1
|
Sun Y, Duan F, Liu W, Peng Z, Dai L, Feng Y, Yang Z, Shang J, Wang K. Comprehensive Assessment of the Relationship Between MicroRNA-124 and the Prognostic Significance of Cancer. Front Oncol 2018; 8:252. [PMID: 30062087 PMCID: PMC6055006 DOI: 10.3389/fonc.2018.00252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Numerous studies have demonstrated the presence of microRNA-124 abnormalities involving gene expression, methylation, and single nucleotide polymorphism (SNP) in multiple and diverse cancers, but the prognostic value of these abnormalities in cancer remains inconclusive. OBJECTIVE The aim of this study is to determine the prognostic value of miR-124 in cancer. METHODS We scrutinized the electronic databases and estimate the association between miR-124 expression, methylation and single nucleotide polymorphisms (SNPs), and prognosis in cancers. The pooled hazard ratios with 95% confidence intervals (CIs) for overall survival (OS), and disease-free survival/recurrence-free survival (RFS)/progression-free survival (PFS) were calculated to estimate the effects of miR-124 expression, methylation, and SNPs on cancer prognosis. The Quality in Prognosis Studies and Newcastle-Ottawa Scale were utilized to assess the quality of included studies. RESULTS A total of 20 studies involving 3,574 participants were analyzed in evidence synthesis. Our findings showed that the low expression of miR-124 was significantly associated with poor OS (HR = 2.37, 95% CI: 1.91-2.94, P = 0.00; HR = 3.10, 95% CI: 2.04-4.70, P = 0.00) and PFS/RFS (HR = 2.21, 95% CI: 1.50-3.26, P = 0.00; HR = 2.12, 95% CI: 1.20-3.74, P = 0.00). The hyper-methylation of miR-124 was associated with poor OS (HR = 2.09, 95% CI: 1.48-2.95, P = 0.00) and PFS (HR = 3.70, 95% CI: 1.72-7.97, P = 0.00) (Table 3). The patients carrying with Allele C of miR-124 rs5315649 had a worse OS (HR = 1.50, 95% CI: 1.09-2.07, P = 0.00) and PFS (HR = 1.67, 95% CI: 1.20-2.33, P = 0.00) than the carriers with Allele G. CONCLUSION The low expression and hyper-methylation of miR-124 was strongly associated with poor prognosis, and genetic variations of miR-124 rs531564 affected prognosis in cancer patients.
Collapse
Affiliation(s)
- Yadong Sun
- Department of Breast and Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Fujiao Duan
- Department of Breast and Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weigang Liu
- Medical Record Statistics Office, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Zhen Peng
- Department of Infectious Disease, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Liping Dai
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yajing Feng
- Department of Nosocomial Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenxing Yang
- Department of Breast and Medical Research Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Shang
- Department of Infectious Disease, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Kaijuan Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Zhao Y, Ling Z, Hao Y, Pang X, Han X, Califano JA, Shan L, Gu X. MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget 2018; 8:25005-25020. [PMID: 28212569 PMCID: PMC5421905 DOI: 10.18632/oncotarget.15334] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023] Open
Abstract
By analyzing the expression profile of microRNAs in head and neck squamous cell carcinomas (HNSCC), we found that the expression level of miR-124 was 4.59-fold lower in tumors than in normal tissues. To understand its functions, we generated a miR-124-expressing subline (JHU-22miR124) and a mock vector-transfected subline (JHU-22vec) by transfecting the mimic of miR-124 into JHU-22 cancer cells. Restored expression of miR-124 in JHU-22miR124 cells led to reduced cell proliferation, delayed colony formation, and decreased tumor growth, indicating a tumor-suppressive effect of miR-124. Subsequent target search revealed that the 3′-UTR of SphK1 mRNA carries a complementary site for the seed region of miR-124. SphK1 was also detected to be overexpressed in HNSCC cell lines, but down-expressed in JHU-22miR124 cells and tumor xenografts. These results suggest that SphK1 is a target of miR-124. To confirm this finding, we constructed a 3′-UTR-Luc-SphK1 vector and a binding site-mutated luciferase reporter vector. Co-transfection of 3′-UTR-Luc-SphK1 with miR-124 expression vector exhibited a 9-fold decrease in luciferase activity compared with mutated vector, suggesting that miR-124 inhibits SphK1 activity directly. Further studies on downstream signaling demonstrated accumulation of ceramide, increased expression of the pro-apoptotic Bax, BAD and PARP, decreased expression of the anti-apoptotic Bcl-2 and Bcl-xL, and enhanced expression of cytochrome c and caspase proteins in JHU-22miR124 compared with JHU-22vec cells and tumor xenografts. We conclude that miR-124 acts as a tumor suppressor in HNSCC by directly inhibiting SphK1 activity and its downstream signals.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Oral Pathology, College of Dentistry, Howard University, Washington DC, USA
| | - Zhiqiang Ling
- Zhejiang Cancer Hospital, Zhejiang Cancer Research Institute, Hangzhou, Zhejiang, China
| | - Yubin Hao
- Department of Oral Pathology, College of Dentistry, Howard University, Washington DC, USA
| | - Xiaowu Pang
- Department of Oral Pathology, College of Dentistry, Howard University, Washington DC, USA
| | - Xianlin Han
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Joseph A Califano
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University, San Diego, California, USA
| | - Liang Shan
- Department of Oral Pathology, College of Dentistry, Howard University, Washington DC, USA.,Department of Radiology, College of Medicine, Howard University, Washington DC, USA
| | - Xinbin Gu
- Department of Oral Pathology, College of Dentistry, Howard University, Washington DC, USA.,Cancer Center, Howard University, Washington DC, USA
| |
Collapse
|
3
|
Zhang L, Chen X, Liu B, Han J. MicroRNA-124-3p directly targets PDCD6 to inhibit metastasis in breast cancer. Oncol Lett 2017; 15:984-990. [PMID: 29387242 PMCID: PMC5769374 DOI: 10.3892/ol.2017.7358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 08/23/2017] [Indexed: 02/04/2023] Open
Abstract
Breast cancer (BC) is the leading cause of cancer-associated mortality among women worldwide, with a poor 5-year survival rate, particularly among patients with metastatic BC. Previous studies have indicated that the dysregulation of microRNAs (miRNAs/miRs) is associated with carcinogenesis and metastasis. Thus, investigating the underlying molecular mechanisms by which miRNAs mediate their effects may aid in the improvement of BC treatment. In the present study, reverse transcription-quantitative polymerase chain reaction analyses were performed to investigate miR-124-3p expression in BC tissues. The expression of miR-124-3p was significantly decreased in primary BC tissues compared with that in adjacent non-tumor tissues. Downregulated miR-124-3p was correlated with lymph node metastasis and a low overall survival time. Wound-healing and Transwell assays revealed that MDA-MB-231 and MCF-7 cell motility was inhibited by miR-124-3p, but was promoted by a miR-124-3p inhibitor. Overexpression of miR-124-3p increased levels of E-cadherin, and decreased levels of N-cadherin and Vimentin, indicating that miR-124-3p inhibits the epithelial-mesenchymal transition. In addition, a bioinformatics analysis and subsequent in vitro experiments identified programmed cell death protein 6 (PDCD6) as a direct target of miR-124-3p. Restoration of PDCD6 expression impaired the metastasis inhibitor role of miR-124-3p by promoting cell invasion. Furthermore, the expression of miR-124-3p was inversely associated with PDCD6 mRNA levels in clinical breast tumors. Taken together, these data suggest that miR-124-3p inhibits tumor metastasis by inhibiting PDCD6 expression, and that the miR-124-3p/PDCD6 signaling axis may be a potential target for novel treatments in patients with advanced BC.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China.,Department of Clinical Oncology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Xiangming Chen
- Department of Clinical Oncology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Baoli Liu
- Department of Medical Insurance, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Junqing Han
- Department of Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
4
|
Yang Q, Wan L, Xiao C, Hu H, Wang L, Zhao J, Lei Z, Zhang HT. Inhibition of LHX2 by miR-124 suppresses cellular migration and invasion in non-small cell lung cancer. Oncol Lett 2017; 14:3429-3436. [PMID: 28927097 PMCID: PMC5587980 DOI: 10.3892/ol.2017.6607] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Downregulated microRNA (miR)-124 is common in numerous types of cancer, including non-small cell lung cancer (NSCLC). A previous study by the authors demonstrated that LIM-homeobox domain 2 (LHX2) was upregulated and promoted cell growth in NSCLC. However, whether LHX2 affects the migratory and invasive abilities of NSCLC cells and the association of LHX2 with miR-124 remains unclear. The present study revealed that miR-124 expression was frequently decreased in human NSCLC cells and tissues and negatively correlated with LHX2 expression, which was increased in NSCLC cells and tissues. Furthermore, the transfection of miR-124 mimic significantly inhibited endogenous expression of LHX2 mRNA and protein in A549 and H1299 cells, and miR-124 inhibitor promoted LHX2 expression. Of note, overexpression of miR-124 in A549 and H1299 cells attenuated cellular migratory and invasive abilities, and this was observed in LHX2-silenced A549 and H1299 cells. Knockdown of miR-124 augmented the migratory and invasive abilities in A549 and H1299 cells. The 3′-untranslated region of LHX2 transcript has also been identified to be a putative target of miR-124. Taken together, the results revealed that miR-124 may inhibit migration and invasion by repressing LHX2 expression in NSCLC cells. The findings of the present study suggested that overexpression of miR-124 or silencing of LHX2 may provide a therapeutic strategy for advanced NSCLC.
Collapse
Affiliation(s)
- Qinghui Yang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123, P.R. China
| | - Liang Wan
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123, P.R. China
| | - Can Xiao
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haibo Hu
- Department of Cardiothoracic Surgery, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223200, P.R. China
| | - Longqiang Wang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123, P.R. China
| | - Jun Zhao
- Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhe Lei
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123, P.R. China
| | - Hong-Tao Zhang
- Soochow University Laboratory of Cancer Molecular Genetics, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Suzhou Key Laboratory for Molecular Cancer Genetics, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
5
|
Wang D, Shi L, Xin W, Xu J, Xu J, Li Q, Xu Z, Wang J, Wang G, Yao W, He B, Yang Y, Hu M. Activation of PPARγ inhibits pro-inflammatory cytokines production by upregulation of miR-124 in vitro and in vivo. Biochem Biophys Res Commun 2017; 486:726-731. [PMID: 28342874 DOI: 10.1016/j.bbrc.2017.03.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/20/2017] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) and miR-124 have been reported to play important roles in regulation of inflammation. However, the underlying anti-inflammatory mechanisms remain not well understood. In the present study, we demonstrated that the expression level of PPARγ is positively correlated with that of miR-124 in patients with sepsis. Activation of PPARγ upregulates miR-124 and in turn inhibits miR-124 target gene. PPARγ bound directly to PPRE in the miR-124 promoter region, and enhanced the promoter transcriptional activity. PPARγ-induced miR-124 is involved in the suppression of pro-inflammatory cytokine in vitro and in vivo. These results suggest that PPARγ-induced miR-124 inhibits the production of pro-inflammatory cytokines is a novel PPARγ anti-inflammatory mechanism and also indicate that miR-124 may be a potential therapeutic target for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Dan Wang
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Liuyan Shi
- Department of Scientific Research and Education, The Affiliated Baoji Hospital, Xi'an Medical University, Baoji 721006, China
| | - Wei Xin
- Department of Thoracic Surgery, Baoji Traditional Chinese Medicine Hospital, Baoji 721001, China
| | - Jiancheng Xu
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jing Xu
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qi Li
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Zhi Xu
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jianchun Wang
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Guansong Wang
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wei Yao
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Binfeng He
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yu Yang
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China
| | - Mingdong Hu
- Department of Respiratory Medicine, Respiratory Research Institute, The Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
6
|
Fu Y, Xiong J. MicroRNA-124 enhances response to radiotherapy in human epidermal growth factor receptor 2-positive breast cancer cells by targeting signal transducer and activator of transcription 3. Croat Med J 2017; 57:457-464. [PMID: 27815936 PMCID: PMC5141458 DOI: 10.3325/cmj.2016.57.457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aim To determine whether microRNA (miR)-124 enhances the response to radiotherapy in human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by targeting signal transducer and activator of transcription 3 (Stat3). Methods miR-29b expression was measured in 80 pairs of breast tumor samples and adjacent normal tissues collected between January 2013 and July 2014. Activity changes of 50 canonical signaling pathways upon miR-124 overexpression were determined using Cignal Signal Transduction Reporter Array. Target gene of miR-124 was determined using Targetscan and validated by Western blotting and dual-luciferase assay. Cell death rate was assessed by propidium iodide (PI)/ Annexin V staining followed by flow cytometry analysis. Stat3 and miR-124 expression was further measured in 10 relapsed (non-responder) and 10 recurrence-free HER2-positive breast cancer patients. Results MiR-124 expression was down-regulated in HER2 positive breast cancers compared with normal tissues, and was negatively associated with tumor size. MiR-124 overexpression in HER2 positive breast cancer cell line SKBR3 significantly reduced the activity of Stat3 signaling pathway compared with control transfection (P < 0.001). Bioinformatic prediction and function assay suggested that miR-124 directly targeted Stat3, which is a key regulator of HER2 expression. MiR-124 overexpression down-regulated Stat3 and potently enhanced cell death upon irradiation. Consistently, chemical inhibitor of Stat3 also sensitized HER2-positive breast cancer cells to irradiation. Moreover, increased Stat3 expression and reduced miR-124 expression were associated with a poor response to radiotherapy in HER2-positive breast cancers. Conclusions Weak miR-124 expression might enhance Stat3 expression and radiotherapy resistance in HER2-positive breast cancer cells.
Collapse
Affiliation(s)
| | - Jianping Xiong
- Jianping Xiong, 17 Yongwaizheng rd, Nanchang, Jiangxi, China 330006,
| |
Collapse
|
7
|
Wang X, Li Y, Dai Y, Liu Q, Ning S, Liu J, Shen Z, Zhu D, Jiang F, Zhang J, Li Z. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep 2016; 6:36796. [PMID: 27824145 PMCID: PMC5099878 DOI: 10.1038/srep36796] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric carcinoma (GC) is the second leading cause of cancer-related mortality worldwide. The efficacy of standard chemotherapy for GC, such as cisplatin (CDDP), is dissatisfactory partly due to the toxic/side-effects. Sulforaphane (SFN), which exhibits effective anti-cancer functions, is a phytochemical converted from cruciferous plants. Our present study aimed to identify whether SFN could enhance the anti-cancer effects of low-dose CDDP and to determine the underlying mechanisms. Herein, co-exposure of SFN and CDDP significantly inhibited the viabilities of gastric cancer cells. For the molecular mechanisms, CDDP alone increased the cancer stem cell (CSC)-like properties in gastric cancer cells via activating the interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/signal transducer and activator of transcription 3 (STAT3) signaling. However, SFN could activate the microRNA-124 (miR-124), which directly targets the 3'-untranslated regions (UTR) of the IL-6R and STAT3. Moreover, knockdown of miR-124 eliminated the effects of SFN on CSC-like properties in GC cells, and in turn enhanced the anti-cancer effects of low-dose CDDP. These findings not only suggested a mechanism whereby SFN enhanced the anti-cancer functions of CDDP, but also helped to regard SFN as a potential chemotherapeutic factor in gastric cancer.
Collapse
Affiliation(s)
- Xingxing Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yuan Li
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Dai
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Qinqiang Liu
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Shilong Ning
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jiao Liu
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Zhaoxia Shen
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Dongmei Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Fei Jiang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jianping Zhang
- Department of surgery, the second affiliated hospital, Nanjing medical university, Nanjing, 211166, China
| | - Zhong Li
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
8
|
Arabkheradmand A, Safari A, Seifoleslami M, Yahaghi E, Gity M. Retraction Note: Down-regulated microRNA-124 expression as predictive biomarker and its prognostic significance with clinicopathological features in breast cancer patients. Diagn Pathol 2016; 11:122. [PMID: 27802808 PMCID: PMC5090952 DOI: 10.1186/s13000-016-0560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ali Arabkheradmand
- Department of Surgery, Cancer and Reconstructive Surgeon, Cancer Institute, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghdas Safari
- Department of Gynecology, Khanevadeh Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Mehri Seifoleslami
- Department of Gynecology, Khanevadeh Hospital, AJA University of Medical Sciences, Tehran, Iran
| | - Emad Yahaghi
- Department of Molecular Biology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoumeh Gity
- Department of Radiology, Medical Imaging Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Huang WT, Chen ZX, He RQ, Wu YZ, Yin SY, Liang XN, Chen G, Yang H, Peng ZG, Yang LH. Clinicopathological role of miR-30a-5p in hepatocellular carcinoma tissues and prediction of its function with bioinformatics analysis. Onco Targets Ther 2016; 9:5061-71. [PMID: 27574447 PMCID: PMC4990378 DOI: 10.2147/ott.s111431] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND It has been reported that deregulation or dysfunction of microRNAs (miRNAs) plays an essential part in the hepatocarcinogenesis. However, the contribution and mechanism of microRNA-30a-5p (miR-30a-5p) in hepatocellular carcinoma (HCC) remains largely unknown. Therefore, our aim was to investigate the clinicopathological role of miR-30a-5p in HCC tissues and explore its potential pathways in this study. METHODS The expression of miR-30a-5p was measured in 95 HCC and adjacent noncancer tissues by real-time reverse transcription quantitative polymerase chain reaction. The relationship between miR-30a-5p expression levels and clinicopathological parameters was also analyzed. Furthermore, the potential target genes of miR-30a-5p were collected via online prediction and literature searching. Gene ontology and pathway enrichment analyses were used to identify the possible function of miR-30a-5p in HCC. RESULTS Compared with adjacent noncancer tissues (2.23±0.77), expression level of miR-30a-5p was significantly lower in HCC tissues (1.26±0.66, P<0.001). MiR-30a-5p expression was evidently correlated with tumor nodes, metastasis, tumor-node-metastasis stage, portal vein tumor embolus, vascular invasion, and status of tumor capsule (all P<0.05). A total of 878 genes were finally used for the biological informatics analyses. These prospective target genes were highly enriched in various key pathways, for instance, Ubiquitin-mediated proteolysis, Axon guidance, Neurotrophin signaling pathway, Amyotrophic lateral sclerosis, and ErbB signaling pathway. CONCLUSION In conclusion, this study clarifies that the downregulation of miRNA-30a-5p might play a vital part in the incidence and progression of HCC via targeting various prospective genes and pathways. Future validation is required to further explore the prospective molecular mechanism of miR-30a-5p in HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | | | | |
Collapse
|
10
|
Chai Y, Liu J, Zhang Z, Liu L. HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer. Cancer Med 2016; 5:1588-98. [PMID: 27075229 PMCID: PMC4944886 DOI: 10.1002/cam4.710] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/02/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have recently emerged as pivotal regulators in governing fundamental biological processes, as well as in tumorigenesis. The nuclear paraspeckle assembly transcript 1 (NEAT1) is one of the most highly regulated lncRNAs in recent genomic datasets, however, its biological role and regulatory mechanism in ovarian cancer (OC) development and progression are poorly defined. In this study, we identified that NEAT1 was up-regulated in OC patients and cell lines, and its expression was associated with the FIGO stage and lymph node metastasis. Furthermore, the ectopic expression of NEAT1_1 in OVCAR-3 cell lines promoted cell proliferation and invasion, whereas knockdown of NEAT1_1 did the opposite. Furthermore, NEAT1_1 was stabilized by an RNA-binding protein HuR, but suppressed by miR-124-3p in OC cells. Accordingly, the increased HuR mRNA and decreased miR-124-3p levels were observed in OC patients. These results suggested that lncRNA NEAT1, whose expression was collaboratively controlled by HuR and miR-124-3p, could regulate ovarian carcinogenesis and may serve as a potential target for antineoplastic therapies.
Collapse
Affiliation(s)
- Yiqing Chai
- The Ultrasound Centre, Tianjin central hospital of gynecology obstetrics, Tianjin, 300052, China
| | - Jie Liu
- The Ultrasound Centre, Tianjin central hospital of gynecology obstetrics, Tianjin, 300052, China
| | - Zhikun Zhang
- The Ultrasound Centre, Tianjin central hospital of gynecology obstetrics, Tianjin, 300052, China
| | - Liwei Liu
- The Department of Urology, The Second hospital of Tianjin medical university, Tianjin, 300211, China
| |
Collapse
|