1
|
Lahorewala S, Panda CS, Aguilar K, Morera DS, Zhu H, Gramer AL, Bhuiyan T, Nair M, Barrett A, Bollag RJ, Lokeshwar VB. Novel Molecular Signatures Selectively Predict Clinical Outcomes in Colon Cancer. Cancers (Basel) 2025; 17:919. [PMID: 40149256 PMCID: PMC11940726 DOI: 10.3390/cancers17060919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Among the 152,810 estimated new cases of adenocarcinoma of the colon (COAD) and the rectum (READ) in 2024, the rates of colorectal cancer (CRC) are increasing in young adults (age < 55 years) [...].
Collapse
Affiliation(s)
- Sarrah Lahorewala
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.L.); (C.S.P.); (K.A.); (H.Z.)
| | - Chandramukhi S. Panda
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.L.); (C.S.P.); (K.A.); (H.Z.)
| | - Karina Aguilar
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.L.); (C.S.P.); (K.A.); (H.Z.)
| | - Daley S. Morera
- Department of Pathology Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.S.M.); (A.L.G.); (T.B.); (A.B.); (R.J.B.)
| | - Huabin Zhu
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.L.); (C.S.P.); (K.A.); (H.Z.)
| | - Adriana L. Gramer
- Department of Pathology Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.S.M.); (A.L.G.); (T.B.); (A.B.); (R.J.B.)
| | - Tawhid Bhuiyan
- Department of Pathology Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.S.M.); (A.L.G.); (T.B.); (A.B.); (R.J.B.)
| | - Meera Nair
- Willaim J Brennan High School, San Antonio, TX 78253, USA;
| | - Amanda Barrett
- Department of Pathology Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.S.M.); (A.L.G.); (T.B.); (A.B.); (R.J.B.)
| | - Roni J. Bollag
- Department of Pathology Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.S.M.); (A.L.G.); (T.B.); (A.B.); (R.J.B.)
- Bio-Repository Alliance of Georgia for Oncology (BRAG-Onc), Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vinata B. Lokeshwar
- Departments of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.L.); (C.S.P.); (K.A.); (H.Z.)
| |
Collapse
|
2
|
Gelman IH. Metastasis suppressor genes in clinical practice: are they druggable? Cancer Metastasis Rev 2023; 42:1169-1188. [PMID: 37749308 PMCID: PMC11629483 DOI: 10.1007/s10555-023-10135-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023]
Abstract
Since the identification of NM23 (now called NME1) as the first metastasis suppressor gene (MSG), a small number of other gene products and non-coding RNAs have been identified that suppress specific parameters of the metastatic cascade, yet which have little or no ability to regulate primary tumor initiation or maintenance. MSG can regulate various pathways or cell biological functions such as those controlling mitogen-activated protein kinase pathway mediators, cell-cell and cell-extracellular matrix protein adhesion, cytoskeletal architecture, G-protein-coupled receptors, apoptosis, and transcriptional complexes. One defining facet of this gene class is that their expression is typically downregulated, not mutated, in metastasis, such that any effective therapeutic intervention would involve their re-expression. This review will address the therapeutic targeting of MSG, once thought to be a daunting task only facilitated by ectopically re-expressing MSG in metastatic cells in vivo. Examples will be cited of attempts to identify actionable oncogenic pathways that might suppress the formation or progression of metastases through the re-expression of specific metastasis suppressors.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
3
|
Ou S, Chen H, Wang H, Ye J, Liu H, Tao Y, Ran S, Mu X, Liu F, Zhu S, Luo K, Guan Z, Jin Y, Huang R, Song Y, Liu SL. Fusobacterium nucleatum upregulates MMP7 to promote metastasis-related characteristics of colorectal cancer cell via activating MAPK(JNK)-AP1 axis. J Transl Med 2023; 21:704. [PMID: 37814323 PMCID: PMC10561506 DOI: 10.1186/s12967-023-04527-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common malignant tumor. Fusobacterium nucleatum (F. nucleatum) is overabundant in CRC and associated with metastasis, but the role of F. nucleatum in CRC cell migration and metastasis has not been fully elucidated. METHODS Differential gene analysis, protein-protein interaction, robust rank aggregation analysis, functional enrichment analysis, and gene set variation analysis were used to figure out the potential vital genes and biological functions affected by F. nucleatum infection. The 16S rDNA sequencing and q-PCR were used to detect the abundance of F. nucleatum in tissues and stools. Then, we assessed the effect of F. nucleatum on CRC cell migration by wound healing and transwell assays, and confirmed the role of Matrix metalloproteinase 7 (MMP7) induced by F. nucleatum in cell migration. Furthermore, we dissected the mechanisms involved in F. nucleatum induced MMP7 expression. We also investigated the MMP7 expression in clinical samples and its correlation with prognosis in CRC patients. Finally, we screened out potential small molecular drugs that targeted MMP7 using the HERB database and molecular docking. RESULTS F. nucleatum infection altered the gene expression profile and affected immune response, inflammation, biosynthesis, metabolism, adhesion and motility related biological functions in CRC. F. nucleatum was enriched in CRC and promoted the migration of CRC cell by upregulating MMP7 in vitro. MMP7 expression induced by F. nucleatum infection was mediated by the MAPK(JNK)-AP1 axis. MMP7 was highly expressed in CRC and correlated with CMS4 and poor clinical prognosis. Small molecular drugs such as δ-tocotrienol, 3,4-benzopyrene, tea polyphenols, and gallic catechin served as potential targeted therapeutic drugs for F. nucleatum induced MMP7 in CRC. CONCLUSIONS Our study showed that F. nucleatum promoted metastasis-related characteristics of CRC cell by upregulating MMP7 via MAPK(JNK)-AP1 axis. F. nucleatum and MMP7 may serve as potential therapeutic targets for repressing CRC advance and metastasis.
Collapse
Affiliation(s)
- Suwen Ou
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Haipeng Chen
- Department of Colorectal Surgery, National Clinical Research Center of Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hufei Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Jinhua Ye
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Huidi Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University-University of Calgary, Harbin Medical University, Harbin, 150081, China
| | - Yangbao Tao
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Songlin Ran
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Xiaoqin Mu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University-University of Calgary, Harbin Medical University, Harbin, 150081, China
| | - Fangzhou Liu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Shuang Zhu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Kangjia Luo
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Zilong Guan
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yinghu Jin
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Rui Huang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Shu-Lin Liu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Cumming School of Medicine Centre for Infection and Genomics, Harbin Medical University-University of Calgary, Harbin Medical University, Harbin, 150081, China.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
4
|
Choudhury H, Pandey M, Saravanan V, Mun ATY, Bhattamisra SK, Parikh A, Garg S, Gorain B. Recent progress of targeted nanocarriers in diagnostic, therapeutic, and theranostic applications in colorectal cancer. BIOMATERIALS ADVANCES 2023; 153:213556. [PMID: 37478770 DOI: 10.1016/j.bioadv.2023.213556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Cancer at the lower end of the digestive tract, colorectal cancer (CRC), starts with asymptomatic polyps, which can be diagnosed as cancer at a later stage. It is the fourth leading cause of malignancy-associated mortality worldwide. Despite progress in conventional treatment strategies, the possibility to overcome the mortality and morbidity issues with the enhancement of the lifespan of CRC patients is limited. With the advent of nanocarrier-based drug delivery systems, a promising revolution has been made in diagnosis, treatment, and theranostic purposes for cancer management. Herein, we reviewed the progress of miniaturized nanocarriers, such as liposomes, niosomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles, employed in passive and active targeting and their role in theranostic applications in CRC. With this novel scope, the diagnosis and treatment of CRC have proceeded to the forefront of innovation, where specific characteristics of the nanocarriers, such as processability, flexibility in developing precise architecture, improved circulation, site-specific delivery, and rapid response, facilitate the management of cancer patients. Furthermore, surface-engineered technologies for the nanocarriers could involve receptor-mediated deliveries towards the overexpressed receptors on the CRC microenvironment. Moreover, the potential of clinical translation of these targeted miniaturized formulations as well as the possible limitations and barriers that could impact this translation into clinical practice were highlighted. The advancement of these newest developments in clinical research and progress into the commercialization stage gives hope for a better tomorrow.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Vilashini Saravanan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Amanda Tan Yee Mun
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ankit Parikh
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
5
|
Nguyen SV, Shamoun L, Landerholm K, Wågsäter D, Dimberg J. Clinicopathological and prognostic value of CD44 gene polymorphism (rs187115) in Swedish patients with colorectal cancer. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:807-817. [PMID: 37074032 DOI: 10.1080/15257770.2023.2200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/20/2023]
Abstract
Cluster of differentiation (CD) 44 plays a crucial role in apoptosis, cell-cell interactions, angiogenesis, metastasis and proliferation. The aim of the present study was to examine the influence of CD44 gene polymorphism rs187115 on colorectal cancer (CRC) susceptibility and the association with various clinical features including long-term survival in Swedish patients with CRC. Genotypes were screened, using TaqMan single nucleotide polymorphism (SNP) assays based on polymerase chain reaction, in 612 CRC patients and 575 healthy controls.The carriers of G allele, genotypes (AG + GG), were found to be associated with an increased risk of CRC with an odds ratio (OR) of 1.35 (95% confidence interval (CI) = 1.01-1.81; p = 0.039) and found to be more common in patients with mucinous cancer compared with non-mucinous cancer, OR = 1.69 (95% CI = 1.02-2.80; p = 0.011). By using Kaplan-Meier analysis, the patients with genotype GG showed shorter cancer-specific and recurrence free survival with a hazard ratio (HR) of 1.25 (95% CI = 1.02-1.54; p = 0.036) and 1.52 (95% CI = 1.12-2.06; p = 0.007), respectively, in comparison with the carriers of A allele (AG + AA). The present findings demonstrated that the variant G allele of CD44 gene polymorphism rs187115 was related to risk for CRC and associated to mucinous cancer and predict worse prognosis in Swedish patients with CRC.
Collapse
Affiliation(s)
- Song Van Nguyen
- Department of Medical Laboratory, Da Nang University of Medical Technology and Pharmacy, Da Nang, Vietnam
| | - Levar Shamoun
- Department of Laboratory Medicine and Pathology, Region Jönköping County, Jönköping, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Kalle Landerholm
- Department of Surgery, Region Jönköping County, Jönköping, Sweden
- Department of Biomedical and Clinical Science, Linköping University, Linköping, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jan Dimberg
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| |
Collapse
|
6
|
Li YR, Meng K, Yang G, Liu BH, Li CQ, Zhang JY, Zhang XM. Diagnostic genes and immune infiltration analysis of colorectal cancer determined by LASSO and SVM machine learning methods: a bioinformatics analysis. J Gastrointest Oncol 2022; 13:1188-1203. [PMID: 35837194 PMCID: PMC9274036 DOI: 10.21037/jgo-22-536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/16/2022] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Genetic factors account for approximately 35% of colorectal cancer risk. The specificity and sensitivity of previous diagnostic biomarkers for colorectal cancer could not meet the need of clinical application. The expanding scale and inherent complexity of biological data have encouraged a growing use of machine learning to build informative and predictive models of the underlying biological processes. The aim of this study is to identify diagnostic genes of colorectal cancer by using machine learning methods. METHODS The GSE41328 and GSE106582 data sets were downloaded from the Gene Expression Omnibus (GEO) database. The gene expression differences between colon cancer and normal tissues were analyzed. The key colorectal cancer genes were screened and validated by Least Absolute Shrinkage and Selection Operator (LASSO) and Support Vector Machine (SVM) regression. Immune cell infiltration and the correlation with the key genes in patients with colon cancer were further analyzed by CIBERSORT. RESULTS Eleven key genes were identified as biomarkers for colon cancer, namely ASCL2, BEST4, CFD, DPEPCFD, FOXQ1, TRIB3, KLF4, MMP7, MMP11, PYY, and PDK4. The mean area under the receiver operating characteristic (ROC) curve (AUC) of all 11 genes for colon cancer diagnosis were 0.94 with a range of 0.91-0.97. In the validation set, the expression of the 11 key genes was significantly different between colon cancer and normal subjects (P<0.05) and the mean AUCs were 0.82 with a range of 0.70-0.88. Immune cell infiltration analyses demonstrated that the relative quantity of plasma cells, T cells, B cells, NK cells, MO, M1, Dendritic cells resting, Mast cells resting, Mast cells activated, and Neutrophils in the tumor group were significantly different to the normal group. CONCLUSIONS ASCL2, BEST4, CFD, DPEPCFD, FOXQ1, TRIB3, KLF4, MMP7, MMP11, PYY, and PDK4 were identified as the key genes for colon cancer diagnosis. These genes are expected to become novel diagnostic markers and targets of new pharmacotherapies for colorectal cancer.
Collapse
Affiliation(s)
- Yan-Rong Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ke Meng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guang Yang
- Department of Laboratory, The Red Cross (SEN GONG GENERAL) Hospital of Heilongjiang, Heilongjiang, China
| | - Bao-Hai Liu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chu-Qiao Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jia-Yuan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiao-Mei Zhang
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Oncogenic tetraspanins: Implications for metastasis, drug resistance, cancer stem cell maintenance and diagnosis of leading cancers in females. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
The correlation of epithelial-mesenchymal transition-related gene expression and the clinicopathologic features of colorectal cancer patients in Taiwan. PLoS One 2021; 16:e0254000. [PMID: 34214117 PMCID: PMC8253430 DOI: 10.1371/journal.pone.0254000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in the world. It has been the most prevalent malignancy in Taiwan for consecutive thirteen years. Despite the diversity of its etiologic and pathophysiologic factors, a biological process named as epithelial-mesenchymal transition (EMT) is indispensable in the progression of epithelial cancer. Our aim is to investigate the correlation between the expression of 8 EMT-related proteins (E-cadherin, β-catenin, claudin-1, CD44, N-cadherin, fibronectin, vimentin, S100A4) and the clinicopathologic features of CRC in Taiwan, along with the DNA CpG epigenetic status of CD44 gene. In immunohistochemical assessment, decreased expression of E-cadherin is statistically associated with the progression of cancer stage, while decreased expression of claudin-1 as well as increased β-catenin nuclear translocation and N-cadherin expression is statistically associated with the progression of histopathologic grade. E-cadherin, nuclear β-catenin and claudin-1 are also associated with other important prognostic factors, including nodal metastasis, tumor deposits, and elevated serum CA 19-9 levels. In addition, the left-sided colon and rectal cancers show increased nuclear translocation of β-catenin compared to the right-sided colon cancers, while the rectal cancers show increased fibronectin expression compared to the right-sided and left-sided colon cancers. Moreover, vimentin is aberrantly expressed in one case of signet-ring cell carcinoma. The DNA methylation levels of CD44 gene promoter between the tumoral and non-tumorous tissues by NGS comparison showed statistical difference on six CpG sites. However, such difference may not be sufficient because these DNA methylation proportions are too low to inactivate CD44 gene. Our results demonstrate the expression of E-cadherin, claudin-1, and nuclear β-catenin is closely related to the clinicopathologic prognostic determinants of CRC in Taiwan. The DNA methylation level of CD44 gene and its protein expression, however, show no correlation with the clinicopathologic features in CRC.
Collapse
|
9
|
Matly A, Quinn JA, McMillan DC, Park JH, Edwards J. The relationship between β-catenin and patient survival in colorectal cancer systematic review and meta-analysis. Crit Rev Oncol Hematol 2021; 163:103337. [PMID: 33992802 DOI: 10.1016/j.critrevonc.2021.103337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023] Open
Abstract
β-catenin is a key component of Wnt signalling, which plays a crucial role in CRC progression. Therefore, a meta-analysis was performed to assess the prognostic value of β-catenin expression in CRC patients. PubMed and Web of Science were searched for relevant publications referring to the association between β-catenin expression and outcome of CRC patients. Review Manager version 5.4 was employed to analysis data from 28 eligible studies (containing 5475 patients). Of these, 6 provided data on DFS, 6 provided data on CSS and 18 reports provided data on OS. High nuclear β-catenin expression was significantly associated with poorer DFS, CSS and OS in patients with CRC whereas, low membranous β-catenin expression was associated to poor OS. In conclusion, β-catenin has prognostic value and potential as a biomarker to stratify patients with CRC. However, further work with high quantity tissue cohorts and patient data is required to confirm this conclusion.
Collapse
Affiliation(s)
- Amna Matly
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, G61 1QH, United Kingdom.
| | - Jean A Quinn
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, G61 1QH, United Kingdom.
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Alexandria Parade, Glasgow, G31 2ER, United Kingdom.
| | - James H Park
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Alexandria Parade, Glasgow, G31 2ER, United Kingdom.
| | - Joanne Edwards
- Unit of Experimental Therapeutics, Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, G61 1QH, United Kingdom.
| |
Collapse
|
10
|
Huang X, Lan Y, Li E, Li J, Deng Q, Deng X. Diagnostic values of MMP-7, MMP-9, MMP-11, TIMP-1, TIMP-2, CEA, and CA19-9 in patients with colorectal cancer. J Int Med Res 2021; 49:3000605211012570. [PMID: 33942633 PMCID: PMC8144491 DOI: 10.1177/03000605211012570] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is one of the most common and lethal malignancies. The identification of precise and noninvasive biomarkers is urgently needed to aid the early diagnosis and clinical management of CRC. METHODS A total of 112 patients with CRC and 115 healthy control subjects were included in this study. Serum levels of matrix metalloproteinase (MMP)-7, MMP-9, MMP-11, tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 were analyzed by enzyme-linked immunosorbent assay, and carcinoembryonic antigen (CEA) and carbohydrate antigen (CA)19-9 levels were measured using an automatic immunoassay analyzer. RESULTS MMP-7, MMP-9, MMP-11, TIMP-1, TIMP-2, CEA, and CA19-9 levels were all significantly higher in CRC patients compared with healthy controls. MMP-7, TIMP-1, and CEA levels were also closely related to clinicopathologic features in patients with CRC. The combination of serum CEA, MMP-7, and TIMP-1 significantly improved the diagnostic value compared with any single marker (area under the curve 0.858-0.890). Furthermore, a combined detection model including MMP-7, TIMP-1, and CEA improved both the specificity and sensitivity for detecting CRC. CONCLUSIONS The results showed that combined detection of CEA, MMP-7, and TIMP-1 in serum could provide a specific and sensitive biomarker for the diagnosis of CRC.
Collapse
Affiliation(s)
- Xiwen Huang
- Department of Oncology, Cancer Center, Meizhou People’s Hospital
(Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital
Affiliated to Sun Yat-sen University, Meizhou, China
| | - Yongquan Lan
- Department of Oncology, Cancer Center, Meizhou People’s Hospital
(Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital
Affiliated to Sun Yat-sen University, Meizhou, China
| | - En Li
- Department of Oncology, Cancer Center, Meizhou People’s Hospital
(Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital
Affiliated to Sun Yat-sen University, Meizhou, China
| | - Jiaquan Li
- Department of Oncology, Cancer Center, Meizhou People’s Hospital
(Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital
Affiliated to Sun Yat-sen University, Meizhou, China
| | - Qiaoting Deng
- Research and Experimental Center, Meizhou People’s Hospital
(Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital
Affiliated to Sun Yat-sen University, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and
Clinical Translational Research of Hakka Population, Meizhou, China
| | - Xunwei Deng
- Research and Experimental Center, Meizhou People’s Hospital
(Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital
Affiliated to Sun Yat-sen University, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and
Clinical Translational Research of Hakka Population, Meizhou, China
| |
Collapse
|
11
|
Chen L, Ke X. MMP7 as a potential biomarker of colon cancer and its prognostic value by bioinformatics analysis. Medicine (Baltimore) 2021; 100:e24953. [PMID: 33655961 PMCID: PMC7939218 DOI: 10.1097/md.0000000000024953] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/05/2021] [Accepted: 02/04/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Colon cancer is one of the most common cancers in the world. To identify the candidate genes in the carcinogenesis and progression of colon cancer, the microarray datasets GSE10950, GSE44861 and GSE74602 were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified, and functional enrichment analyses were performed. A total of 176 DEGs were identified, consisting of 55 genes upregulated and 121 genes downregulated in colon cancer tissues compared to non-cancerous tissues. The DEGs were mainly enriched in mineral absorption, nitrogen metabolism and complement and coagulation cascades. By using STRING database analysis, we constructed a coexpression network composed of 140 nodes and 280 edges for the DEGs with a combined score >0.4 and a significant interaction relation. Thirteen hub genes were identified, and poor OS of patients was only associated with high expression of Matrix Metallopeptidase 7 (MMP7), which may be involved in the carcinogenesis, invasion or recurrence of colon cancer. In conclusion, we propose that the DEGs and hub genes identified in the present study may be regarded as diagnostic biomarkers for colon cancer. Moreover, the overexpression of MMP7 may correlate with poor prognosis.
Collapse
Affiliation(s)
- Li Chen
- Department of Colorectal Surgery
| | - Xueying Ke
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Sun Y, Cheng M, Dong L, Yang K, Ma Z, Yu S, Yan P, Bai K, Zhu X, Zhang Q. Agaricus blazei extract (FA-2-b-β) induces apoptosis in chronic myeloid leukemia cells. Oncol Lett 2020; 20:270. [PMID: 32989404 PMCID: PMC7517625 DOI: 10.3892/ol.2020.12133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Agaricus blazei Murill (AbM) is a mushroom belonging to the Basidiomycetes family, which is believed to have antitumor and antioxidative activities. Proteoglycans and ergosterol are considered the key compounds of AbM for antitumor properties and so are used in complementary and alternative medicine as an anticancer drug. AbM is used to avoid serious side effects that would inevitably affect patients. Currently, the efficacy of AbM against chronic myeloid leukemia (CML) has not been established. The present study aimed to investigate the antitumor activities of the acidic RNA protein complex, FA-2-b-β, extracted from wild edible AbM. The CML K562 cells or primary CML bone marrow (BM) cells were treated with FA-2-b-β at different concentrations and time points. CML cell line proliferation and apoptosis were determined using the CCK-8 assay or Annexin V/propidium iodide (PI) labeling, RT-qPCR and western blotting was performed to determine the involvement of the Wnt/β-catenin-associated apoptotic pathway. The results of the present study demonstrated that FA-2-b-β has a high anti-proliferative potency and strong pro-apoptotic effects. Thus, daily intake of mushrooms containing FA-2-b-β may be an adequate source as an alternative medicine in the management of CML, and may provide useful information for the development of a novel therapeutic target in this area.
Collapse
Affiliation(s)
- Yanqing Sun
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China.,Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Mingxia Cheng
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China.,Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Li Dong
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Clinical Research and Evidence Based Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhiyuan Ma
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shangrui Yu
- Department of Gastroenterology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Peijing Yan
- Institute of Clinical Research and Evidence Based Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Kuntian Bai
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Xiaolong Zhu
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qike Zhang
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
13
|
Tsunedomi R, Yoshimura K, Suzuki N, Hazama S, Nagano H. Clinical implications of cancer stem cells in digestive cancers: acquisition of stemness and prognostic impact. Surg Today 2020; 50:1560-1577. [PMID: 32025858 DOI: 10.1007/s00595-020-01968-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Digestive system cancers are the most frequent cancers worldwide and often associated with poor prognosis because of their invasive and metastatic characteristics. Recent studies have found that the plasticity of cancer cells can impart cancer stem-like properties via the epithelial-mesenchymal transition (EMT). Cancer stem-like properties such as tumor initiation are integral to the formation of metastasis, which is the main cause of poor prognosis. Numerous markers of cancer stem cells (CSCs) have been identified in many types of cancer. Therefore, CSCs, via their stem cell-like functions, may play an important role in prognosis after surgery. While several reports have described prognostic analysis using CSC markers, few reviews have summarized CSCs and their association with prognosis. Herein, we review the prognostic potential of eight CSC markers, CD133, CD44, CD90, ALDH1A1, EPCAM, SOX2, SOX9, and LGR5, in digestive cancers including those of the pancreas, colon, liver, gastric, and esophagus.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Kiyoshi Yoshimura
- Showa University Clinical Research Institute for Clinical Pharmacology and Therapeutics, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.,Faculty of Medicine, Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
14
|
Habibzadeh P, Honarvar B, Silawi M, Bahramjahan S, Kazemi A, Faghihi MA, Lankarani K. Association between rs2303861 polymorphism in CD82 gene and non-alcoholic fatty liver disease: a preliminary case-control study. Croat Med J 2019; 60:361-368. [PMID: 31483122 PMCID: PMC6734574 DOI: 10.3325/cmj.2019.60.361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the genetic factors involved in the development of non-alcoholic fatty liver disease (NAFLD) and its sequelae in a Middle Eastern population. METHODS This genetic case-control association study, conducted in 2018, enrolled 30 patients with NAFLD and 30 control individuals matched for age, sex, and body mass index. After quality control measures, entire exonic regions of 3654 genes associated with human diseases were sequenced. Allelic association test and enrichment analysis of the significant genetic variants were performed. RESULTS The association analysis was conducted on 27 NAFLD patients and 28 controls. When Bonferroni correction was applied, NAFLD was significantly associated with rs2303861, a variant located in the CD82 gene (P=2.49×10-7, adjusted P=0.0059). When we used Benjamini-Hochberg adjustment for correction, NAFLD was significantly associated with six more variants. Enrichment analysis of the genes corresponding to all the seven variants showed significant enrichment for miR-193b-5p (P=0.00004, adjusted P=0.00922). CONCLUSION A variant on CD82 gene and a miR-193b expression dysregulation may have a role in the development and progression of NAFLD and its sequelae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kamran Lankarani
- Kamran B Lankarani, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran, P.O. BOX 7134845794,
| |
Collapse
|
15
|
Habibzadeh P, Honarvar B, Silawi M, Bahramjahan S, Kazemi A, Faghihi MA, Lankarani K. Association between rs2303861 polymorphism in CD82 gene and non-alcoholic fatty liver disease: a preliminary case-control study. Croat Med J 2019; 60:361-368. [PMID: 31483122 DOI: pmid/31483122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM To investigate the genetic factors involved in the development of non-alcoholic fatty liver disease (NAFLD) and its sequelae in a Middle Eastern population. METHODS This genetic case-control association study, conducted in 2018, enrolled 30 patients with NAFLD and 30 control individuals matched for age, sex, and body mass index. After quality control measures, entire exonic regions of 3654 genes associated with human diseases were sequenced. Allelic association test and enrichment analysis of the significant genetic variants were performed. RESULTS The association analysis was conducted on 27 NAFLD patients and 28 controls. When Bonferroni correction was applied, NAFLD was significantly associated with rs2303861, a variant located in the CD82 gene (P=2.49×10-7, adjusted P=0.0059). When we used Benjamini-Hochberg adjustment for correction, NAFLD was significantly associated with six more variants. Enrichment analysis of the genes corresponding to all the seven variants showed significant enrichment for miR-193b-5p (P=0.00004, adjusted P=0.00922). CONCLUSION A variant on CD82 gene and a miR-193b expression dysregulation may have a role in the development and progression of NAFLD and its sequelae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kamran Lankarani
- Kamran B Lankarani, Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran, P.O. BOX 7134845794,
| |
Collapse
|
16
|
Miki M, Oono T, Fujimori N, Takaoka T, Kawabe K, Miyasaka Y, Ohtsuka T, Saito D, Nakamura M, Ohkawa Y, Oda Y, Suyama M, Ito T, Ogawa Y. CLEC3A, MMP7, and LCN2 as novel markers for predicting recurrence in resected G1 and G2 pancreatic neuroendocrine tumors. Cancer Med 2019; 8:3748-3760. [PMID: 31129920 PMCID: PMC6639196 DOI: 10.1002/cam4.2232] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/23/2022] Open
Abstract
Although the postoperative recurrence rate for pancreatic neuroendocrine tumors (PNETs) is reported to be 13.5%-30%, the paucity of valuable biomarkers to predict recurrence poses a problem for the early detection of relapse. Hence, this study aimed to identify new biomarkers to predict the recurrence of PNETs. We performed RNA sequencing (RNA-Seq) on RNA isolated from frozen primary tumors sampled from all localized G1/G2 PNETs resected curatively from 1998 to 2015 in our institution. We calculated differentially expressed genes (DEGs) in tumor with and without recurrence (≥3 years) for the propensity-matched cohort. Gene ontology analysis for the identified DEGs was also performed. Furthermore, we evaluated the expression levels of candidate genes as recurrence predictors via immunostaining. Comparison of transcriptional levels in tumors with and without recurrence identified 166 DEGs. Up- and downregulated genes with high significance in these tumors were mainly related to extracellular organization and cell adhesion, respectively. We observed the top three upregulated genes, C-type lectin domain family 3 member A (CLEC3A), matrix metalloproteinase-7 (MMP7), and lipocalin2 (LCN2) immunohistochemically and compared their levels in recurrent and nonrecurrent tumors. Significantly higher recurrence rate was shown in patients with positive expression of CLEC3A (P = 0.028), MMP7 (P = 0.003), and LCN2 (P = 0.040) than that with negative expression. We identified CLEC3A, MMP7, and LCN2 known to be associated with the phosphatidylinositol-3-kinase/Akt pathway, as potential novel markers to predict the postoperative recurrence of PNETs.
Collapse
Affiliation(s)
- Masami Miki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takamasa Oono
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiro Takaoka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Kawabe
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Miyasaka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takao Ohtsuka
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Saito
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Neuroendocrine Tumor Centre, Fukuoka Sanno Hospital, Internal University of Health and Welfare, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
17
|
Wang Z, Tang Y, Xie L, Huang A, Xue C, Gu Z, Wang K, Zong S. The Prognostic and Clinical Value of CD44 in Colorectal Cancer: A Meta-Analysis. Front Oncol 2019; 9:309. [PMID: 31114754 PMCID: PMC6503057 DOI: 10.3389/fonc.2019.00309] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background: CD44 is widely used as a putative cancer stem cells (CSCs) marker for colorectal cancer (CRC). However, the prognostic role of CD44 in CRC remains controversial. Methods: We performed a systematic review and meta-analysis to evaluate the association of various CD44 isoforms and overall survival (OS) and clinicopathological features of CRC patients. Results: A total of 48 studies were included in the meta-analysis. Total CD44 isoforms overexpression was significantly correlated with worse OS of patients with CRC (HR = 1.32, 95% CI = 1.08-1.61, P = 0.007). In a stratified analysis, a higher level of either CD44v6 or CD44v2 had an unfavorable impact on OS (HRCD44v6 = 1.50, 95% CI = 1.10-2.14, P = 0.010; HRCD44v2 = 2.93, 95% CI = 1.49-5.77, P = 0.002). Additionally, CD44 was shown to be associated with some clinicopathological features, such as lymph node metastasis (ORCD44 = 1.56, 95% CI = 1.01-2.41, P = 0.044; ORCD44v6 = 1.97, 95% CI = 1.19-3.26, P = 0.008; ORTotal CD44 isoforms = 1.57, 95% CI = 1.15-2.14, P = 0.004), distant metastasis (ORCD44 = 2.90, 95% CI = 1.08-7.83, P = 0.035; ORTotal CD44 isoforms = 1.89, 95% CI = 1.02-3.53, P = 0.044). Moreover, a high level of CD44 showed a possible correlation with poor differentiation (ORTotal CD44 isoforms = 1.44, 95% CI = 1.00-2.08, P = 0.051), elevated level of CD44v6 tend to be correlated with tumor size (OR = 1.71, 95% CI = 0.99-2.96, P = 0.056). Conclusions: This meta-analysis demonstrated that CD44 overexpression might be an unfavorable prognostic factor for CRC patients and could be used to predict poor differentiation, lymph node metastasis and distant metastasis.
Collapse
Affiliation(s)
- Zhenpeng Wang
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufei Tang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Xie
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Aiping Huang
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunchun Xue
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen Gu
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaiqiang Wang
- Pain Management, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqi Zong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Pang Q, Hu W, Zhang X, Pang M. Wnt/β-Catenin Signaling Pathway-Related Proteins (DKK-3, β-Catenin, and c-MYC) Are Involved in Prognosis of Nasopharyngeal Carcinoma. Cancer Biother Radiopharm 2019; 34:436-443. [PMID: 31025872 DOI: 10.1089/cbr.2019.2771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is one of the highly conserved signaling pathway widely reported to play essential roles in the development of various tumors and human cancers, thus serving as a potential target for anticancer therapy. However, the specific effects of the related proteins in the Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma (NPC) still remain elusive. Thus, this study was performed to uncover the correlation between the Wnt/β-catenin signaling pathway-related proteins and the clinical characteristics and prognosis of NPC. NPC tissues were revealed to present high expression of β-catenin and v-myc myelocytomatosis viral oncogene homolog (c-MYC) but low expression of Dickkopf-3 (DKK-3). Immunohistochemical staining revealed that DKK-3 was positively linked to but β-catenin and c-MYC were negatively linked to differentiation, tumor-node-metastasis (TNM) stage and lymph node metastasis of patients with NPC. In addition, c-MYC was identified to be positively correlated to DKK-3 in NPC tissues. The positive expression of β-catenin and c-MYC had negative relations with and that of DKK-3 had positive relations with survival rate of patients with NPC, which was analyzed by Kaplan-Meier method. Moreover, it was shown that later TNM stage and positive expression of β-catenin were risk factors for NPC-related death. These findings provide evidence that the proteins related to the Wnt/β-catenin signaling pathway (DKK-3, β-catenin, and c-MYC) participate in the development of NPC and positive expression of DKK-3 and negative expression of β-catenin, and c-MYC can serve as essential prognostic biomarkers, shedding new light on the prognosis and treatment of NPC.
Collapse
Affiliation(s)
- Qiran Pang
- Department of ENT, The Affiliated Hospital of Qingdao University, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Wenting Hu
- Department of ENT, The Affiliated Hospital of Qingdao University, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Xinglin Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Mingjie Pang
- Department of ENT, The Affiliated Hospital of Qingdao University, Qingdao Municipal Hospital, Qingdao, P.R. China
| |
Collapse
|
19
|
Tam JM, Reedy JL, Lukason DP, Kuna SG, Acharya M, Khan NS, Negoro PE, Xu S, Ward RA, Feldman MB, Dutko RA, Jeffery JB, Sokolovska A, Wivagg CN, Lassen KG, Le Naour F, Matzaraki V, Garner EC, Xavier RJ, Kumar V, van de Veerdonk FL, Netea MG, Miranti CK, Mansour MK, Vyas JM. Tetraspanin CD82 Organizes Dectin-1 into Signaling Domains to Mediate Cellular Responses to Candida albicans. THE JOURNAL OF IMMUNOLOGY 2019; 202:3256-3266. [PMID: 31010852 DOI: 10.4049/jimmunol.1801384] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 11/19/2022]
Abstract
Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate β-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1β) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.
Collapse
Affiliation(s)
- Jenny M Tam
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Jennifer L Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Daniel P Lukason
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sunnie G Kuna
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Mridu Acharya
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Nida S Khan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114.,Biomedical Engineering and Biotechnology, University of Massachusetts Medical School, Worcester, MA 01655.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Paige E Negoro
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Shuying Xu
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Rebecca A Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Michael B Feldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Richard A Dutko
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Jane B Jeffery
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Anna Sokolovska
- Department of Developmental Immunology, Massachusetts General Hospital, Boston, MA 02114
| | - Carl N Wivagg
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Kara G Lassen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | | | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ethan C Garner
- Center for Systems Biology, Harvard University, Boston, MA 02115
| | - Ramnik J Xavier
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Broad Institute of Harvard and MIT, Cambridge, MA 02142.,Gastrointestinal Unit/Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114; and
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Cindy K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ 85724
| | - Michael K Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jatin M Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; .,Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
20
|
Wang Y, Yang R, Wang X, Ci H, Zhou L, Zhu B, Wu S, Wang D. Evaluation of the correlation of vasculogenic mimicry, Notch4, DLL4, and KAI1/CD82 in the prediction of metastasis and prognosis in non-small cell lung cancer. Medicine (Baltimore) 2018; 97:e13817. [PMID: 30593175 PMCID: PMC6314709 DOI: 10.1097/md.0000000000013817] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vasculogenic mimicry (VM) is a new blood supply style in tumors and has long been treated as a useful factor in malignant tumor metastasis and prognosis. Notch4 (a marker of Notch signaling pathway receptors), DLL4 (a marker of Notch signaling pathway ligands) and KAI1/CD82 (a suppressor gene of tumor metastasis) are all effective predictive factors for tumor metastasis. In this study, we analyzed correlations among VM, Notch4, DLL4, and KAI1/CD82 in non-small cell lung cancer (NSCLC), and their respective associations with patients' clinicopathological parameters and survival rate in NSCLC.Positive rates of VM, Notch4, DLL4, and KAI1/CD82 in 189 whole NSCLC specimens were detected by histochemical and immunohistochemical staining. Moreover, patients' clinicopathological information was also collected.Positive rates of VM, Notch4, and DLL4 were significantly higher, and levels of KAI1/CD82 were significantly lower in NSCLC than in normal lung tissues. Positive rates of VM, Notch4, and DLL4 were positively associated with tumor size, lymph node metastasis (LNM), distant metastasis (DM) and tumor-node-metastasis (TNM) stage, and inversely with patients, overall survival (OS) time and positive rate of DLL4 were positively associated with tumor grade. Levels of KAI1/CD82 were negatively associated with tumor size, LNM, DM, and TNM stage. The KAI1/CD82+ subgroup had significantly longer OS time than did the KAI1/CD82- subgroup. In multivariate analysis, high VM, Notch4, DLL4 levels, tumor size, LNM, DM, TNM stage, and low KAI1/CD82 levels were potential to be independent prognostic factors for overall survival time (OST) in NSCLC patients.VM and the expression of Notch4, DLL4, and KAI1/CD82 represent promising markers for tumor metastasis and prognosis, and maybe potential therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Yichao Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Ruixue Yang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Xiaolin Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hongfei Ci
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lei Zhou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Bo Zhu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College
- Department of Pathology, Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|
21
|
Zhu B, Wang Y, Wang X, Wu S, Zhou L, Gong X, Song W, Wang D. Evaluation of the correlation of MACC1, CD44, Twist1, and KiSS-1 in the metastasis and prognosis for colon carcinoma. Diagn Pathol 2018; 13:45. [PMID: 30021598 PMCID: PMC6052590 DOI: 10.1186/s13000-018-0722-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/25/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Metastasis-associated in colon cancer 1 (MACC1) has been reported to promote tumor cell invasion and metastasis. Cancer stem cells and epithelial-mesenchymal transition (EMT) have also been reported to promote tumor cell proliferation, invasion, and metastasis. KiSS-1, a known suppressor of metastasis, has been reported to be down-regulated in various tumors. However, the associations of MACC1, CD44, Twist1, and KiSS-1 in colonic adenocarcinoma (CAC) invasion and metastasis remain unclear. The purpose of this study is to investigate the roles of MACC1, CD44, Twist1, and KiSS-1 in CAC invasion and metastasis and their associations with each other and with the clinicopathological characteristics of CAC patients. METHODS Immunohistochemistry and multivariate analysis were carried out to explore the expression of MACC1, CD44, Twist1, and KiSS-1 in 212 whole-CAC-tissue specimens and the corresponding normal colon mucosa tissues. Demographic, clinicopathological, and follow-up data were also collected. RESULTS The results of this study showed MACC1, CD44, and Twist1 expression to be up-regulated, and KiSS-1 expression was down-regulated in CAC tissues. Positive expression of MACC1, CD44, and Twist1 was found to be positively correlated with invasion, tumor grades, and lymph- node-metastasis (LNM) stages and tumor-node-metastasis (TNM) stages for patients with CAC. Positive expression of KiSS-1 was inversely associated with invasion, tumor size, LNM stage, and TNM stage. The KiSS-1-positive expression group had significantly more favorable OS than did the KiSS-1-negative group. Univariate analysis indicated that overexpression of MACC1, CD44, and Twists1 was negatively associated with longer overall survival (OS) time, and there was a positive relationship between KiSS-1-positive expression and OS time for patients with CAC. Multivariate Cox analysis demonstrated that overexpression of MACC1, CD44, Twist1, and low expression of KiSS-1 and LNM and TNM stages were independent predictors of prognosis in patients with CAC. CONCLUSIONS The results in this study indicated that levels of expression of MACC1, CD44, Twist1, and KiSS-1 are related to the duration of OS in patients with CAC. MACC1, CD44, Twist1, and KiSS-1 may be suitable for use as biomarkers and therapeutic targets in CAC.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Yichao Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Xiaolin Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Lei Zhou
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Xiaomeng Gong
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Wenqing Song
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical University, Bengbu, China
| | - Danna Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Pathology, Bengbu Medical University, Bengbu, China
| |
Collapse
|
22
|
Murray NP, Aedo S, Fuentealba C, Reyes E. 10 Year Biochemical Failure Free Survival of Men with CD82 Positive Primary Circulating Prostate Cells Treated by Radical Prostatectomy. Asian Pac J Cancer Prev 2018; 19:1577-1583. [PMID: 29936782 PMCID: PMC6103576 DOI: 10.22034/apjcp.2018.19.6.1577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective: The biological characteristics of circulating prostate cells (CPCs) are probably more important than their mere presence. CD82 is a tumor suppressor, we present the outcome of radical prostatectomy (RP) in men with CD82 positive CPCs. Methods and Patients: consecutive men treated with RP were studied, age, total PSA, Gleason, stage, the presence of extra-capsular extension, positive surgical margens and infiltration of the seminal vesicles and lymph nodes were registered. Biochemical failure was defined as a PSA >0.2ng/ml. Immediately before the RP, 8ml of venous blood was taken to detect CPCs. Mononuclear cells were separated using differential gel centrifugation and CPCs identified using immunocytochemistry with anti-PSA and anti-CD82. The men were divided into three groups; 1) CPC (-), 2) CPC (+) CD82 (+) and 3) CPC (+) CD82 (-). The groups were compared with respect to clinical-pathological findings and biochemical free survival using Kaplan Meier and Cox regression models. Results: 285 men, mean age 65.9 years participated, 61 (21%) were CPC (-); 57 (20%) were CPC (+) CD82 (+) and 167 (59%) were CPC (+) CD82 (-). Group 1 had low grade small volume cancer, in Group 2, low grade but a larger volume than Group 1 and Group 3 high grade cancer. Kaplan Meier biochemical free survival curves at 36, 60 and 120 months were; Group 1 98%, 96% and 90%; for Group 2 93%, 93% and 69% and for Group 3 62%, 44% and 16% respectively. Conclusions: Kaplan Meier survival curves for Group 1 and Group 2 were similar, although Group 2 men had higher PSA values, more advanced staging but a similar Gleason score. Group 3 men had a worse prognosis. The results support that biological characteristics of CPCs are more important than their mere presence identifying men with a high risk of biochemical failure.
Collapse
Affiliation(s)
- Nigel P Murray
- CTC Unit, Faculty of Medicine, University Finis Terrae, Santiago, Chile.
| | | | | | | |
Collapse
|
23
|
Wang G, Zhang L, Zhou Y, Sun Q, Xu H, Cai F, Xiang P, Chen Z, Jiang H. KAI1/CD82 Genetically Engineered Endothelial Progenitor Cells Inhibit Metastasis of Human Nasopharyngeal Carcinoma in a Mouse Model. Med Sci Monit 2018; 24:3146-3152. [PMID: 29755107 PMCID: PMC5975073 DOI: 10.12659/msm.907219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) are regarded as promising targeted vectors for delivering therapeutic genes or agents in cancer therapy. The purpose of this study was to investigate the role of intravenously administered KAI1/CD82 genetically transduced EPCs in the tumorigenesis and metastasis of nasopharyngeal carcinoma (NPC). Material/Methods EPCs were isolated from human umbilical cord blood, expanded in culture, and stably transduced with lentiviral vectors expressing KAI1/CD82. The KAI1/CD82 EPCs were injected intravenously into nude mice bearing human NPC xenografts. Tumor growth and the incidence of liver and lung metastases were observed. Expression of KAI1/CD82 was determined by immunofluorescent staining. Results The NPC model was successfully established. Tumor growth was not suppressed when mice were injected with KAI1/CD82 EPCs (KAI1/CD82 EPCs group) compared with when non-transduced EPCs was present (EPCs group) or the control (1.485±0.234, 1.388±0.204, and 1.487±0.223g, respectively; P>0.05). However, the incidence of lung metastasis was significantly reduced in the KAI1/CD82+ EPCs group compared with the EPCs group and the control group (10%, 55% and 45%, respectively; P=0.005), and there was a significant decrease in the number of metastatic foci on the lung surface (17.50±3.54, 34.27±5.35, and 38.44±9.63 respectively; P=0.007). Moreover, KAI1/CD82 was expressed in lung metastatic foci of the KAI1/CD82 EPCs group, but not in the EPCs group and control group. Conclusions EPCs can be used as a delivery vehicle for suppressor genes KAI1/CD82 to NPC, and the migration of KAI1/CD82 genetically engineered EPCs can inhibit NPC lung metastasis in a mouse model.
Collapse
Affiliation(s)
- Gengming Wang
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Lei Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yan Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Qian Sun
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Hongbo Xu
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Feng Cai
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Ping Xiang
- Central Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Zhendong Chen
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Bengbu, Anhui, China (mainland)
| | - Hao Jiang
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
24
|
Zhu J, Miao C, Liu S, Tian Y, Zhang C, Liang C, Xu A, Cao Q, Wang Z. Prognostic role of CD82/KAI1 in multiple human malignant neoplasms: a meta-analysis of 31 studies. Onco Targets Ther 2017; 10:5805-5816. [PMID: 29263677 PMCID: PMC5724410 DOI: 10.2147/ott.s150349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tetraspanin CD82, also known as KAI1, was revealed as an attractive prognostic tumor biomarker in recent studies. However, some results of these studies remained debatable and inconclusive. Therefore, we conducted a meta-analysis to clarify the precise predictive value of CD82 in various neoplasms. Qualified studies were identified up to April 27, 2017, by searching PubMed, EMBASE, and the Web of Science. In total, 29 eligible studies were ultimately enrolled in this meta-analysis. Pooled hazard ratios (HRs) with 95% CIs of overall survival and disease/recurrence/progression-free survival were calculated to evaluate the correct prognostic role of CD82. Statistical analysis demonstrated that high expression of CD82 was significantly associated with enhanced overall survival (HR =0.56, 95% CI: 0.47–0.67) and disease/recurrence/progression-free survival (HR =0.42, 95% CI: 0.30–0.59) in cancer patients. Furthermore, we also conducted the subgroup analysis and the results revealed that CD82 was associated with favorable outcomes in cancer patients. Taken together, CD82 could be a promising biomarker for predicting the prognosis of patients with malignant neoplasms, and the biological functions of CD82 are of great research value of the subject.
Collapse
Affiliation(s)
- Jundong Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Guo Z, Wang Y, Yang J, Zhong J, Liu X, Xu M. KAI1 overexpression promotes apoptosis and inhibits proliferation, cell cycle, migration, and invasion in nasopharyngeal carcinoma cells. Am J Otolaryngol 2017; 38:511-517. [PMID: 28583320 DOI: 10.1016/j.amjoto.2016.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/25/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The purpose of this study is to characterize the effect of KAI1 overexpression on the biological behavior of nasopharyngeal carcinoma (NPC) cells. BACKGROUND Nasopharyngeal carcinoma is a highly malignant tumor with a high rate of incidence in China. Currently, there are no ideal therapeutic options for patients with NPC, but a targeted therapy would have great potential for treating it. Therefore, there is an urgent need for novel therapeutic targets to provide new options for treating NPC. The KAI1 gene was originally identified as a metastasis suppressor gene for advanced human cancer. In NPC cell lines and tissues, the expression of KAI1 decreased as the metastatic potential of cells increased, but its potential as a therapeutic target has not been elucidated. METHODS Non-transformed nasopharyngeal epithelium cell NP69 and NPC cell line C666-1 were cultured and KAI1 expression in these cells was detected by qRT-PCR and Western blot. After the transfection of KAI1-pCDNA3.1 to NP69 and C666-1, the KAI1 expression in these cells was detected by qRT-PCR and Western blot, the proliferation was performed by MTS, the cell cycle and apoptosis were performed by flow cytometry, the migration and invasion were examined by transwell. RESULTS Our results showed that KAI1 was significantly upregulated in C666-1 cells compared to that in NP69 cells. In addition, KAI1 overexpression significantly inhibited the proliferation, cell cycle, migration, and invasion, and promoted apoptosis of C666-1 cells, but had no significant effect on NP69 cells. CONCLUSION Our findings suggest that KAI1 overexpression promotes apoptosis and inhibits proliferation, cell cycle, migration, and invasion in NPC cells. We hypothesize that KAI1 overexpression could be a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Zheng Guo
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yili Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jing Yang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xia Liu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mingjun Xu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
26
|
Jia S, Qu T, Wang X, Feng M, Yang Y, Feng X, Ma R, Li W, Hu Y, Feng Y, Ji K, Li Z, Jiang W, Ji J. KIAA1199 promotes migration and invasion by Wnt/β-catenin pathway and MMPs mediated EMT progression and serves as a poor prognosis marker in gastric cancer. PLoS One 2017; 12:e0175058. [PMID: 28422983 PMCID: PMC5397282 DOI: 10.1371/journal.pone.0175058] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/20/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND KIAA1199 was upregulated in diverse cancers, but the association of KIAA1199 with gastric cancer (GC), the biological role of KIAA1199 in GC cells and the related molecular mechanisms remain to be elucidated. METHODS KIAA1199 expression was analysed by reverse transcription-polymerase chain reaction assay (RT-PCR) and immunohistochemistry (IHC) in GC patient tissue. The small hairpin RNA (shRNA) was applied for the knockdown of endogenous KIAA1199 in NCI-N87 and AGS cells. MTT, colony formation, scratch wounding migration, transwell chamber migration and invasion assays were employed respectively to investigate the role of KIAA1199 in GC cells. The potential signaling pathway of KIAA1199 induced migration and invasion was detected. RESULTS KIAA1199 was upregulated in GC tissue and was an essential independent marker for poor prognosis. Knockdown KIAA1199 suppressed the proliferation, migration and invasion in GC cells. KIAA1199 stimulated the Wnt/β-catenin signaling pathway and the enzymatic activity of matrix metalloproteinase (MMP) family members and thus accelerated the epithelial-to-mesenchymal transition (EMT) progression in GC cells. CONCLUSION These findings demonstrated that KIAA1199 was upregulated in GC tissue and associated with worse clinical outcomes in GC, and KIAA1199 acted as an oncogene by promoting migration and invasion through the enhancement of Wnt/β-catenin signaling pathway and MMPs mediated EMT progression in GC cells.
Collapse
Affiliation(s)
- Shuqin Jia
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tingting Qu
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaohong Wang
- Tissue Bank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Mengmeng Feng
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yang Yang
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xuemin Feng
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ruiting Ma
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenmei Li
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ying Hu
- Tissue Bank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Feng
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
27
|
Crotti S, Piccoli M, Rizzolio F, Giordano A, Nitti D, Agostini M. Extracellular Matrix and Colorectal Cancer: How Surrounding Microenvironment Affects Cancer Cell Behavior? J Cell Physiol 2016; 232:967-975. [PMID: 27775168 DOI: 10.1002/jcp.25658] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) whit more than a million of new cases per year is one of the most common registered cancers worldwide with few treatment options especially for advanced and metastatic patients.The tumor microenvironment is composed by extracellular matrix (ECM), cells, and interstitial fluids. Among all these constituents, in the last years an increased interest around the ECM and its potential role in cancer tumorigenesis is arisen. During cancer progression the ECM structure and composition became disorganized, allowing cellular transformation and metastasis. Up to now, the focus has mainly been on the characterization of CRC microenvironment analyzing separately structural ECM components or cell secretome modifications. A more extensive view that interconnects these aspects should be addressed. In this review, biochemical (secretome) and biomechanical (structure and architecture) changes of tumor microenvironment will be discussed, giving suggestions on how these changes can affect cancer cell behavior. J. Cell. Physiol. 232: 967-975, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sara Crotti
- Institute of Paediatric Research-Città della Speranza, Corso Stati Uniti 4, Padova, Italy
| | - Martina Piccoli
- Institute of Paediatric Research-Città della Speranza, Corso Stati Uniti 4, Padova, Italy
| | - Flavio Rizzolio
- Department of Translational Research, IRCCS-National Cancer Institute, Aviano, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Donato Nitti
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Via Nicolo Giustiniani 2, Padova, Italy
| | - Marco Agostini
- Institute of Paediatric Research-Città della Speranza, Corso Stati Uniti 4, Padova, Italy.,First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Via Nicolo Giustiniani 2, Padova, Italy
| |
Collapse
|
28
|
PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT. Tumour Biol 2016; 37:13479-13487. [DOI: 10.1007/s13277-016-5245-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/15/2016] [Indexed: 11/26/2022] Open
|
29
|
Xu H, Jiang W, Zhu F, Zhu C, Wei J, Wang J. Expression of Wntless in colorectal carcinomas is associated with invasion, metastasis, and poor survival. APMIS 2016; 124:522-8. [PMID: 27102079 DOI: 10.1111/apm.12534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/17/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Hanfeng Xu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Wen Jiang
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Fang Zhu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Chuandong Zhu
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Juan Wei
- Department of Oncology; The Second Affiliated Hospital of Southeast University; Nanjing China
| | - Jiandong Wang
- Department of Pathology; Jinling Hospital; Nanjing China
| |
Collapse
|