1
|
Zoroddu S, Sias F, Bagella L. The Double Life of microRNAs in Bone Sarcomas: Oncogenic Drivers and Tumor Suppressors. Int J Mol Sci 2025; 26:4814. [PMID: 40429954 PMCID: PMC12112630 DOI: 10.3390/ijms26104814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Bone sarcomas, including Osteosarcoma, Ewing's sarcoma, and Chondrosarcoma, are rare yet aggressive tumors with high metastatic potential and poor survival outcomes. Despite advances in surgical and chemotherapeutic techniques, these malignancies remain difficult to treat. They often exhibit resistance to conventional therapies and are associated with a limited prognosis for patients. MicroRNAs (miRNAs) have emerged as pivotal regulators of cancer biology, orchestrating crucial processes such as cell proliferation, apoptosis, and metastasis. Their double life as oncogenes or tumor suppressors underscores their significance in the pathogenesis of bone sarcomas. This review examines the multifaceted roles of miRNAs in these malignancies. By elucidating the complex networks affected by miRNA dysregulation, we seek to identify novel avenues for miRNA-based interventions. It is the intention of this work to stimulate future research and clinical strategies that exploit the potential of miRNAs to transform the management and outcomes of bone sarcomas.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Fabio Sias
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
Yan C, Dou Y, Xia R, Liu S, Fu J, Li D, Wang R, Tie F, Li L, Jin H, An F. Research progress on the role of lncRNA, circular RNA, and microRNA networks in regulating ferroptosis in osteosarcoma. Biomed Pharmacother 2024; 176:116924. [PMID: 38876052 DOI: 10.1016/j.biopha.2024.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
Noncoding RNAs (ncRNAs) do not participate in protein-coding. Ferroptosis is a newly discovered form of cell death mediated by reactive oxygen species and lipid peroxidation. Recent studies have shown that ncRNAs such as microRNAs, long noncoding RNAs, circular RNAs, and ferroptosis are involved in the occurrence and development of osteosarcoma (OS). Studies have confirmed that ncRNAs participate in the development of OS by regulating the ferroptosis. However, systematic summary on this topic are still lacking. This review summarises the potential role of ncRNAs in the diagnosis, treatment, drug resistance, and prognosis of OS and the basis for diagnosing, preventing, and treating clinical OS and developing effective drugs. This review summarises the latest research progress on ncRNAs that regulate ferroptosis in OS, attempts to clarify the molecular mechanisms by which ncRNAs regulate ferroptosis in the pathogenesis of OS, and elaborates on the involvement of ferroptosis in OS from the perspective of ncRNAs.
Collapse
Affiliation(s)
- Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yinnan Dou
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Shiqing Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jianchao Fu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Duo Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Rong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Feng Tie
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Linxin Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Hua Jin
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China.
| |
Collapse
|
3
|
de Oliveira C, Gonçalves PG, Bidinotto LT. Role of EGFL7 in human cancers: A review. J Cell Physiol 2023; 238:1756-1767. [PMID: 37490307 DOI: 10.1002/jcp.31084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
EGFL7 is a proangiogenic factor. It has been widely described with having a vital role in tubulogenesis and regulation of angiogenesis, mainly during embryogenesis and organogenesis. It has been mainly associated with NOTCH pathway, but there are reports showing association with MAPK and integrin pathways. Given its association with angiogenesis and these other pathways, there are several studies associating EGFL7 with carcinogenesis. In fact, most of the studies have pointed to EGFL7 as an oncogene, and some of them suggest EGFL7 expression as a possible biomarker of prognosis or use for a patient's follow-up. Here, we review the molecular pathways which EGFL7 is associated and highlight several studies describing the role of EGFL7 in tumorigenesis, separated by tumor type. Besides its role on angiogenesis, EGFL7 may act in other pathways as oncogene, which makes it a possible biomarker and a candidate to targeted therapy.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Paola Gyuliane Gonçalves
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Lucas Tadeu Bidinotto
- Department of Pathology, Botucatu Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Human and Experimental Biology Department, Barretos School of Health Sciences, Dr Paulo Prata - FACISB, Barretos, São Paulo, Brazil
| |
Collapse
|
4
|
Gao SS, Zhang GX, Zhang WT. MicroRNAs as prognostic biomarkers for survival outcome in osteosarcoma: A meta-analysis. World J Meta-Anal 2021; 9:568-584. [DOI: 10.13105/wjma.v9.i6.568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/08/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteosarcoma was considered to be one of the most prevalent malignant bone tumors in adolescents.
AIM To explore the prognostic significance of microRNA (miRNA) in osteosarcoma.
METHODS The literature was selected by searching online in PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, and Wanfang Database until July 1, 2021. The pooled hazard ratio (HR) with corresponding 95% confidence interval (CI) for the outcomes of overall survival (OS), disease-free survival (DFS), progression-free survival (PFS) and recurrence-free survival were calculated. Subgroup analyses were carried out to identify potential sources of heterogeneity. Publication bias was assessed by Egger’s bias indicator test.
RESULTS A total of 60 studies from 54 articles with 5824 osteosarcoma patients were included for this meta-analysis. The pooled HR for OS, DFS, PFS were 2.92 (95%CI: 2.43-3.41, P = 0.000), 3.70 (95%CI: 2.80-4.61, P = 0.000), and 3.57 (95%CI: 1.60-5.54, P = 0.000), respectively. The high miR-21 expression levels were related to poor OS in osteosarcoma (HR = 2.86, 95%CI: 1.20-4.53, P = 0.001). Subgroup analysis demonstrated that a high expression level of miRNA correlated with worse OS (HR: 3.56, 95%CI: 2.59-4.54, P = 0.000). In addition, miRNA from tissue (HR: 3.20, 95%CI: 2.16-4.23, P = 0.000) may be a stronger prognostic biomarker in comparison with that from serum and plasma.
CONCLUSION miRNA (especially miR-21) could be served as a potential prognostic biomarker for osteosarcoma. A high expression level of miRNA in tumor tissue correlated with worse OS of osteosarcoma.
Collapse
Affiliation(s)
- Shuai-Shuai Gao
- International Doctoral School, University of Seville, Seville 41004, Spain
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Xi'an 710016, Shaanxi Province, China
| | - Guo-Xun Zhang
- International Doctoral School, University of Seville, Seville 41004, Spain
| | - Wen-Ting Zhang
- International Doctoral School, University of Seville, Seville 41004, Spain
| |
Collapse
|
5
|
Role of MicroRNAs in Human Osteosarcoma: Future Perspectives. Biomedicines 2021; 9:biomedicines9050463. [PMID: 33922820 PMCID: PMC8146779 DOI: 10.3390/biomedicines9050463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a rare form of cancer with high death rate but is one of the most frequent forms of bone cancer in children and adolescents. MiRNAs are small endogenous RNAs that regulate gene expression post-transcriptionally. The discovery of miRNAs could allow us to obtain an earlier diagnosis, predict prognosis and chemoresistance, and lead to the discovery of new treatments in different types of tumors, including OS. Despite the fact that there is currently only one clinical trial being carried out on a single miRNA for solid tumors, it is very probable that the number of clinical trials including miRNAs as prognostic and diagnostic biomarkers, as well as potential therapeutic targets, will increase in the near future. This review summarizes the different miRNAs related to OS and their possible therapeutic application.
Collapse
|
6
|
Zhang G, Li Y, Xu J, Xiong Z. Advances in the role of miRNAs in the occurrence and development of osteosarcoma. Open Med (Wars) 2020; 15:1003-1011. [PMID: 33336056 PMCID: PMC7718646 DOI: 10.1515/med-2020-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the skeletal system in the clinic. It mainly occurs in adolescent patients and the pathogenesis of the disease is very complicated. The distant metastasis may occur in the early stage, and the prognosis is poor. MicroRNAs (miRNAs) are non-coding RNAs of about 18–25 nt in length that are involved in post-transcriptional regulation of genes. miRNAs can regulate target gene expression by promoting the degradation of target mRNAs or inhibiting the translation process, thereby the proliferation of OS cells can be inhibited and the apoptosis can be promoted; in this way, miRNAs can affect the metabolism of OS cells and can also participate in the occurrence, invasion, metastasis, and recurrence of OS. Some miRNAs have already been found to be closely related to the prognosis of patients with OS. Unlike other reviews, this review summarizes the miRNA molecules closely related to the development, diagnosis, prognosis, and treatment of OS in recent years. The expression and influence of miRNA molecule on OS were discussed in detail, and the related research progress was summarized to provide a new research direction for early diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Guanyu Zhang
- Queen Mary college of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yiran Li
- Queen Mary college of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Jiasheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China
| |
Collapse
|
7
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
8
|
Heishima K, Meuten T, Yoshida K, Mori T, Thamm DH. Prognostic significance of circulating microRNA-214 and -126 in dogs with appendicular osteosarcoma receiving amputation and chemotherapy. BMC Vet Res 2019; 15:39. [PMID: 30683101 PMCID: PMC6347759 DOI: 10.1186/s12917-019-1776-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dogs with appendicular osteosarcoma (OSA) receiving standard amputation and adjuvant chemotherapy demonstrate variable outcome with treatment; however, additional biomarkers would be helpful for predicting their outcome. In the present study, we assessed the potential of circulating microRNA-214 (miR-214) and - 126 (miR-126) to predict time to metastasis and death in dogs with OSA treated with amputation and chemotherapy. RESULTS Seventy-six dogs that fully met inclusion criteria were included in the analysis. The criteria included (1) a diagnosis of appendicular OSA without metastases at diagnosis, (2) treatment by amputation and chemotherapy using carboplatin, doxorubicin, cisplatin, or a combination of these agents. Circulating miR-214 and -126 levels at the time before treatment were measured by using RT-qPCR. High circulating miR-214 and serum alkaline phosphatase (ALP) significantly predicted short disease-free survival (DFS) and overall survival (OS). Conversely, high circulating miR-126 significantly predicted prolonged DFS and OS. An integrated approach using circulating miR-214, - 126, and serum ALP showed better accuracy in the prediction of DFS and OS and identification of long-term survivors than prediction using only ALP. Other variables (age, weight, sex, monocyte counts, and primary tumor site) were associated with neither DFS nor OS. miRNA levels did not strongly correlate with histopathological indices. CONCLUSIONS Circulating miR-214, - 126, and an integrated prognostic score have strong potential to predict the outcome of canine appendicular OSA patients receiving amputation and chemotherapy.
Collapse
Affiliation(s)
- Kazuki Heishima
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Travis Meuten
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Kyoko Yoshida
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Douglas H. Thamm
- Flint Animal Cancer Center, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
9
|
Hong G, Kuek V, Shi J, Zhou L, Han X, He W, Tickner J, Qiu H, Wei Q, Xu J. EGFL7: Master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J Cell Physiol 2018; 233:8526-8537. [PMID: 29923200 DOI: 10.1002/jcp.26792] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Guoju Hong
- National Key Discipline and Orthopedic Laboratory Guangzhou University of Chinese Medicine Guangzhou Guangdong China
- Division of Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia Perth WA Australia
| | - Vincent Kuek
- Division of Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia Perth WA Australia
| | - Jiaxi Shi
- First Clinical College Guangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Lin Zhou
- Department of Rheumatology The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou Guangdong China
| | - Xiaorui Han
- Department of Radiography Guangzhou First People's Hospital The Second Affiliated Hospital of South China University of Technology Guangzhou Guangdong China
| | - Wei He
- National Key Discipline and Orthopedic Laboratory Guangzhou University of Chinese Medicine Guangzhou Guangdong China
- Orthopedic Department The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Jennifer Tickner
- Division of Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia Perth WA Australia
| | - Heng Qiu
- Division of Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia Perth WA Australia
| | - Qiushi Wei
- National Key Discipline and Orthopedic Laboratory Guangzhou University of Chinese Medicine Guangzhou Guangdong China
- Orthopedic Department The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou Guangdong China
| | - Jiake Xu
- National Key Discipline and Orthopedic Laboratory Guangzhou University of Chinese Medicine Guangzhou Guangdong China
- Division of Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia Perth WA Australia
| |
Collapse
|
10
|
Zhang C, Song G, Ye W, Xu B. MicroRNA-302a inhibits osteosarcoma cell migration and invasion by directly targeting IGF-1R. Oncol Lett 2018; 15:5577-5583. [PMID: 29563995 PMCID: PMC5858113 DOI: 10.3892/ol.2018.8049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is one of the most frequent types of primary malignant bone neoplasm in children and adolescents. Despite advancements developed in therapeutic modalities, the 5-year overall survival rates for patients with metastatic osteosarcoma disease remain poor. The present study aimed to investigate the expression level of microRNA-302a (miR-302a) in osteosarcoma tissues and cell lines, and the biological roles of miR-302a in osteosarcoma cells. In addition, the molecular mechanism underlying its tumor suppressive roles was evaluated. miR-302a expression in osteosarcoma tissues and cell lines was detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Following transfection of miR-302a mimics or IGF-1R siRNA, transwell migration and invasion, luciferase reporter assay RT-qPCR and western blot assays were conducted in osteosarcoma cells. In the present study, the data demonstrated that miR-302a was frequently reduced in osteosarcoma tissue and cell lines. In addition, the expression of miR-302a was correlated with metastatic features of patients with osteosarcoma. Restoration of miR-302a expression significantly inhibited the migration and invasion capacity of osteosarcoma cells. Mechanistic studies indicated that insulin-like growth factor 1 receptor (IGF-1R) was a direct target gene of miR-302a. Overexpression of miR-302a resulted in decreased expression of IGF-1R at the mRNA and protein levels. Furthermore, the knockdown IGF-1R mimicked the functions of miR-302a overexpression on osteosarcoma cell migration and invasion. Collectively, the results of the current study indicate that miR-302a acts as a metastasis suppressing miRNA and could be investigated as a therapeutic target for the treatment of patients with osteosarcoma to prevent metastasis.
Collapse
Affiliation(s)
- Chunhong Zhang
- Department of Spinal Surgery, Tianjin Hospital, Hexi, Tianjin 300211, P.R. China
| | - Guomin Song
- Department of Nursing, Tianjin Hospital, Hexi, Tianjin 300211, P.R. China
| | - Weisheng Ye
- Department of Research Office, Tianjin Hospital, Hexi, Tianjin 300211, P.R. China
| | - Baoshan Xu
- Department of Spinal Surgery, Tianjin Hospital, Hexi, Tianjin 300211, P.R. China
| |
Collapse
|
11
|
Cheng D, Qiu X, Zhuang M, Zhu C, Zou H, Liu Z. MicroRNAs with prognostic significance in osteosarcoma: a systemic review and meta-analysis. Oncotarget 2017; 8:81062-81074. [PMID: 29113367 PMCID: PMC5655262 DOI: 10.18632/oncotarget.19009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Introduction This study aimed to elucidate the prognostic value of microRNAs (miRNAs) in patients with osteosarcoma. Materials and Methods Studies were recruited by searching PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure, and Wanfang data-bases (final search update conducted January 2017). Eligible studies were identified and the quality was assessed using multiple search strategies. Results A total of 55 articles that investigated the correlation between miRNA expression and either patient survival or disease recurrence in osteosarcoma was initially identified. Among these, 30 studies were included in the meta-analysis. The results of our meta-analysis revealed that elevated levels of miR-21, miR-214, miR-29, miR-9 and miR-148a were associated with poor prognosis in osteosarcoma. Additionally, downregulated miR-382, miR26a, miR-126, miR-195 and miR-124 expression indicated poor prognosis in osteosarcoma. Conclusions miRNAs may act as independent prognostic factors in patients with osteosarcoma and are useful in stratifying risk.
Collapse
Affiliation(s)
- Dong Cheng
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Xubin Qiu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Ming Zhuang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Chenlei Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Hongjun Zou
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| | - Zhiwei Liu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, P.R. China
| |
Collapse
|
12
|
Xu J, Wang Z, Liao Z, Dai D, Ma X. MicroRNA-150 functions as an antioncogenic regulator in osteosarcoma. Oncol Lett 2017; 14:2483-2490. [PMID: 28781686 DOI: 10.3892/ol.2017.6393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/13/2017] [Indexed: 12/15/2022] Open
Abstract
Numerous studies have demonstrated that microRNAs (miRs) are involved in several physiological and pathological processes, and participate in cancer initiation and progression. The abnormal expression of miR-150 has been reported in numerous types of human cancer. However, at present there are no studies of miR-150 in osteosarcoma (OS). Reverse transcription-quantitative polymerase chain reaction was performed to measure miR-150 expression levels in OS tissues and cell lines. Subsequent to transfection with miR-150 mimics or zinc finger E-box binding homeobox 1 (ZEB1) small interfering RNA, an MTT assay, Transwell migration and invasion assays, western blotting and a Dual-Luciferase reporter assay were performed in human OS cell lines. The present study revealed that miR-150 was downregulated in OS tissues and cell lines. In addition, the expression levels of miR-150 were correlated with the clinical stage and degree of distant metastasis of patients with OS. In addition, ZEB1 was identified as a direct target of miR-150 in vitro. In conclusion, miR-150 targeted ZEB1 to function as an antioncogenic regulator in OS. These findings elucidated a novel underlying mechanism for the pathogenic process in OS carcinogenesis and progression, and may provide novel targeted therapeutic regimens for patients with OS.
Collapse
Affiliation(s)
- Jin Xu
- Department of Orthopaedic Surgery, Tianjin Medical University, Tianjin 300070, P.R. China.,Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Zengliang Wang
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Zhichao Liao
- Department of Orthopaedic Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Dong Dai
- Department of Orthopaedic Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xinlong Ma
- Department of Orthopaedic Surgery, Tianjin Medical University, Tianjin 300070, P.R. China.,Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin 300211, P.R. China
| |
Collapse
|
13
|
Jiang R, Zhang C, Liu G, Gu R, Wu H. Retracted
: MicroRNA‐126 Inhibits Proliferation, Migration, Invasion, and EMT in Osteosarcoma by Targeting ZEB1. J Cell Biochem 2017; 118:3765-3774. [DOI: 10.1002/jcb.26024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/31/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Rui Jiang
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Chao Zhang
- Department of OphthalmologyThe Second Hospital of Jilin UniversityChangchunChina
| | - Guangyao Liu
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Rui Gu
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Han Wu
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
14
|
Hutanu D, Popescu R, Stefanescu H, Pirtea L, Candea A, Sarau C, Boruga O, Mehdi L, Ciuca I, Tanasescu S. The Molecular Genetic Expression as a Novel Biomarker in the Evaluation and Monitoring of Patients With Osteosarcoma-Subtype Bone Cancer Disease. Biochem Genet 2017; 55:291-299. [DOI: 10.1007/s10528-017-9801-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/30/2017] [Indexed: 12/27/2022]
|
15
|
Ren X, Shen Y, Zheng S, Liu J, Jiang X. miR-21 predicts poor prognosis in patients with osteosarcoma. Br J Biomed Sci 2016; 73:158-162. [DOI: 10.1080/09674845.2016.1220710] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Kido T, Lau YFC. Identification of a TSPY co-expression network associated with DNA hypomethylation and tumor gene expression in somatic cancers. J Genet Genomics 2016; 43:577-585. [PMID: 27771326 DOI: 10.1016/j.jgg.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/27/2016] [Accepted: 09/05/2016] [Indexed: 11/28/2022]
Abstract
Testis specific protein Y-encoded (TSPY) is a Y-located proto-oncogene predominantly expressed in normal male germ cells and various types of germ cell tumor. Significantly, TSPY is frequently expressed in somatic cancers including liver cancer but not in adjacent normal tissues, suggesting that ectopic TSPY expression could be associated with oncogenesis in non-germ cell cancers. Various studies demonstrated that TSPY expression promotes growth and proliferation in cancer cells; however, its relationship to other oncogenic events in TSPY-positive cancers remains unknown. The present study seeks to correlate TSPY expression with other molecular features in clinical cancer samples, by analyses of RNA-seq transcriptome and DNA methylation data in the Cancer Genome Atlas (TCGA) database. A total of 53 genes, including oncogenic lineage protein 28 homolog B (LIN28B) gene and RNA-binding motif protein Y-linked (RBMY) gene, are identified to be consistently co-expressed with TSPY, and have been collectively designated as the TSPY co-expression network (TCN). TCN genes were simultaneously activated in subsets of liver hepatocellular carcinoma (30%) and lung adenocarcinoma (10%) regardless of pathological stage, but only minimally in other cancer types. Further analysis revealed that the DNA methylation level was globally lower in the TCN-active than TCN-silent cancers. The specific expression and methylation patterns of TCN genes suggest that they could be useful as biomarkers for the diagnosis, prognosis and clinical management of cancers, especially those for liver and lung cancers, associated with TSPY co-expression network genes.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and Institute for Human Genetics, University of California, San Francisco, CA 94121, USA.
| |
Collapse
|
17
|
Dong Y, Fu C, Guan H, Zhang Z, Zhou T, Li B. Prognostic significance of miR-126 in various cancers: a meta-analysis. Onco Targets Ther 2016; 9:2547-55. [PMID: 27217773 PMCID: PMC4853159 DOI: 10.2147/ott.s103481] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Recent studies have demonstrated that microRNA-126 (miR-126) might be a promising prognostic factor for cancer patients. This meta-analysis was conducted to assess the effectiveness of miR-126 as a prognostic biomarker for various cancers. METHODS The search of studies was performed by using PubMed and Embase until January 22, 2016. Pooled hazard ratio (HR) with 95% confidence interval (CI) for patients' survival was calculated. A fixed-effect or random-effects model was applied according to heterogeneity. The trim and fill method was used to adjust pooled HR. RESULTS In all 17 articles comprising of 2,437 participants were included in this meta-analysis. The results indicated that a high level of miR-126 played a favorable role in the overall survival (HR 0.70, 95% CI: 0.62-0.79, random-effects model), with a heterogeneity measure index of I (2)=63.2% (P<0.01). Subgroup analyses showed that pooled HR was more significant in patients with digestive system cancers (HR 0.70, 95% CI: 0.59-0.83, fixed-effects model) and respiratory system cancers (HR 0.71, 95% CI: 0.59-0.85, random-effects model). Owing to publication bias, HR was adjusted to 0.59 (0.463-0.752, P<0.01) by the trim and fill method. CONCLUSION miR-126 could be a promising biomarker for cancer prognosis prediction, especially in patients with digestive or respiratory system cancers.
Collapse
Affiliation(s)
- Yuanli Dong
- School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
| | - Chengrui Fu
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
| | - Hui Guan
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
| | - Zicheng Zhang
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
| | - Tao Zhou
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
| | - Baosheng Li
- Sixth Department of Radiation Oncology, Shandong Cancer Hospital & Institute, Jinan, Shandong Province, People’s Republic of China
- Correspondence: Baosheng Li, Sixth Department of Radiation Oncology, Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan 250117, Shandong Province, People’s Republic of China, Tel +86 139 5416 8847, Fax +86 531 6762 6161, Email
| |
Collapse
|
18
|
Qu Y, Pan S, Kang M, Dong R, Zhao J. MicroRNA-150 functions as a tumor suppressor in osteosarcoma by targeting IGF2BP1. Tumour Biol 2015; 37:5275-84. [PMID: 26561465 DOI: 10.1007/s13277-015-4389-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor with high morbidity in young adults and adolescents. Increasing evidence has demonstrated that aberrant microRNA (miRNA) expression is involved in OS occurrence and development. miR-150 has been recently widely studied in many cancers, but not including OS. This study is aimed to investigate the expression and biological role of miR-150 in OS. Here, we found that miR-150 expression was consistently downregulated in OS tissues and cell lines compared with the matched adjacent normal tissues and human normal osteoblast cells (NHOst), and its expression was significantly correlated with lymph node metastasis and tumor-node-metastasis (TNM) stage. Functional study showed that restoration of miR-150 expression in OS cells could inhibit cell proliferation, migration, and invasion and induced apoptosis in vitro as well as suppressed tumor growth of OS in vivo. Mechanistically, IGF2 mRNA-binding protein 1(IGF2BP1) was confirmed to act as a direct target of miR-150, and the IGF2BP1 mRNA expression was inversely correlated with the level of miR-150 in OS tissues. In addition, downregulation of endogenous IGF2BP1 exhibited similar effects of overexpression of miR-150. Taken together, these findings suggest that miR-150 functions as a tumor suppressor in OS partially by targeting IGF2BP1.
Collapse
Affiliation(s)
- Yang Qu
- Department of Orthopedics, the Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130042, China
| | - Su Pan
- Department of Orthopedics, the Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130042, China
| | - Mingyang Kang
- Department of Orthopedics, the Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130042, China
| | - Rongpeng Dong
- Department of Orthopedics, the Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130042, China
| | - Jianwu Zhao
- Department of Orthopedics, the Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130042, China.
| |
Collapse
|