and 2 patients with normal pressure hydrocephalus were acquired to show the technical feasibility in a clinical setting. RESULTS Simulations showed a mean deviation of the calculated CSF PWV of 3.41% ± 2.68%. In vitro results were in line with theory, showing a square-root relation between PWV and transmural pressure and a good reproducibility with SDs of repeated measurements below 5%. Mean CSF PWV over all healthy subjects was 5.83 ± 3.36 m/s. The CSF PWV measurements in the patients with normal pressure hydrocephalus were distinctly higher before CSF shunt surgery (33.80 ± 6.75 m/s and 31.31 ± 7.82 m/s), with a decrease 5 days after CSF shunt surgery (15.69 ± 3.37 m/s). CONCLUSION This study evaluates the feasibility of CSF PWV measurements using a multiband cine phase-contrast MRI sequence. In vitro and in vivo measurements showed that this method is a potential tool for the noninvasive estimation of intraspinal compliance.
Collapse
Affiliation(s)
- Kristina Sonnabend
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Gerrit Brinker
- Department of General Neurosurgery, Center for Neurosurgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Maintz
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Alexander C Bunck
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Kilian Weiss
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Philips GmbH, Hamburg, Germany
| |
Collapse
|
21
|
Demirtaş G, Siğirci A, Öztürk M, Görkem SB, Kiliç B, Güngör S. Is cerebral spinal fluid flow associated with body mass index and head circumference in healthy children? A phase contrast magnetic resonance imaging study. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2020. [DOI: 10.1186/s43055-020-00227-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The aim of this study was to investigate the relationship between age, gender, body mass index (BMI), and head circumference (HC) and cerebral spinal fluid (CSF) flow dynamics in the pediatric population. The prospective study included a total of 137 participants, 75 boys and 62 girls, ranging in age from 2 to 204 months. Quantitative evaluation of CSF flow was made by using phase contrast magnetic resonance imaging (PC-MRI) in the axial plane at the level of the aqueductus cerebri. Flow dynamics were recorded as peak and mean velocity (cm/s); cranial, caudal, and net volume (ml); and aqueductus cerebri area (mm2). Correlation between baseline descriptive parameters, including age, gender, BMI, and HC, and the aforementioned CSF flow dynamics were investigated.
Results
The net volume was significantly lower in girls (p = 0.002). There was no association between age and aqueduct area, mean velocity, and cranial volume. The peak velocity was remarkably higher in children (p = 0.03), whereas cranial and net volume were found to be lower in infants (p = 0.04 and p = 0.03, respectively). Notably, cases with HC below normal values had lower cranial, caudal, and net volume and aqueductus cerebri area (p = 0.01, p = 0.03, p = 0.03, and p = 0.04, respectively). There was no association between BMI and indicators of CSF flow dynamics in PC-MRI.
Conclusion
BMI and HC may be associated with CSF flow dynamics in children. A smaller HC is accompanied by a lower forward flow volume, reverse flow volume, net volume, and aqueductal diameter. These points should be remembered during the design of further trials on determinants of CSF flow in children.
Collapse
|
22
|
Khani M, Sass LR, Sharp MK, McCabe AR, Zitella Verbick LM, Lad SP, Martin BA. In vitro and numerical simulation of blood removal from cerebrospinal fluid: comparison of lumbar drain to Neurapheresis therapy. Fluids Barriers CNS 2020; 17:23. [PMID: 32178689 PMCID: PMC7077023 DOI: 10.1186/s12987-020-00185-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/06/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Blood removal from cerebrospinal fluid (CSF) in post-subarachnoid hemorrhage patients may reduce the risk of related secondary brain injury. We formulated a computational fluid dynamics (CFD) model to investigate the impact of a dual-lumen catheter-based CSF filtration system, called Neurapheresis™ therapy, on blood removal from CSF compared to lumbar drain. METHODS A subject-specific multiphase CFD model of CSF system-wide solute transport was constructed based on MRI measurements. The Neurapheresis catheter geometry was added to the model within the spinal subarachnoid space (SAS). Neurapheresis flow aspiration and return rate was 2.0 and 1.8 mL/min, versus 0.2 mL/min drainage for lumbar drain. Blood was modeled as a bulk fluid phase within CSF with a 10% initial tracer concentration and identical viscosity and density as CSF. Subject-specific oscillatory CSF flow was applied at the model inlet. The dura and spinal cord geometry were considered to be stationary. Spatial-temporal tracer concentration was quantified based on time-average steady-streaming velocities throughout the domain under Neurapheresis therapy and lumbar drain. To help verify CFD results, an optically clear in vitro CSF model was constructed with fluorescein used as a blood surrogate. Quantitative comparison of numerical and in vitro results was performed by linear regression of spatial-temporal tracer concentration over 24-h. RESULTS After 24-h, tracer concentration was reduced to 4.9% under Neurapheresis therapy compared to 6.5% under lumbar drain. Tracer clearance was most rapid between the catheter aspiration and return ports. Neurapheresis therapy was found to have a greater impact on steady-streaming compared to lumbar drain. Steady-streaming in the cranial SAS was ~ 50× smaller than in the spinal SAS for both cases. CFD results were strongly correlated with the in vitro spatial-temporal tracer concentration under Neurapheresis therapy (R2 = 0.89 with + 2.13% and - 1.93% tracer concentration confidence interval). CONCLUSION A subject-specific CFD model of CSF system-wide solute transport was used to investigate the impact of Neurapheresis therapy on tracer removal from CSF compared to lumbar drain over a 24-h period. Neurapheresis therapy was found to substantially increase tracer clearance compared to lumbar drain. The multiphase CFD results were verified by in vitro fluorescein tracer experiments.
Collapse
Affiliation(s)
- Mohammadreza Khani
- Department of Biological Engineering, The University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID, 83844-0904, USA
| | - Lucas R Sass
- Department of Biological Engineering, The University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID, 83844-0904, USA
| | - M Keith Sharp
- Department of Mechanical Engineering, University of Louisville, 332 Eastern Pkwy, Louisville, KY, 40292, USA
| | - Aaron R McCabe
- Minnetronix Neuro, Inc., 1635 Energy Park Dr, Saint Paul, MN, 55108, USA
| | | | - Shivanand P Lad
- Department of Neurosurgery, Duke University School of Medicine, 3100 Tower Blvd, Durham, NC, 27707, USA
| | - Bryn A Martin
- Department of Biological Engineering, The University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID, 83844-0904, USA.
| |
Collapse
|
23
|
Jones HC, Keep RF, Drewes LR. CNS fluid and solute movement: physiology, modelling and imaging. Fluids Barriers CNS 2020; 17:12. [PMID: 32019555 PMCID: PMC6998813 DOI: 10.1186/s12987-020-0174-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK.
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|