1
|
Feria-Romero IA, Nettel-Rueda B, Rodríguez-Florido MA, Castellanos-Pallares G, Cienfuegos-Meza J, Orozco-Suárez S, Guinto-Balanzar G, Escamilla-Nuñez C, Grijalva-Otero I. Forkhead Box M1 isoform 3 overexpression is associated with malignancy grade in adult-type diffuse gliomas. Gene 2025; 958:149502. [PMID: 40233863 DOI: 10.1016/j.gene.2025.149502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Forkhead Box M1 is a transcription factor that is overexpressed in both its mRNA and its protein in various types of cancer. The active Forkhead Box M1 isoform 3 (FOXM1*3) is, moreover, associated with cancer progression. However, little is known about the role of this isoform concerning the degree of malignancy in brain gliomas. This study evaluated the association between overexpression of the FOXM1*3 and the degree of malignancy in adult-type diffuse gliomas (ATDGs). METHODS We conducted a prospective study involving 81 samples from patients with ATDGs and ten samples from healthy control cortices. Quantification of the FOXM1*3 transcript and the housekeeping gene, importin 8 (IPO8), was performed using qPCR with Taqman probes. Tumor samples were classified based on their degree of malignancy and cell lineage. Progression-free survival (PFS) was observed through long-term follow-up. The data were then analyzed using the Kruskal-Wallis, Mann-Whitney U and log-rank (Mantel-Cox) tests. RESULTS The most frequent type of cell differentiation was astrocytic, with astrocytomas and glioblastomas accounting for 80.2 % of cases. The primary histopathological-molecular diagnosis group was glioblastoma, at 35.8 %. There was a significant difference in FOXM1*3 expression between the control and glioma groups (p < 0.001). Transcript expression showed significant differences among grade-2, -3, and -4 gliomas (p < 0.005-0.0001). Significant differences were also detected between grade-2 and -3 astrocytomas (p < 0.005) and glioblastomas (p < 0.0001), but not between astrocytomas and oligodendrogliomas of the same grade. CONCLUSION We observed that overexpression of FOXM1*3 can rectify intra-observer discordance in determining the malignancy grade of gliomas, particularly in grade 3. It can be considered a supplementary tool.
Collapse
Affiliation(s)
- Iris Angélica Feria-Romero
- Medical Research Unit for Neurological Diseases, UMAE Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Bárbara Nettel-Rueda
- Department of Neurosurgery, UMAE Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marco Antonio Rodríguez-Florido
- Deparment of Anatomic Pathology, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Guillermo Castellanos-Pallares
- Deparment of Anatomic Pathology, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jesús Cienfuegos-Meza
- Department of Pharmacobiology, Center for Research and Advanced Studies (CINVESTAV), South Campus, Mexico City, Mexico
| | - Sandra Orozco-Suárez
- Medical Research Unit for Neurological Diseases, UMAE Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Gerardo Guinto-Balanzar
- Department of Neurosurgery, UMAE Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Israel Grijalva-Otero
- Medical Research Unit for Neurological Diseases, UMAE Hospital de Especialidades "Dr. Bernardo Sepúlveda", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
2
|
Riha N, Moore JS, Criswell S. The impact of gliomas on the normal brain microenvironment: a pilot study. J Histotechnol 2025; 48:93-102. [PMID: 39351917 DOI: 10.1080/01478885.2024.2408505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/18/2024] [Indexed: 05/29/2025]
Abstract
Gliomas are malignant tumors of neuronal support cells within the central nervous system (CNS) and are characterized by poor overall prognoses and limited treatment options due to their infiltrative growth patterns. The neural tumor microenvironment, composed of benign neurons, neuroglia, endothelial cells, and intravascular white blood cells, is a target-rich site for potential chemotherapeutic agents. This study assessed cell proliferation rates, white blood cell components, and a limited number of nuclear, cytoplasmic, and membrane markers using immunohistochemistry (IHC) assays on formalin-fixed and paraffin-embedded benign and glial tumor tissue samples from the CNS. It was observed that glioma tissues had increased rates of glial cell proliferation and significant increases in the number of observed T-lymphocytes and granulocytes but decreased expression of markers Somatostatin receptor 2 (SSTR2), L1 cell adhesion molecule (L1CAM), and GATA binding protein 3 (GATA3) when compared to benign tissue samples. Understanding the lack of protein expression and population expansion potential of the glioma microenvironment in greater detail could help identify valuable therapeutic target combinations for future treatments.
Collapse
Affiliation(s)
- Nicole Riha
- Department of Diagnostic and Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jacen S Moore
- Department of Diagnostic and Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sheila Criswell
- Department of Diagnostic and Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
Yi Y, Che W, Xu P, Mao C, Li Z, Wang Q, Lyu J, Wang X. Conversion of glioma cells into neuron-like cells by small molecules. iScience 2024; 27:111091. [PMID: 39483145 PMCID: PMC11525470 DOI: 10.1016/j.isci.2024.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/25/2024] [Accepted: 09/29/2024] [Indexed: 11/03/2024] Open
Abstract
Currently, researchers are exploring the conversion of astrocytes into functional mature neurons and gradually exploring the conversion of glioma into neurons. We report that SLCDS (SB431542, LDN193189, CHIR99021, DAPT, and SKL2001) has been shown to convert human glioma cells into mature neuron-like cells. The converted cells exhibited upregulation of DCX, TuJ1, MAP2, NeuN, and GAD67, while the expressions of EGFR, PDGFR, Ki67, and vimentin were inhibited. The nTFs, such as NeuroD1 and Sox2, were upregulated, along with TF genes associated with neurogenesis and tumor suppression. We have finally confirmed that overexpressing nTFs can induce the conversion of glioma cells into neuronal cells. This study demonstrates that SLCDS can activate the expression of nTFs in human glioma cells and induce the conversion of human glioma cells into neuron-like cells. Additionally, SLCDS inhibits the expressions of EGFR, PDGFR, Ki67, and Vimentin in gliomas. Our findings offer a potential approach for treating glioma.
Collapse
Affiliation(s)
- Yongjun Yi
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou 510632, P.R. China
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Wenqiang Che
- Department of Neurosurgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, P.R. China
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Ping Xu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Chuxiao Mao
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510630, P.R. China
| | - Zhizhong Li
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Qingsong Wang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510630, P.R. China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou 510632, P.R. China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| |
Collapse
|
4
|
Filimonova E, Pashkov A, Borisov N, Kalinovsky A, Rzaev J. Utilizing the amide proton transfer technique to characterize diffuse gliomas based on the WHO 2021 classification of CNS tumors. Neuroradiol J 2024; 37:490-499. [PMID: 38548655 PMCID: PMC11366199 DOI: 10.1177/19714009241242658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
PURPOSE Diffuse gliomas present a significant challenge for healthcare systems globally. While brain MRI plays a vital role in diagnosis, prognosis, and treatment monitoring, accurately characterizing gliomas using conventional MRI techniques alone is challenging. In this study, we explored the potential of utilizing the amide proton transfer (APT) technique to predict tumor grade and type based on the WHO 2021 Classification of CNS Tumors. METHODS Forty-two adult patients with histopathologically confirmed brain gliomas were included in the study. They underwent 3T MRI imaging, which involved APT sequence. Multinomial and binary logistic regression models were employed to classify patients into clinically relevant groups based on MRI findings and demographic variables. RESULTS We found that the best model for tumor grade classification included patient age along with APT values. The highest sensitivity (88%) was observed for Grade 4 tumors, while Grade 3 tumors showed the highest specificity (79%). For tumor type classification, our model incorporated four predictors: APT values, patient's age, necrosis, and the presence of hemorrhage. The glioblastoma group had the highest sensitivity and specificity (87%), whereas balanced accuracy was the lowest for astrocytomas (0.73). CONCLUSION The APT technique shows great potential for noninvasive evaluation of diffuse gliomas. The changes in the classification of gliomas as per the WHO 2021 version of the CNS Tumor Classification did not affect its usefulness in predicting tumor grade or type.
Collapse
Affiliation(s)
- Elena Filimonova
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Anton Pashkov
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, Novosibirsk, Russia
| | - Norayr Borisov
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Anton Kalinovsky
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
| | - Jamil Rzaev
- FSBI “Federal Center of Neurosurgery”, Novosibirsk, Russia
- Department of Neurosurgery, Novosibirsk State Medical University, Novosibirsk, Russia
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
5
|
Koula G, Yakati V, Rachamalla HK, Bhamidipati K, Kathirvel M, Banerjee R, Puvvada N. Integrin receptor-targeted, doxorubicin-loaded cerium oxide nanoparticles delivery to combat glioblastoma. Nanomedicine (Lond) 2024; 19:1389-1406. [PMID: 38912661 PMCID: PMC11318704 DOI: 10.1080/17435889.2024.2350357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
Aim: To assess the chemo-immunomodulatory effects of doxorubicin-loaded cerium oxide nanoparticles coated with oleyl amine-linked cyclic RGDfK peptide (CeNP+Dox+RGD) to target both gliomas and its tumor microenvironment (TME) via integrin receptors. Materials & methods: CeNP+Dox+RGD nanoparticles are synthesized by the sequential addition of cerium III chloride heptahydrate, beta-cyclodextrin, oleic acid, and F127 micelle (CeNP). Doxorubicin was then loaded into CeNPs and coated with oleyl amine-linked cyclic RGDfK peptide to form stable CeNP+Dox+RGD nanoparticles. Results: CeNP+Dox+RGD nanoparticles crossed blood-brain barrier (BBB) effectively and demonstrated threefold enhanced survivability in glioma-bearing mice. The IHC profiling of glial tumor cross-sections showed increased CD80 expression (M1 TAMs) and decreased arginase-1 expression (M2 TAMs). Conclusion: CeNP+Dox+RGD can be an immunotherapeutic treatment option to combat glioblastoma.
Collapse
Affiliation(s)
- Gayathri Koula
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Venu Yakati
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Hari Krishnareddy Rachamalla
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Keerti Bhamidipati
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Muralidharan Kathirvel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Rajkumar Banerjee
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Nagaprasad Puvvada
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| |
Collapse
|
6
|
Shelton WJ, Zandpazandi S, Nix JS, Gokden M, Bauer M, Ryan KR, Wardell CP, Vaske OM, Rodriguez A. Long-read sequencing for brain tumors. Front Oncol 2024; 14:1395985. [PMID: 38915364 PMCID: PMC11194609 DOI: 10.3389/fonc.2024.1395985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Brain tumors and genomics have a long-standing history given that glioblastoma was the first cancer studied by the cancer genome atlas. The numerous and continuous advances through the decades in sequencing technologies have aided in the advanced molecular characterization of brain tumors for diagnosis, prognosis, and treatment. Since the implementation of molecular biomarkers by the WHO CNS in 2016, the genomics of brain tumors has been integrated into diagnostic criteria. Long-read sequencing, also known as third generation sequencing, is an emerging technique that allows for the sequencing of longer DNA segments leading to improved detection of structural variants and epigenetics. These capabilities are opening a way for better characterization of brain tumors. Here, we present a comprehensive summary of the state of the art of third-generation sequencing in the application for brain tumor diagnosis, prognosis, and treatment. We discuss the advantages and potential new implementations of long-read sequencing into clinical paradigms for neuro-oncology patients.
Collapse
Affiliation(s)
- William J Shelton
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sara Zandpazandi
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - J Stephen Nix
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher P Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olena Morozova Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
7
|
Son SM, Lee HS, Kim J, Kwon RJ. Expression and prognostic significance of microsomal triglyceride transfer protein in brain tumors: a retrospective cohort study. Transl Cancer Res 2024; 13:2282-2294. [PMID: 38881934 PMCID: PMC11170499 DOI: 10.21037/tcr-23-2286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 06/18/2024]
Abstract
Background Glioblastoma (GBM) is the most common malignant brain tumor and has poor survival. An elevated cholesterol level is involved occurrence and progression of brain tumors. Microsomal triglyceride transfer protein (MTTP) is a target for lowering lipids, and its inhibition helps to improve hyperlipidemia. However, whether the altered expression of MTTP affects the development and prognosis of brain tumors is currently unidentified. The purpose of this study is to determine MTTP as a prognostic marker for brain tumors. Methods Data for patients with brain cancers and control brain tissue were acquired from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The datasets were analyzed using Mann-Whitney U-test or t-test to compare the expression of MTTP in normal and brain tumor tissues. To examine whether MTTP affected the prognosis of patients with brain tumors, log-rank test and multivariable Cox proportional hazard regression were conducted. Results The expression of MTTP was significantly upregulated in brain tumors and was correlated with age, tumor stage, and isocitrate dehydrogenase (IDH) mutation. Importantly, increased MTTP expression in brain tumors is associated with poor patient survival. Conclusions High MTTP expression is associated with brain tumor development, tumor stage, and prognosis. Therefore, MTTP is an independent prognostic indicator for brain tumors, which can serve as one of the possible targets for adjuvant treatment of GBM.
Collapse
Affiliation(s)
- Soo Min Son
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Family Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Hye Sun Lee
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Jeongsu Kim
- Division of Cardiology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
- Division of Cardiology, Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Ryuk Jun Kwon
- Family Medicine Clinic and Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
- Department of Family Medicine, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
8
|
Luo W, Zheng J, Su B. Low-Grade Glioma within Mature Cystic Teratoma in a Patient with Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Case Report. Case Rep Oncol 2024; 17:430-437. [PMID: 38449876 PMCID: PMC10917429 DOI: 10.1159/000535708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 03/08/2024] Open
Abstract
Introduction Mature cystic teratoma (MCT) is a common type of ovarian tumors that can, in rare cases, undergo malignant transformation. It has been discovered that MCT patients may experience psychiatric symptoms due to the presence of anti-N-methyl-D-aspartate receptor (NMDAR) antibodies, which is the underlying cause of autoimmune encephalitis. Here, we present the first documented case of a patient with anti-NMDAR encephalitis who also had a morphology of low-grade glioma within MCT. Case Report A 45-year-old woman presented with seizures, altered consciousness, abnormal NMDAR antibody IgG titers, and abnormal brain MRI findings confirm the diagnosis of anti-NMDAR encephalitis. Physical examination revealed an oval mixed echo mass measuring 54 × 37 mm in the left adnexal area on ultrasound of the uterine appendage. The patient underwent laparoscopic left ovarian and fallopian tube resection. The pathological gross examination revealed a pile of grayish-red cystic and solid fragmented tissue measuring 7 × 6 × 2.2 cm. Histological examination revealed characteristic components of MCT. Furthermore, the solid component of the gross tissue showed proliferative and densely arranged astrocytes with cellular atypia, which were positive for GFAP and Olig-2, negative for IDH1 and EMA. And the Ki67 index was approximately 10%, suggesting the presence of low-grade glioma lesions. The patient was diagnosed with malignant transformation of MCT into a morphology of low-grade glioma, not otherwise specified. After the removal of the ovarian tumor, the patient's psychiatric symptoms improved. Conclusions Low-grade glioma within MCT is a rare occurrence, and the presence of this malignant transformation in patients with anti-NMDAR encephalitis is even more uncommon.
Collapse
Affiliation(s)
- Wenwen Luo
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Jinyue Zheng
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Bojin Su
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
9
|
Zappe K, Pühringer K, Pflug S, Berger D, Weis S, Spiegl-Kreinecker S, Cichna-Markl M. Association of MGMT Promoter and Enhancer Methylation with Genetic Variants, Clinical Parameters, and Demographic Characteristics in Glioblastoma. Cancers (Basel) 2023; 15:5777. [PMID: 38136323 PMCID: PMC10742072 DOI: 10.3390/cancers15245777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The response of glioblastoma (GBM) patients to the alkylating agent temozolomide (TMZ) vitally depends on the expression level of the repair protein O6-methylguanine-DNA methyltransferase (MGMT). Since MGMT is strongly regulated by promoter methylation, the methylation status of the MGMT promoter has emerged as a prognostic and predictive biomarker for GBM patients. By determining the methylation levels of the four enhancers located within or close to the MGMT gene, we recently found that enhancer methylation contributes to MGMT regulation. In this study, we investigated if methylation of the four enhancers is associated with SNP rs16906252, TERT promoter mutations C228T and C250T, TERT SNP rs2853669, proliferation index Ki-67, overall survival (OS), age, and sex of the patients. In general, associations with genetic variants, clinical parameters, and demographic characteristics were caused by a complex interplay of multiple CpGs in the MGMT promoter and of multiple CpGs in enhancer regions. The observed associations for intragenic enhancer 4, located in intron 2 of MGMT, differed from associations observed for the three intergenic enhancers. Some findings were restricted to subgroups of samples with either methylated or unmethylated MGMT promoters, underpinning the relevance of the MGMT promoter status in GBMs.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Katharina Pühringer
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Simon Pflug
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Daniel Berger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| | - Serge Weis
- Division of Neuropathology, Department of Pathology and Molecular Pathology, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; (K.Z.); (K.P.); (S.P.); (D.B.)
| |
Collapse
|
10
|
Sipos TC, Kövecsi A, Ovidiu-Ioan Ș, Zsuzsánna P. General Clinico-Pathological Characteristics in Glioblastomas in Correlation with p53 and Ki67. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1918. [PMID: 38003967 PMCID: PMC10672788 DOI: 10.3390/medicina59111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Introduction: A glioblastoma is an intra-axial brain tumour of glial origin that belongs to the category of diffuse gliomas and is the most common malignant neoplasia of the central nervous system. The rate of survival at 5 years, from the moment of diagnosis, is not higher than 10%. Materials and methods: In this retrospective study, fifty-four patients diagnosed with glioblastoma, from the Pathology Department of the County Emergency Clinical Hospital of Târgu Mureș, between 2014 and 2017 were included. We studied the clinico-pathological data (age, gender, location, and laterality) and, respectively, the immunoexpression of p53, Ki67, ATRX, and IDH-1 proteins. Results: We observed a statistically significant association between the laterality of the tumour according to the age groups, with the localization on the right side being more frequent in the age group below 65 years of age, while the involvement of the left hemisphere was more prevalent in those over 65 years. Out of the total 54 cases, 87.04% were found to be primary glioblastomas; more than 70% of the cases were ATRX immunopositive; almost 80% of the glioblastomas studied had wild-type p53 profile; and 35% of the cases were found to have a Ki67 index greater than 20%. A statistically significant association between gender and ATRX mutation was found; female cases were ATRX immunopositive in 92% of the cases. Almost 70% of the cases were both IDH-1 and p53 wild-type, and we observed the presence of both mutations in only 3.7% of the cases. Approximately 83% of primary glioblastomas were ATRX positive, respectively, and all IDH-1 mutant cases were ATRX negative. Conclusions: Glioblastomas still represent a multidisciplinary challenge considering their reserved prognosis. In this study, we described the most common clinico-pathological characteristics and IHC marker expression profiles, highlighting a variety of percentage ranges in primary and secondary glioblastomas. Given the small number of studied cases, further prospective studies on larger cohorts are needed in the future to evaluate the role of these immunohistochemical markers as prognostic factors for survival or recurrence.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania; (T.-C.S.); (P.Z.)
| | - Attila Kövecsi
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania;
| | - Șușu Ovidiu-Ioan
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania; (T.-C.S.); (P.Z.)
| | - Pap Zsuzsánna
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Street Gheorghe Marinescu 38, 540142 Târgu Mures, Romania; (T.-C.S.); (P.Z.)
| |
Collapse
|
11
|
Tini P, Yavoroska M, Mazzei MA, Miracco C, Pirtoli L, Tomaciello M, Marampon F, Minniti G. Low expression of Ki-67/MIB-1 labeling index in IDH wild type glioblastoma predicts prolonged survival independently by MGMT methylation status. J Neurooncol 2023:10.1007/s11060-023-04342-2. [PMID: 37227648 PMCID: PMC10322955 DOI: 10.1007/s11060-023-04342-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE The Ki-67/MIB-1 labeling index (LI) is clinically used to differentiate between high and low-grade gliomas, while its prognostic value remains questionable. Glioblastoma (GBM) expressing wild-type isocitrate dehydrogenase IDHwt, a relatively common malignant brain tumor in adults, is characterized by a dismal prognosis. Herein, we have retrospectively investigated the prognostic role of Ki-67/MIB-1-LI in a large group of IDHwt GBM. METHODS One hundred nineteen IDHwt GBM patients treated with surgery followed by Stupp's protocol in our Institution between January 2016 and December 2021 were selected. A cut-off value for Ki-67/MIB-1-LI was used with minimal p-value based approach. RESULTS A multivariate analysis showed that Ki-67/MIB-1-LI expression < 15% significantly correlated with a longer overall survival (OS), independently from the age of the patients, Karnofsky performance status scale, extent of surgery and O6-methylguanine (O6-MeG)-DNA methyltransferase promoter methylation status. CONCLUSIONS Among other studies focused on Ki-67/MIB-1-LI, this is the first observational study showing a positive correlation between OS of IDHwt GBM patients and Ki-67/MIB-1-LI that we propose as a new predictive marker in this subtype of GBM.
Collapse
Affiliation(s)
- Paolo Tini
- Unit of Radiotherapy, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
| | - Mariya Yavoroska
- Unit of Radiotherapy, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Clelia Miracco
- Unit of Pathological Anatomy, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Luigi Pirtoli
- Center for Biotechnology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, USA
| | - Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
12
|
Vakharia K, Hasegawa H, Graffeo C, Noureldine MHA, Cohen-Cohen S, Perry A, Carlson ML, Driscoll CLW, Peris-Celda M, Van Gompel JJ, Link MJ. Predictive Value of K i -67 Index in Evaluating Sporadic Vestibular Schwannoma Recurrence: Systematic Review and Meta-analysis. J Neurol Surg B Skull Base 2023; 84:119-128. [PMID: 36895813 PMCID: PMC9991525 DOI: 10.1055/a-1760-2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022] Open
Abstract
Introduction K i -67 is often used as a proliferation index to evaluate how aggressive a tumor is and its likelihood of recurrence. Vestibular schwannomas (VS) are a unique benign pathology that lends itself well to evaluation with K i -67 as a potential marker for disease recurrence or progression following surgical resection. Methods All English language studies of VSs and K i -67 indices were screened. Studies were considered eligible for inclusion if they reported series of VSs undergoing primary resection without prior irradiation, with outcomes including both recurrence/progression and K i -67 for individual patients. For published studies reporting pooled K i -67 index data without detailed by-patient values, we contacted the authors to request data sharing for the current meta-analysis. Studies reporting a relationship between K i -67 index and clinical outcomes in VS for which detailed patients' outcomes or K i -67 indices could not be obtained were incorporated into the descriptive analysis, but excluded from the formal (i.e., quantitative) meta-analysis. Results A systematic review identified 104 candidate citations of which 12 met inclusion criteria. Six of these studies had accessible patient-specific data. Individual patient data were collected from these studies for calculation of discrete study effect sizes, pooling via random-effects modeling with restricted maximum likelihood, and meta-analysis. The standardized mean difference in K i -67 indices between those with and without recurrence was calculated as 0.79% (95% confidence interval [CI]: 0.28-1.30; p = 0.0026). Conclusion K i -67 index may be higher in VSs that demonstrate recurrence/progression following surgical resection. This may represent a promising means of evaluating tumor recurrence and potential need for early adjuvant therapy for VSs.
Collapse
Affiliation(s)
- Kunal Vakharia
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States.,Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, Florida, United States
| | - Hirotaka Hasegawa
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States.,Department of Neurosurgery, Tokyo University, Tokyo, Japan
| | - Christopher Graffeo
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States.,Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, United States
| | - Mohammad H A Noureldine
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, Florida, United States
| | - Salomon Cohen-Cohen
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States
| | - Avital Perry
- Department of Neurosurgery, Sheba Medical Center, Tel Aviv, Israel
| | - Matthew L Carlson
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States.,Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, United States
| | - Colin L W Driscoll
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States.,Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, United States
| | - Maria Peris-Celda
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States
| | - Jamie J Van Gompel
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael J Link
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, United States.,Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
13
|
Catteau X, Zindy E, Bouri S, Noël JC, Salmon I, Decaestecker C. Comparison Between Manual and Automated Assessment of Ki-67 in Breast Carcinoma: Test of a Simple Method in Daily Practice. Technol Cancer Res Treat 2023; 22:15330338231169603. [PMID: 37559526 PMCID: PMC10416654 DOI: 10.1177/15330338231169603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND In the era of "precision medicine," the availability of high-quality tumor biomarker tests is critical and tumor proliferation evaluated by Ki-67 antibody is one of the most important prognostic factors in breast cancer. But the evaluation of Ki-67 index has been shown to suffer from some interobserver variability. The goal of the study is to develop an easy, automated, and reliable Ki-67 assessment approach for invasive breast carcinoma in routine practice. PATIENTS AND METHODS A total of 151 biopsies of invasive breast carcinoma were analyzed. The Ki-67 index was evaluated by 2 pathologists with MIB-1 antibody as a global tumor index and also in a hotspot. These 2 areas were also analyzed by digital image analysis (DIA). RESULTS For Ki-67 index assessment, in the global and hotspot tumor area, the concordances were very good between DIA and pathologists when DIA focused on the annotations made by pathologist (0.73 and 0.83, respectively). However, this was definitely not the case when DIA was not constrained within the pathologist's annotations and automatically established its global or hotspot area in the whole tissue sample (concordance correlation coefficients between 0.28 and 0.58). CONCLUSIONS The DIA technique demonstrated a meaningful concordance with the indices evaluated by pathologists when the tumor area is previously identified by a pathologist. In contrast, basing Ki-67 assessment on automatic tissue detection was not satisfactory and provided bad concordance results. A representative tumoral zone must therefore be manually selected prior to the measurement made by the DIA.
Collapse
Affiliation(s)
- Xavier Catteau
- Department of Pathology, Erasme's Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Curepath laboratory, CHU Tivoli and CHIREC institute, Jumet, Belgium
| | - Egor Zindy
- Laboratory of Image Synthesis and Analysis (LISA), Université Libre de Bruxelles, Bruxelles, Belgium
- Digital Pathology Platform of the CMMI (DIAPath), Université Libre de Bruxelles, Gosselies, Belgium
| | - Sarah Bouri
- Department of Pathology, Erasme's Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Curepath laboratory, CHU Tivoli and CHIREC institute, Jumet, Belgium
| | - Jean-Christophe Noël
- Department of Pathology, Erasme's Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Curepath laboratory, CHU Tivoli and CHIREC institute, Jumet, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme's Hospital, Université Libre de Bruxelles, Brussels, Belgium
- Digital Pathology Platform of the CMMI (DIAPath), Université Libre de Bruxelles, Gosselies, Belgium
| | - Christine Decaestecker
- Laboratory of Image Synthesis and Analysis (LISA), Université Libre de Bruxelles, Bruxelles, Belgium
- Digital Pathology Platform of the CMMI (DIAPath), Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
14
|
Maier AD. Malignant meningioma. APMIS 2022; 130 Suppl 145:1-58. [DOI: 10.1111/apm.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
- Department of Pathology, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| |
Collapse
|
15
|
O’Neill KC, Liapis E, Harris BT, Perlin DS, Carter CL. Mass spectrometry imaging discriminates glioblastoma tumor cell subpopulations and different microvascular formations based on their lipid profiles. Sci Rep 2022; 12:17069. [PMID: 36224354 PMCID: PMC9556690 DOI: 10.1038/s41598-022-22093-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/10/2022] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is a prevalent malignant brain tumor and despite clinical intervention, tumor recurrence is frequent and usually fatal. Genomic investigations have provided a greater understanding of molecular heterogeneity in glioblastoma, yet there are still no curative treatments, and the prognosis has remained unchanged. The aggressive nature of glioblastoma is attributed to the heterogeneity in tumor cell subpopulations and aberrant microvascular proliferation. Ganglioside-directed immunotherapy and membrane lipid therapy have shown efficacy in the treatment of glioblastoma. To truly harness these novel therapeutics and develop a regimen that improves clinical outcome, a greater understanding of the altered lipidomic profiles within the glioblastoma tumor microenvironment is urgently needed. In this work, high resolution mass spectrometry imaging was utilized to investigate lipid heterogeneity in human glioblastoma samples. Data presented offers the first insight into the histology-specific accumulation of lipids involved in cell metabolism and signaling. Cardiolipins, phosphatidylinositol, ceramide-1-phosphate, and gangliosides, including the glioblastoma stem cell marker, GD3, were shown to differentially accumulate in tumor and endothelial cell subpopulations. Conversely, a reduction in sphingomyelins and sulfatides were detected in tumor cell regions. Cellular accumulation for each lipid class was dependent upon their fatty acid residue composition, highlighting the importance of understanding lipid structure-function relationships. Discriminating ions were identified and correlated to histopathology and Ki67 proliferation index. These results identified multiple lipids within the glioblastoma microenvironment that warrant further investigation for the development of predictive biomarkers and lipid-based therapeutics.
Collapse
Affiliation(s)
- Kelly C. O’Neill
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA
| | - Evangelos Liapis
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA
| | - Brent T. Harris
- grid.411667.30000 0001 2186 0438Departments of Neurology and Pathology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - David S. Perlin
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA ,grid.429392.70000 0004 6010 5947Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110 USA
| | - Claire L. Carter
- grid.429392.70000 0004 6010 5947Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110 USA ,grid.429392.70000 0004 6010 5947Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ 07110 USA
| |
Collapse
|
16
|
Obukhova L, Kopytova T, Murach E, Shchelchkova N, Kontorshchikova C, Medyanik I, Orlinskaya N, Grishin A, Kontorshchikov M, Badanina D. Relationship between Glutathione-Dependent Enzymes and the Immunohistochemical Profile of Glial Neoplasms. Biomedicines 2022; 10:biomedicines10102393. [PMID: 36289655 PMCID: PMC9598304 DOI: 10.3390/biomedicines10102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
This research aimed to investigate the relationships between the parameters of glutathione metabolism and the immunohistochemical characteristics of glial tumors. Postoperative material from 20 patients with gliomas of different grades of anaplasia was analyzed. Bioinformatic analysis of the interactions between the gliomas’ immunohistochemical markers and their glutathione-dependent enzymes was carried out using the STRING, BioGrid, while Signor databases revealed interactions between such glioma markers as IDH and p53 and the glutathione exchange enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase). The most pronounced relationship with glutathione metabolism was demonstrated by the level of the nuclear protein Ki67 as a marker of proliferative activity, and the presence of the IDH1 mutation as one of the key genetic events of gliomagenesis. The glutathione system is an active participant in the body’s antioxidant defense, involving the p53 markers and MGMT promoter methylation. It allows characterization of the gliomal cells’ status at different stages of tumor development.
Collapse
|
17
|
Obukhova LM, Evdokimov II, Medyanik IA, Orlinskaya NY, Grishin AS, Babintsev VE, Barinov YA, Kontorshchikov MM, Gorshkova TN, Lazukin VF. Prospects for the use of blood elemental status to assess the molecular genetic profile of gliomas. Klin Lab Diagn 2022; 67:497-503. [PMID: 36099457 DOI: 10.51620/0869-2084-2022-67-9-497-503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has been established that blood element homeostasis is related to gliomagenesis which increases the attractiveness of the analysis of its components as a promising preoperative mediated characteristics of the molecular genetic profile of gliomas. The aim of this work is to analyze the relationship between mineral metabolism parameters and immunohistochemical characteristics of glial tumors and evaluate the clinical significance of blood element homeostasis analysis for preoperative assessment of the molecular profile of gliomas. The levels of cancer specific markers MGMT, Ki-67, p-53, IDH1 were determined immunohistochemically using the corresponding antibody clones. Micronutrient levels were analyzed by inductively coupled plasma atomic emission spectrometry recalculating the results per 1 g of protein which was determined by the Lowry method. The data on cancer-specific marker levels obtained in primary brain tumors (20) and in blood plasma of gliomas patients (20) and practically healthy subjects (5) were compared using a number of statistical programs. We found significant differences in the levels of sodium, potassium, zinc and copper depending on the value of the mitotic index Ki-67 and IDH1 isocitrate dehydrogenase gene mutation. For the first time, a significant correlation showing the consistency between the level of glial tumor cancer-specific markers and blood mineral metabolism was observed. The revealed correlations provide new insights into understanding of gliomagenesis mechanisms and can be used as a predictive preoperative assessment of molecular genetic markers of gliomas.
Collapse
Affiliation(s)
- Larisa Mikhailovna Obukhova
- Federal State Budgetary Educational Institution of Higher Educational "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation
| | - I I Evdokimov
- Federal Budgetary Scientific Institution G.G. Devyatykh Institute of Chemistry High-Purity Chemistry of the Russian Academy of Sciences
| | - I A Medyanik
- Federal State Budgetary Educational Institution of Higher Educational "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation
| | - N Yu Orlinskaya
- Federal State Budgetary Educational Institution of Higher Educational "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation
| | - A S Grishin
- Federal State Budgetary Educational Institution of Higher Educational "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation
| | - V E Babintsev
- Federal State Budgetary Educational Institution of Higher Educational "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation
| | - Yu A Barinov
- Federal State Budgetary Educational Institution of Higher Educational "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation
| | - M M Kontorshchikov
- Federal State Budgetary Educational Institution of Higher Educational "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation
| | - T N Gorshkova
- Federal State-Funded Healthcare Institution "Privolzhsky District Medical Center" of Federal and Biological Agency of Russia
| | - V F Lazukin
- Federal State Budgetary Educational Institution of Higher Educational "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation
| |
Collapse
|
18
|
Senhaji N, Squalli Houssaini A, Lamrabet S, Louati S, Bennis S. Molecular and Circulating Biomarkers in Patients with Glioblastoma. Int J Mol Sci 2022; 23:7474. [PMID: 35806478 PMCID: PMC9267689 DOI: 10.3390/ijms23137474] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma is the most aggressive malignant tumor of the central nervous system with a low survival rate. The difficulty of obtaining this tumor material represents a major limitation, making the real-time monitoring of tumor progression difficult, especially in the events of recurrence or resistance to treatment. The identification of characteristic biomarkers is indispensable for an accurate diagnosis, the rigorous follow-up of patients, and the development of new personalized treatments. Liquid biopsy, as a minimally invasive procedure, holds promise in this regard. The purpose of this paper is to summarize the current literature regarding the identification of molecular and circulating glioblastoma biomarkers and the importance of their integration as a valuable tool to improve patient care.
Collapse
Affiliation(s)
- Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Sara Louati
- Medical Biotechnology Laboratory, Faculty of Medicine and Pharmacy of Rabat, Mohammed Vth University, Rabat 10000, Morocco;
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| |
Collapse
|
19
|
Wanjale MV, Sunil Jaikumar V, Sivakumar KC, Ann Paul R, James J, Kumar GSV. Supramolecular Hydrogel Based Post-Surgical Implant System for Hydrophobic Drug Delivery Against Glioma Recurrence. Int J Nanomedicine 2022; 17:2203-2224. [PMID: 35599751 PMCID: PMC9122075 DOI: 10.2147/ijn.s348559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 01/04/2023] Open
Abstract
Purpose The brain, protected by the cranium externally and the blood–brain barrier (BBB) internally, poses challenges in chemotherapy of aggressive brain tumors. Maximal tumor resection followed by radiation and chemotherapy is the standard treatment protocol; however, a substantial number of patients suffer from recurrence. Systemic circulation of drugs causes myelodysplasia and other side effects. To address these caveats, we report facile synthesis of a polyester-based supramolecular hydrogel as a brain biocompatible implant for in situ delivery of hydrophobic drugs. Methods Polycaprolactone-diol (PCL) was linked to polyethyleneglycol-diacid (PEG) via an ester bond. In silico modeling indicated micelle-based aggregation of PCL-PEG co-polymer to form a supramolecular hydrogel. Brain biocompatibility was checked in Sprague Dawley rat brain cortex with MRI, motor function test, and histology. Model hydrophobic drugs carmustine and curcumin entrapment propelled glioma cells into apoptosis-based death evaluated by in vitro cytotoxicity assays and Western blot. In vivo post-surgical xenograft glioma model was developed in NOD-SCID mice and evaluated for efficacy to restrict aggressive regrowth of tumors. Results 20% (w/v) PCL-PEG forms a soft hydrogel that can cover the uneven and large surface area of a tumor resection cavity and maintain brain density. The PCL-PEG hydrogel was biocompatible, and well-tolerated upon implantation in rat brain cortex, for a study period of 12 weeks. We report for the first time the combination of carmustine and curcumin entrapped as model hydrophobic drugs, increasing their bioavailability and yielding synergistic apoptotic effect on glioma cells. Further in vivo study indicated PCL-PEG hydrogel with a dual cargo of carmustine and curcumin restricted aggressive regrowth post-resection significantly compared with control and animals with intravenous drug treatment. Conclusion PCL-PEG soft gel-based implant is malleable compared with rigid wafers used as implants, thus providing larger surface area contact. This stable, biocompatible, supramolecular gel without external crosslinking can find wide applications by interchanging formulation of various hydrophobic drugs to ensure and increase site-specific delivery, avoiding systemic circulation.
Collapse
Affiliation(s)
- Mrunal Vitthal Wanjale
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
- Research Scholar, Department of Biotechnology, Faculty of Applied Sciences & Technology, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
| | - Vishnu Sunil Jaikumar
- Animal Research Facility, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
| | - K C Sivakumar
- Distributed Information Sub-Centre (Bioinformatics Centre), Bio-Innovation Center (BIC), Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Riya Ann Paul
- Research Scholar, Department of Biotechnology, Faculty of Applied Sciences & Technology, University of Kerala, Thiruvananthapuram, Kerala, 695581, India
- Neuro-Stem Cell Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
| | - Jackson James
- Neuro-Stem Cell Biology Lab, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
| | - G S Vinod Kumar
- Nano Drug Delivery Systems (NDDS), Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, Kerala, 695014, India
- Correspondence: GS Vinod Kumar, Tel +91 471 2781217, Fax +91 471 2348096, Email
| |
Collapse
|
20
|
Obukhova L, Nikiforova O, Kontorshchikova C, Medyanik I, Orlinskaya N, Grishin A, Kontorshchikov M, Shchelchkova N. Carbohydrate Metabolism Parameters of Adult Glial Neoplasms According to Immunohistochemical Profile. Biomedicines 2022; 10:biomedicines10051007. [PMID: 35625744 PMCID: PMC9138280 DOI: 10.3390/biomedicines10051007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
This research aimed to investigate the interrelationship of carbohydrate metabolism parameters and immunohistochemical characteristics of glial tumors. Tumor tissue, peritumoral area, and adjacent noncancerous tissue fragments of 20 patients with gliomas of varying degrees of anaplasia were analyzed. The greatest differences in the carbohydrate metabolism compared to adjacent noncancerous tissues were identified in the tumor tissue: reduction in the levels of lactate and glycogen synthase kinase-3β. Significant differences with adjacent noncancerous tissues for the peritumoral zone were not found. The activity of the carbohydrate metabolism enzymes was different depending on the immunohistochemical glioma profile, especially from Ki 67 level. Bioinformatic analysis of the interactions of immunohistochemical markers of gliomas and carbohydrate metabolism enzymes using the databases of STRING, BioGrid, and Signor revealed the presence of biologically significant interactions with glycogen synthase kinase 3β, hexokinase, glucose-6-phosphate dehydrogenase, and transketolase. The established interconnection of glycolysis with methylation of the promoter of O-6-methylguanine-DNA-methyltransferase (MGMT) of gliomas can be used to increase chemotherapy efficiency.
Collapse
|
21
|
Lee MKI, Rabindranath M, Faust K, Yao J, Gershon A, Alsafwani N, Diamandis P. Compound computer vision workflow for efficient and automated immunohistochemical analysis of whole slide images. J Clin Pathol 2022:jclinpath-2021-208020. [PMID: 35169066 DOI: 10.1136/jclinpath-2021-208020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/10/2022] [Indexed: 11/04/2022]
Abstract
AIMS Immunohistochemistry (IHC) assessment of tissue is a central component of the modern pathology workflow, but quantification is challenged by subjective estimates by pathologists or manual steps in semi-automated digital tools. This study integrates various computer vision tools to develop a fully automated workflow for quantifying Ki-67, a standard IHC test used to assess cell proliferation on digital whole slide images (WSIs). METHODS We create an automated nuclear segmentation strategy by deploying a Mask R-CNN classifier to recognise and count 3,3'-diaminobenzidine positive and negative nuclei. To further improve automation, we replaced manual selection of regions of interest (ROIs) by aligning Ki-67 WSIs with corresponding H&E-stained sections, using scale-invariant feature transform (SIFT) and a conventional histomorphological convolutional neural networks to define tumour-rich areas for quantification. RESULTS The Mask R-CNN was tested on 147 images generated from 34 brain tumour Ki-67 WSIs and showed a high concordance with aggregate pathologists' estimates ([Formula: see text] assessors; [Formula: see text] r=0.9750). Concordance of each assessor's Ki-67 estimates was higher when compared with the Mask R-CNN than between individual assessors (ravg=0.9322 vs 0.8703; p=0.0213). Coupling the Mask R-CNN with SIFT-CNN workflow demonstrated ROIs can be automatically chosen and partially sampled to improve automation and dramatically decrease computational time (average: 88.55-19.28 min; p<0.0001). CONCLUSIONS We show how innovations in computer vision can be serially compounded to automate and improve implementation in clinical workflows. Generalisation of this approach to other ancillary studies has significant implications for computational pathology.
Collapse
Affiliation(s)
- Michael Kyung Ik Lee
- Laboratory Medicine & Pathobiology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Madhumitha Rabindranath
- Laboratory Medicine & Pathobiology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Kevin Faust
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Jennie Yao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ariel Gershon
- Pathology, University Health Network, Toronto, Ontario, Canada
| | - Noor Alsafwani
- Pathology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Phedias Diamandis
- Laboratory Medicine & Pathobiology, University of Toronto Temerty Faculty of Medicine, Toronto, Ontario, Canada .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Pathology, University Health Network, Toronto, Ontario, Canada.,Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Rosager AM, Dahlrot RH, Sørensen MD, Bangsø JA, Hansen S, Kristensen BW. The Epigenetic Regulator Jumonji Domain-Containing Protein 6 (JMJD6) Is Highly Expressed but Not Prognostic in IDH-Wildtype Glioblastoma Patients. J Neuropathol Exp Neurol 2021; 81:54-60. [PMID: 34875075 DOI: 10.1093/jnen/nlab124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Patients with IDH-wildtype glioblastoma (GBM) generally have a poor prognosis. However, there is an increasing need of novel robust biomarkers in the daily clinico-pathological setting to identify and support treatment in patients who become long-time survivors. Jumonji domain-containing protein 6 (JMJD6) is involved in epigenetic regulation of demethylation of histones and has been associated with GBM aggressiveness. We investigated the expression and prognostic potential of JMJD6 tumor fraction score in 184 IDH-wildtype GBMs. Whole-slides were double-stained with an antibody against JMJD6 and an exclusion-cocktail consisting of 4 antibodies (CD31, SMA, CD45, and Iba-1), enabling evaluation of tumor cells only. Stainings were quantified with a combined software- and scoring-based approach. For comparison, IDH-mutated WHO grade II, III and IV astrocytic gliomas were also stained, and the JMJD6 tumor fraction score increased with increasing WHO grade, although not significantly. In multivariate analysis including age, gender, performance status and post-surgical treatment high JMJD6 tumor fraction score was associated with longer overall survival in IDH-wildtype GBMs (p = 0.03), but the effect disappeared when MGMT promoter status was included (p = 0.34). We conclude that JMJD6 is highly expressed in IDH-wildtype GBM but it has no independent prognostic value.
Collapse
Affiliation(s)
- Ann Mari Rosager
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Rikke H Dahlrot
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Mia D Sørensen
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Julie A Bangsø
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Steinbjørn Hansen
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| | - Bjarne W Kristensen
- From the Department of Pathology, Odense University Hospital, Odense, Denmark (AMR, MDS, JAB, BWK); Department of Clinical Research, University of Southern Denmark, Odense, Denmark (AMR, RHD, MDS, JAB, SH, BWK); Department of Oncology, Odense University Hospital, Odense, Denmark (RHD, SH); Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark (BWK); Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark (BWK)
| |
Collapse
|
23
|
Elmore SA, Choudhary S, Krane GA, Plumlee Q, Quist EM, Suttie AW, Tokarz DA, Ward JM, Cora M. Proceedings of the 2021 National Toxicology Program Satellite Symposium. Toxicol Pathol 2021; 49:1344-1367. [PMID: 34634962 DOI: 10.1177/01926233211043497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 2021 annual National Toxicology Program (NTP) Satellite Symposium, entitled "Pathology Potpourri," was the 20th anniversary of the symposia and held virtually on June 25th, in advance of the Society of Toxicologic Pathology's 40th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were presented to the audience for voting and discussion. Various lesions and topics covered during the symposium included differentiation of canine oligodendroglioma, astrocytoma, and undefined glioma with presentation of the National Cancer Institute's updated diagnostic terminology for canine glioma; differentiation of polycystic kidney, dilated tubules and cystic tubules with a discussion of human polycystic kidney disease; a review of various rodent nervous system background lesions in control animals from NTP studies with a focus on incidence rates and potential rat strain differences; vehicle/excipient-related renal lesions in cynomolgus monkeys with a discussion on the various cyclodextrins and their bioavailability, toxicity, and tumorigenicity; examples of rodent endometrial tumors including intestinal differentiation in an endometrial adenocarcinoma that has not previously been reported in rats; a review of various rodent adrenal cortex lesions including those that represented diagnostic challenges with multiple processes such as vacuolation, degeneration, necrosis, hyperplasia, and hypertrophy; and finally, a discussion of diagnostic criteria for uterine adenomyosis, atypical hyperplasia, and adenocarcinoma in the rat.
Collapse
Affiliation(s)
- Susan A Elmore
- Cellular and Molecular Pathology Branch, National Toxicology Program, 6857National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | | | | | - Erin M Quist
- Experimental Pathology Laboratories, Inc, Morrisville, NC, USA
| | - Andrew W Suttie
- Labcorp Early Development Laboratories, Inc, Chantilly, VA, USA
| | - Debra A Tokarz
- Experimental Pathology Laboratories, Inc, Morrisville, NC, USA
| | | | - Michelle Cora
- Cellular and Molecular Pathology Branch, National Toxicology Program, 6857National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
24
|
Prognostic role of Ki-67 in glioblastomas excluding contribution from non-neoplastic cells. Sci Rep 2021; 11:17918. [PMID: 34504133 PMCID: PMC8429554 DOI: 10.1038/s41598-021-95958-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Survival of glioblastoma patients varies and prognostic markers are important in the clinical setting. With digital pathology and improved immunohistochemical multiplexing becoming a part of daily diagnostics, we investigated the prognostic value of the Ki-67 labelling index (LI) in glioblastomas more precisely than previously by excluding proliferation in non-tumor cells from the analysis. We investigated the Ki-67 LI in a well-annotated population-based glioblastoma patient cohort (178 IDH-wildtype, 3 IDH-mutated). Ki-67 was identified in full tumor sections with automated digital image analysis and the contribution from non-tumor cells was excluded using quantitative double-immunohistochemistry. For comparison of the Ki-67 LI between WHO grades (II-IV), 9 IDH-mutated diffuse astrocytomas and 9 IDH-mutated anaplastic astrocytomas were stained. Median Ki-67 LI increased with increasing WHO grade (median 2.7%, 6.4% and 27.5%). There was no difference in median Ki-67 LI between IDH-mutated and IDH-wildtype glioblastomas (p = 0.9) and Ki-67 LI was not associated with survival in glioblastomas in neither univariate (p = 0.9) nor multivariate analysis including MGMT promoter methylation status and excluding IDH-mutated glioblastomas (p = 0.2). Ki-67 may be of value in the differential diagnostic setting, but it must not be over-interpreted in the clinico-pathological context.
Collapse
|
25
|
Salmani T, Ghaderian SMH, Hajiesmaeili M, Rezaeimirghaed O, Hoseini MS, Rakhshan A, Nasiri MJ, Ghaedi H, Akbarzadeh R. Hsa-miR-27a-3p and epidermal growth factor receptor expression analysis in glioblastoma FFPE samples. Asia Pac J Clin Oncol 2020; 17:e185-e190. [PMID: 33029912 DOI: 10.1111/ajco.13399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
AIM Glioblastoma multiforme (GBM) is the most invasive type of glial tumors. MicroRNAs as the small, noncoding RNAs have been revealed that play an important role in tumorigenic processes. So, they may be used as potential biomarkers for detection and prognosis of cancers at the early stages. In addition, they can be applied as therapeutic targets. In the present study, the expression levels of hsa-miR-27a-3p and EGFR were investigated in GBM. METHODS Real-time RT-PCR was applied to evaluate hsa-miR-27a-3p and EGFR expressions in the formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from 50 GBM and 50 normal people. RESULTS The expression level of hsa-miR-27a-3p and EGFR was significantly different between cases and controls. Positive association was found between gene expressions and immunohistochemistry markers, such as Ki67 and glial fibrillary acidic protein, except for IDH1 status. CONCLUSION We showed the association of hsa-miR-27a-3p and EGFR with GBM and it can be concluded that they have a promising potential to use as primary cancer biomarkers.
Collapse
Affiliation(s)
- Tayyebali Salmani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omidvar Rezaeimirghaed
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Rakhshan
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ghaedi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Akbarzadeh
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.,Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Murase Y, Iwata H, Takahara T, Tsuzuki T. The highest Fuhrman and WHO/ISUP grade influences the Ki-67 labeling index of those of grades 1 and 2 in clear cell renal cell carcinoma. Pathol Int 2020; 70:984-991. [PMID: 32997867 DOI: 10.1111/pin.13025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/06/2020] [Indexed: 12/27/2022]
Abstract
Nuclear grade is one of the most important prognostic factors in clear cell renal cell carcinoma (CCRCC). Although CCRCCs usually have intratumoral heterogeneity with various nuclear atypia including nucleolar prominence, it is unclear whether a similar degree of nuclear grade component demonstrates the same proliferative activity. We aimed to reveal whether the presence of a higher nuclear grade has an effect on proliferative activity among each assigned nuclear grade in CCRCCs. We enrolled 129 CCRCC patients containing at least two different nuclear grades. We separately assessed nuclear grade using the Fuhrman and World Health Organization and International Society of Urologic Pathologists (WHO/ISUP) grading systems. In addition, we selected blocks containing different nuclear grade and assessed the Ki-67 labeling index (LI) for each using a computer-based analysis system. Ki-67 LIs significantly correlated with both Fuhrman and WHO/ISUP grades (P < 0.001 and P < 0.001). Of note, the LIs among Fuhrman and WHO/ISUP grades 1 and 2 were also statistically significant according to the highest nuclear grade (P < 0.01 for both grades 1 and 2). Our data suggests that the highest nuclear grade influences the proliferative activity in tumor components regardless of the morphologically assigned nuclear grades. The exact evaluation of Ki-67 LI in CCRCC can provide a more precise information of the malignant potential.
Collapse
Affiliation(s)
- Yota Murase
- Department of Surgical Pathology, Aichi Medical University Hospital, Aichi, Japan.,Department of Pathology, Japanese Red Cross Nagoya Daini Hospital, Aichi, Japan
| | - Hidehiro Iwata
- Department of Surgical Pathology, Aichi Medical University Hospital, Aichi, Japan.,Department of Pathology, Japanese Red Cross Nagoya Daini Hospital, Aichi, Japan
| | | | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Aichi, Japan
| |
Collapse
|
27
|
Hida AI, Omanovic D, Pedersen L, Oshiro Y, Ogura T, Nomura T, Kurebayashi J, Kanomata N, Moriya T. Automated assessment of Ki-67 in breast cancer: the utility of digital image analysis using virtual triple staining and whole slide imaging. Histopathology 2020; 77:471-480. [PMID: 32578891 DOI: 10.1111/his.14140] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/03/2020] [Indexed: 12/12/2022]
Abstract
AIMS Precise evaluation of proliferative activity is essential for the stratified treatment of luminal-type breast cancer (BC). Immunohistochemical staining of Ki-67 has been widely used to determine proliferative activity and is recognised to be a useful prognostic marker. However, there remains discussion concerning the methodology. We aimed to develop an automated and reliable Ki-67 assessment approach for invasive BC. MATERIALS AND RESULTS A retrospective study was designed to include two cohorts consisting of 152 and 261 consecutive patients with luminal-type BC. Representative tissue blocks following surgery were collected, and three serial sections were stained automatically with Ki-67, pan-cytokeratin and p63. The whole slides were scanned digitally and aligned using VirtualTripleStaining - an extension to the VirtualDoubleStaining™ technique provided by Visiopharm software. The aligned files underwent automated invasive cancer detection, hot-spot identification and Ki-67 counting. The automated scores showed a significant positive correlation with the pathologists' scores (r = 0.82, P < 0.0001). Among selected patients with curative surgery and standard adjuvant therapies (n = 130), the digitally assessed low Ki-67 group (<20%) demonstrated a significantly better prognosis (breast cancer-specific survival, P = 0.030; hazard ratio = 0.038) than the high Ki-67 group. CONCLUSIONS Digital image analysis yielded similar results to the scores determined by experienced pathologists. The prognostic utility was verified in our cohort, and an automated process is expected to have high reproducibility. Although some pitfalls were confirmed and thus need to be monitored by laboratory staff, the application could be utilised for the assessment of BC.
Collapse
Affiliation(s)
- Akira I Hida
- Department of Pathology, Matsuyama Shimin Hospital, Matsuyama, Japan.,Department of Pathology, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | | | | | - Yumi Oshiro
- Department of Pathology, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Takashi Ogura
- Business Promotion Department, System Division, Hamamatsu Photonics K.K., Hamamatsu, Japan
| | - Tsunehisa Nomura
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Okayama, Japan
| | - Junichi Kurebayashi
- Department of Breast and Thyroid Surgery, Kawasaki Medical School, Okayama, Japan
| | - Naoki Kanomata
- Department of Pathology, St Luke's International Hospital, Tokyo, Japan.,Department of Pathology, Kawasaki Medical School, Okayama, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
28
|
Armocida D, Frati A, Salvati M, Santoro A, Pesce A. Is Ki-67 index overexpression in IDH wild type glioblastoma a predictor of shorter Progression Free survival? A clinical and Molecular analytic investigation. Clin Neurol Neurosurg 2020; 198:106126. [PMID: 32861131 DOI: 10.1016/j.clineuro.2020.106126] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Ki-67 proliferation index is widely used for differentiating between high and low-grade gliomas, but differentiating between the same grade IV appears to be more problematic, and the point about its prognostic value for GBM patients remains unclear. To reduce the possibility to find a marked histological heterogeneity, and may contain areas that could be diagnosed as lower grade, in this study we considered a large group of patients with IDH wild-type Glioblastoma (IDH-WT GBM) and we have analyzed previously reported prognostic factors, in regards to their relationship with the Ki-67 expression index. METHODS We explore the prognostic impact of ki-67 index status in 127 patients affected by IDH-WT GBM. We therefore analyzed clinical characteristics, tumor genetics, dimension and clinical outcomes. We selected a total of 127 patients affected by newly diagnosed IDH-WT GBM who underwent surgery, radiation, and chemotherapy in our Institution in the period ranging between January 2014 and December 2016 RESULTS: The volume of the lesion had a strong association with the Ki67 overexpression. In particular lesions whose volume was greater than 45 cm3, presented a higher percentage of Ki67 expression demonstrating that greater tumors are more likely associated to higher values of Ki67 percentages. On a multivariate analysis, it was possible to outline that Ki67 was significant a predictor of shorter PFS independently from the age of the patients, the volume of the lesion and preoperative KPS. CONCLUSIONS There is a correlation between percentage staining of Ki-67 and OS in our cohort of patients with IDH-WT GBM. This is only the third observational study documenting a positive correlation between Ki-67 and overall survival in GBM and the first one demonstrates that percentage Ki-67 staining >20 % predicts poorer progression free survival in IDH-WT GBM.
Collapse
Affiliation(s)
- Daniele Armocida
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy.
| | | | - Maurizio Salvati
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy; IRCCS "Neuromed" Pozzilli (IS), Italy
| | - Antonio Santoro
- Human Neurosciences Department Neurosurgery Division "Sapienza" University, Italy
| | | |
Collapse
|
29
|
Theresia E, Malueka RG, Pranacipta S, Kameswari B, Dananjoyo K, Asmedi A, Wicaksono AS, Hartanto RA, Dwianingsih EK. Association between Ki-67 Labeling index and Histopathological Grading of Glioma in Indonesian Population. Asian Pac J Cancer Prev 2020; 21:1063-1068. [PMID: 32334471 PMCID: PMC7445981 DOI: 10.31557/apjcp.2020.21.4.1063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Gliomas are the most frequent primary brain tumors. According to World Health Organization guidelines, gliomas are graded into four groups (Group I-IV). This histological grading will determine prognosis and treatment of the patient. Morphological criteria are not always accurate. Tumor proliferation index is a potent quantitative marker for tumor behavior and prognosis, also it’s the basis of gliomagenesis. Ki-67 immunohistochemistry examination for determining proliferation index has been suggested as an ancillary marker in deciding the definitive grading of glioma. Objective: To analyze the correlation between Ki-67 labeling index and histopathological grading of glioma in Indonesian population. Methods: One hundred and six formalin fixed-paraffin embedded tissue of glioma patients were collected from 4 different hospitals. Expression of Ki-67 was detected using immunohistochemistry staining and the labeling index was counted. The association between Ki-67 labeling index and histopathological grading was analyzed. Results: Age range of patient were 1-73-years old, with male predominance (55.70%). Glioblastoma was the most common diagnosis accounting for 41.51% of all samples. Ki-67 labeling index cut point of 6.35% was obtained and significantly sensitive and specific for determining low- or high-grade glioma (p<0.001). Conclusion: A significant association between Ki-67 labeling index and histopathological grading in Indonesian glioma patients has been revealed. The result of this study may be used to improve diagnostic and grading accuracy of glioma cases in Indonesia, especially in small biopsy specimens.
Collapse
Affiliation(s)
- Emilia Theresia
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rusdy Ghazali Malueka
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Sofia Pranacipta
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Bidari Kameswari
- Department of Anatomical Pathology, Dr. Soeradji Tirtonegoro General Hospital, Klaten, Central Java, Indonesia
| | - Kusumo Dananjoyo
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ahmad Asmedi
- Department of Neurology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Adiguno Suryo Wicaksono
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Rahmat Andi Hartanto
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| | - Ery Kus Dwianingsih
- Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada (FK-KMK UGM), Dr. Sardjito General Hospital, Yogyakarta, Indonesia
| |
Collapse
|
30
|
Pham DT, Skaland I, Winther TL, Salvesen Ø, Torp SH. Correlation Between Digital and Manual Determinations of Ki-67/MIB-1 Proliferative Indices in Human Meningiomas. Int J Surg Pathol 2019; 28:273-279. [PMID: 31771372 DOI: 10.1177/1066896919889148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objective. Proliferative activity in tumor tissues is assessed as the percentage of Ki-67/MIB-1-positive cells, or the proliferative index (PI). The PI is routinely assessed manually. However, the subjectivity of manual assessments might result in poor reproducibility. We hypothesized that digital assessments might reduce the error. Method. In our study, we assessed Ki-67/MIB-1 PIs, both manually and digitally, with tissue microarrays constructed from 141 human meningioma samples. Spearman-rank correlation and κ statistics were applied for correlation and agreement analyses, respectively. Mann-Whitney U tests were used to compare MIB-1 PIs between groups. Prognostic ability was assessed with Kaplan-Meier and Cox regression analyses. Results. We found a significant, high correlation (Spearman ρ = 0.832, P < .01) and moderate agreement (κ coefficient = 0.617, observed agreement = 80.9%) between the 2 methods. Both methods found significantly different Ki-67/MIB-1 PIs for different World Health Organization grades (P < .05). Neither method showed significant prognostic value. Conclusion. Digital determinations of Ki-67/MIB-1 PIs in human meningiomas are feasible for the daily routine.
Collapse
Affiliation(s)
- Duc-Tien Pham
- NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Ivar Skaland
- Stavanger University Hospital, Stavanger, Norway
| | - Theo L Winther
- NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Salvesen
- NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Sverre H Torp
- NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
31
|
Kong Z, Li J, Liu Z, Liu Z, Zhao D, Cheng X, Li L, Lin Y, Wang Y, Tian J, Ma W. Radiomics signature based on FDG-PET predicts proliferative activity in primary glioma. Clin Radiol 2019; 74:815.e15-815.e23. [DOI: 10.1016/j.crad.2019.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/26/2019] [Indexed: 01/04/2023]
|
32
|
Liu X, Song M, Wang P, Zhao R, Chen H, Zhang M, Shi Y, Liu K, Liu F, Yang R, Li E, Bode AM, Dong Z, Lee M. Targeted therapy of the AKT kinase inhibits esophageal squamous cell carcinoma growth in vitro and in vivo. Int J Cancer 2019; 145:1007-1019. [PMID: 30887517 PMCID: PMC6618024 DOI: 10.1002/ijc.32285] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/10/2019] [Accepted: 03/12/2019] [Indexed: 02/05/2023]
Abstract
Esophageal cancer, a leading cause of cancer death worldwide, is associated with abnormal activation of the AKT signaling pathway. Xanthohumol, a prenylated flavonoid tested in clinical trials, is reported to exert anti-diabetes, anti-inflammation and anticancer activities. However, the mechanisms underlying its chemopreventive or chemotherapeutic effects remain elusive. In the present study, we found that xanthohumol directly targeted AKT1/2 in esophageal squamous cell carcinoma (ESCC). Xanthohumol significantly inhibited the AKT kinase activity in an ATP competitive manner, which was confirmed in binding and computational docking models. KYSE70, 450 and 510 ESCC cell lines highly express AKT and knockdown of AKT1/2 suppressed proliferation of these cells. Treatment with xanthohumol inhibited ESCC cell growth and induced apoptosis and cell cycle arrest at the G1 phase. Xanthohumol also decreased expression of cyclin D1 and increased the levels of cleaved caspase-3, -7 and -PARP as well as Bax, Bims and cytochrome c in ESCC cells by downregulating AKT signaling targets, including glycogen synthase kinase 3 beta (GSK3β), mammalian target of rapamycin, and ribosomal protein S6 (S6K). Furthermore, xanthohumol decreased tumor volume and weight in patient-derived xenografts (PDXs) that highly expressed AKT, but had no effect on PDXs that exhibited low expression of AKT in vivo. Kinase array results showed that xanthohumol treatment decreased phosphorylated p27 expression in both ESCC cell lines and PDX models. Taken together, our data suggest that the inhibition of ESCC tumor growth with xanthohumol is caused by targeting AKT. These results provide good evidence for translation toward clinical trials with xanthohumol.
Collapse
Affiliation(s)
- Xuejiao Liu
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Mengqiu Song
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Penglei Wang
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Ran Zhao
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Hanyong Chen
- The Hormel Institute, University of MinnesotaAustinMinnesota
| | - Man Zhang
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Yuanyuan Shi
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Kangdong Liu
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
- The Collaborative Innovation Center of Henan Province for Cancer ChemopreventionZhengzhouHenanChina
| | - Fangfang Liu
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Ran Yang
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
| | - Enmin Li
- Department of Biochemistry and Molecular BiologyShantou University Medical CollegeShantouGuangdongChina
| | - Ann M. Bode
- The Hormel Institute, University of MinnesotaAustinMinnesota
| | - Zigang Dong
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
- The Hormel Institute, University of MinnesotaAustinMinnesota
- The Collaborative Innovation Center of Henan Province for Cancer ChemopreventionZhengzhouHenanChina
| | - Mee‐Hyun Lee
- School of Basic Medical SciencesZhengzhou UniversityZhengzhouHenanChina
- China‐US (Henan) Hormel Cancer InstituteZhengzhouHenanChina
- The Hormel Institute, University of MinnesotaAustinMinnesota
| |
Collapse
|