1
|
Qian L, Hu W, Wang Y, Waheed YA, Hu S, Sun D, Li S. LncRNA TUG1 mitigates chronic kidney disease through miR-542-3p/HIF-1α/VEGF axis. Heliyon 2025; 11:e40891. [PMID: 39811365 PMCID: PMC11730199 DOI: 10.1016/j.heliyon.2024.e40891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathway in chronic kidney disease (CKD) that ultimately leads to end-stage renal failure, worsening both glomerulosclerosis and interstitial fibrosis. Ten percent of the adult population in the world suffers from CKD, and as the ageing population continues to rise, it is increasingly regarded as a global threat-a silent epidemic. CKD has been discovered to be closely associated with both long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), while the precise molecular processes behind this relationship are still unclear. This study evaluated the impact of miR-542-3p and lncRNA TUG1 on renal fibrosis, along with the underlying regulatory mechanisms. Through in vitro tube formation assays, research demonstrated that knocking down lncRNA TUG1 may enhance angiogenesis and repair damaged endothelial cell-cell connections. We used Western blot and qRT-PCR methods in the unilateral ureteral obstruction (UUO) model to identify tissue hypoxia and fibrotic lesions. Additionally, a cutting-edge method known as fluorescence microangiography (FMA) was employed to detect damage to the peritubular capillaries (PTCs), with MATLAB software utilised for data evaluation. Furthermore, the coexpression of CD31 and α-SMA helped identify cells in the obstructed kidney that were transitioning from endothelium to myofibroblasts. On the contrary, lncRNA TUG1 downregulation showed a protective effect against the transition from endothelial cells to myofibroblasts. Additionally, knocking down lncRNA TUG1 has been shown to reduce the expression of fibrotic markers by alleviating tissue hypoxia. This effect was significantly counteracted by the inhibition of miR-542-3p. Collectively, our findings offer fresh perspectives on how lncRNA TUG1 and the miR-542-3p/HIF-1α/VEGF axis are regulated as renal fibrosis advances.
Collapse
Affiliation(s)
- Luoxiang Qian
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
- Department of Internal Medicine, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| | - Wanru Hu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
| | | | - Shuqun Hu
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, 221002, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
| |
Collapse
|
2
|
Zhang W, Li M, Zhang M, Yan G, Tang C. The role of tribbles homolog 2 in cell proliferation. Cell Commun Signal 2025; 23:5. [PMID: 39762856 PMCID: PMC11702054 DOI: 10.1186/s12964-024-01985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Tribbles homolog 2 (TRIB2), a pseudoserine/threonine kinase, is a member of the TRIB family. TRIB2 primarily regulates cell proliferation through its scaffold or adaptor effect on promoting the degradation of target proteins by E3 ligase-dependent ubiquitination and regulating mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) signaling pathways. TRIB2 is not only involved in the physiological proliferation of cells (granulosa cells, myoblasts, naive T cells, and thymocytes) during normal development but also in the pathological proliferation of vascular smooth muscle cells and a variety of cancer cells (lung cancer cells, liver cancer cells, leukemia cells, pancreatic cancer cells, gastric cancer cells, prostate cancer cells, thyroid cancer cells, cervical cancer cells, melanoma cells, colorectal cancer cells, ovarian cancer cells and osteosarcoma cells) under disease conditions. Its expression level and functional role predominantly hinge on the specific tissue and cell type it targets. This review elucidates the specific mechanisms of TRIB2 in physiological and pathological cell proliferation from the perspective of different kinds of cells.
Collapse
Affiliation(s)
- Wenkang Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Mingkang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Minhao Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gaoliang Yan
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| | - Chengchun Tang
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
4
|
Wang H. LINC00092 Enhances LPP Expression to Repress Thyroid Cancer Development via Sponging miR-542-3p. Horm Metab Res 2024; 56:150-158. [PMID: 37935247 DOI: 10.1055/a-2180-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
LINC00092 is poorly expressed in Thyroid cancer (TC), while its role in TC tumorigenesis is still elusive. This study aimed to reveal the role and regulatory mechanism of LINC00092 in TC.RNA immunoprecipitation and dual luciferase reporter assays were employed to ascertain the relationships among lipoma preferred partner (LPP), miR-542-3p, and LINC00092. qRT-PCR analysis was performed to detect their expression levels in TC. LPP protein productions were evaluated via western blotting. CCK-8, transwell, and colony formation assays were done to estimate TC cells' biological functions. A murine xenograft model was built to observe tumor formation in vivo.LINC00092 overexpression decreased the expression levels of miR-542-3p, and LPP was targeted by miR-542-3p. In TC cells and tissues, the elevation of miR-542-3p, and low amounts of LINC00092 and LPP can be observed. Both LINC00092 and SPAG6 were considered as the antineoplastic factors in TC since their overexpression dramatically repressed TC cells' invasive and proliferative potentials, while miR-542-3p exerted the opposite functions in TC. The ectopic expression of LINC00092 also suppressed tumor growth in vivo. In addition, it revealed that miR-542-3p upregulation reversed LINC00092 overexpression-mediated effects on TC cells. At the same time, the enhanced influences of TC cells caused by miR-542-3p upregulation could be attenuated by the enforced LPP.This study innovatively reveals that LINC00092 acts as an antineoplastic lncRNA to restrain the development of TC via regulating miR-542-3p/LPP. The findings of this study may provide a prospective drug target on LINC00092/miR-542-3p/LPP axis for the treatment of TC.
Collapse
Affiliation(s)
- Huan Wang
- General Practice Section, Wuhan University of Science and Technology Hospital, Wuhan, China
| |
Collapse
|
5
|
Alshahrani SH, Rakhimov N, Gupta J, Hassan ZF, Alsalamy A, Saleh EAM, Alsaab HO, Al-Aboudy FK, Alawadi AR, Mustafa YF. The mechanisms, functions and clinical applications of miR-542-3p in human cancers. Pathol Res Pract 2023; 248:154724. [PMID: 37542861 DOI: 10.1016/j.prp.2023.154724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
MicroRNAs, as a major type of noncoding RNAs, have crucial roles in various functions during development. Available data have shown that miR-542-3p decreased in various types of cancers. MiR-542-3p is engaged in various cancer-related behaviors like glycolysis, metastasis, epithelial-to-mesenchymal transition (EMT), cell cycle, apoptosis, and proliferation via targeting at least 18 genes and some important signaling pathways like Wnt/β-catenin, Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Janus kinase 2 (JAK2) signaling, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling. Current studies have proposed that the level of miR-542-3p could be modulated by several upstream regulators like transcription factors, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). In addition, the level of miR-542-3p or its related lncRNAs/circRNAs are correlated with poor prognosis and clinicopathological features of cancer-affected patients. Here, we have discussed the biogenesis, function, and regulation of miR-542-3p as well as its aberrant expression in various types of neoplastic cells. Moreover, we have discussed the prognostic value of miR-542-3p in cancer. Finally, we have added the underlying molecular mechanism of miR-542-3p in cancer pathogenesis.
Collapse
Affiliation(s)
| | - Nodir Rakhimov
- Head of the Department of Oncology, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura Pin Code 281406, U. P., India.
| | | | - Ali Alsalamy
- Department of Computer Technical engineering, College of Information Technology Imam Ja'afarAl-Sadiq University Al-Muthanna, Iraq
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | | | - Ahmed Radhi Alawadi
- Medical Analysis Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
6
|
Hashemi M, Hasani S, Hajimazdarany S, Ghadyani F, Olyaee Y, Khodadadi M, Ziyarani MF, Dehghanpour A, Salehi H, Kakavand A, Goharrizi MASB, Aref AR, Salimimoghadam S, Akbari ME, Taheriazam A, Hushmandi K, Entezari M. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks. Int J Biol Macromol 2023; 232:123377. [PMID: 36702226 DOI: 10.1016/j.ijbiomac.2023.123377] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Changes in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/β-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world. The survival and prognosis of patients are not still desirable, although there have been advances in introducing new kinds of therapies and diagnosis. The present review provides an update of Wnt/β-catenin function in breast cancer malignancy. The upregulation of Wnt is commonly observed during progression of breast tumor and confirms that tumor cells are dependent on this pathway Wnt/β-catenin induction prevents apoptosis that is of importance for mediating drug resistance. Furthermore, Wnt/β-catenin signaling induces DNA damage repair in ameliorating radio-resistance. Wnt/β-catenin enhances proliferation and metastasis of breast tumor. Wnt/β-catenin induces EMT and elevates MMP expression. Furthermore, Wnt/β-catenin participates in tumor microenvironment remodeling and due to its tumor-promoting factor, drugs for its suppression have been developed. Different kinds of upstream mediators Wnt/β-catenin signaling in breast cancer have been recognized that their targeting is a therapeutic approach. Finally, Wnt/β-catenin can be considered as a biomarker in clinical trials.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Hasani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yeganeh Olyaee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Khodadadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Fallah Ziyarani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasti Salehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
7
|
Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integr Genomics 2022; 22:1073-1088. [DOI: 10.1007/s10142-022-00908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
|
8
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
9
|
Fu L, Wang Z, Jiang F, Wei G, Sun L, Guo C, Wu J, Zhu J. High Expression of EIF4G2 Mediated by the TUG1/Hsa-miR-26a-5p Axis Is Associated with Poor Prognosis and Immune Infiltration of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9342283. [PMID: 36157241 PMCID: PMC9507702 DOI: 10.1155/2022/9342283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Objective Eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) is involved in the occurrence and development of various tumors. However, the effect of EIF4G2 in gastric cancer (GC) has not been fully explored. The purpose of this study was to explore the function and mechanism of EIF4G2 in GC. Methods The Tumor Immune Estimation Resource 2.0 database was used to analyze EIF4G2 expression in various cancers and the relationship between EIF4G2 expression and tumor-infiltrating immune cells. Gene Expression Profiling Interactive Analysis was utilized to assess the EIF4G2 expression level and its effect on survival in GC. UALCAN was conducted to analyze EIF4G2 expression in various subgroups of GC. The Kaplan-Meier plotter was employed for survival analysis. Receiver operator characteristic (ROC) curve analysis was applied to evaluate the diagnostic role of EIF4G2 in GC. LinkedOmics was used to identify the co-expressed genes and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. The Tumor-Immune System Interaction database was employed to analyze the correlation between EIF4G2 expression and tumor-infiltrating lymphocytes. The starBase web platform was used to predict the upstream microRNAs and long noncoding RNAs. Results EIF4G2 expression was upregulated in GC tissues compared to normal controls. High expression of EIF4G2 indicated poor prognosis in GC. ROC analysis revealed that EIF4G2 had good diagnostic ability to distinguish GC from normal tissues. Immune infiltration analysis indicated that EIF4G2 expression may be involved in the modulation of tumor immune infiltration in GC. Finally, we determined that the Taurine Upregulated 1 (TUG1)/hsa-miR-26a-5p/EIF4G2 axis was the most likely regulatory pathway involved in GC development. Conclusions EIF4G2 was upregulated in GC and elevated expression of EIF4G2 indicated unfavorable prognosis. Moreover, EIF4G2 expression may be involved in the regulation of tumor immune cell infiltration. The TUG1/hsa-miR-26a-5p axis is a likely upstream regulatory mechanism of EIF4G2 in GC. EIF4G2 may thus serve as a prognosis biomarker and present a new therapeutic target.
Collapse
Affiliation(s)
- Liu Fu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Fengxiang Jiang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Guohua Wei
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Longe Sun
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Jianhuan Zhu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| |
Collapse
|
10
|
Zhang H, Wang J, Yu T, Wang J, Lu J, Yu Z. Silencing LncRNA CASC9 inhibits proliferation and invasion of colorectal cancer cells by MiR-542-3p/ILK. PLoS One 2022; 17:e0265901. [PMID: 35427373 PMCID: PMC9012350 DOI: 10.1371/journal.pone.0265901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) ranks the third in cancers and the second in the reasons of cancer-related death. More evidence indicates that long non-coding RNA participates in tumor initiation and progression. It’s known that cancer susceptibility candidate 9 is an oncogenic long non-coding RNA in CRC. miR-542-3p is a negative regulator of CRC, while integrin-linked kinase could contribute to tumor progression and chemoresistance. However, the correlation among long non-coding RNA cancer susceptibility candidate 9, miR-542-3p and integrin-linked kinase in CRC is still unclear. We demonstrated long non-coding RNA cancer susceptibility candidate 9 in CRC specimens and cell lines overexpressed via real-time quantitative polymerase chain reaction. Once long non-coding RNA cancer susceptibility candidate 9 was knocked down, it significantly inhibited proliferation, invasion, and migration of CRC cells in real-time quantitative polymerase chain reaction, cell counting kit-8, 5-ethynyl-2’-deoxyuridine, and transwell assays, which also was validated in vivo. Long non-coding RNA cancer susceptibility candidate 9 negatively regulates miR-542-3p in a targeted manner, and the function of up-regulated miR-542-3p was confirmed similarly. While miR-542-3p negatively regulates integrin-linked kinase. Thus, we further verified that overexpression of integrin-linked kinase on down-regulated long non-coding RNA cancer susceptibility candidate 9 or up-regulated miR-542-3p significantly restored CRC cell proliferation via bioinformatic analysis, dual-luciferase report assay, real-time quantitative polymerase chain reaction, RNA immunoprecipitation, and western blot. This study testified that silencing long non-coding RNA cancer susceptibility candidate 9 could inhibit proliferation and invasion of CRC cells by miR-542-3p/integrin-linked kinase.
Collapse
Affiliation(s)
- Heping Zhang
- Department of Anorectal, People’s Hospital of Jiaozuo, Jiaozuo, Henan Province, China
| | - Jingfang Wang
- Medical College of Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian Province, China
| | - Taoyuan Yu
- Institute of International Education, Beijing University of Chemical Technology, Beijing, China
| | - Jingmin Wang
- Infertility Clinic, People’s Hospital of Jiaozuo, Jiaozuo, Henan Province, China
| | - Jun Lu
- Basic Medical Laboratory, 900th Hospital of the Joint Logistics Team, Fuzhou, Fujian Province, China
| | - Zongyang Yu
- Pulmonary and Critical Care Medicine, 900th Hospital of the Joint Logistics Team, Fuzhou, Fujian Province, China
- * E-mail:
| |
Collapse
|
11
|
Sun H, Li Y, Wang X, Zhou X, Rong S, Liang D, Sun G, Cao H, Sun H, Wang R, Yan Y, Xie S, Sun Y. TRIB2 regulates the expression of miR‑33a‑5p through the ERK/c‑Fos pathway to affect the imatinib resistance of chronic myeloid leukemia cells. Int J Oncol 2022; 60:49. [PMID: 35302171 PMCID: PMC8973951 DOI: 10.3892/ijo.2022.5339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematological disease, and imatinib (IM) resistance represents a major problem for its clinical treatment. In the present study, the role of tribbles pseudokinase 2 (TRIB2) in IM resistance of CML and the possible mechanism were investigated. It was found that TRIB2 was highly expressed in IM-resistant patients with CML through the Oncomine database and this conclusion was confirmed using reverse transcription-quantitative PCR and western blot experiments. Knockdown of TRIB2 was found to increase the drug sensitivity of KG cells to IM using Cell-Counting Kit-8 (CCK-8) assays, and the low-expression TRIB2 mice were further found to be more sensitive to the IM and have a higher survival rate in leukemia model mice. Moreover, using western blot and luciferase experiments, it was found that TRIB2 could regulate c-Fos through the ERK signaling pathway, and c-Fos suppressed the transcriptional activity and the expression of miR-33a-5p. Further investigation identified that the binding site for c-Fos to function on miR-33a-5p was the -958-965 region. Finally, CCK-8 assays and western blot experiments demonstrated that miR-33a-5p could inhibit the proliferation of KG cells and reduce IM resistance by suppressing the expression of HMGA2. In conclusion, it was demonstrated that TRIB2 regulates miR-33a-5p to reverse IM resistance in CML, which may help identify novel targets and therapeutic strategies for the clinical treatment of IM resistance.
Collapse
Affiliation(s)
- Hang Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264033, P.R. China
| | - Xiao Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264033, P.R. China
| | - Xue Zhou
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Simin Rong
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264033, P.R. China
| | - Dongmin Liang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264033, P.R. China
| | - Guangbin Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264033, P.R. China
| | - Huizhen Cao
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Hongfang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264033, P.R. China
| | - Ranran Wang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong 264033, P.R. China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264033, P.R. China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264033, P.R. China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
12
|
Sun CP, Bai Y, Jiang JQ, Wu JL. Effects of laparoscopic radical surgery in the treatment of colorectal cancer and correlations of VEGF and TGF-β1 with prognosis. Am J Transl Res 2021; 13:12887-12896. [PMID: 34956504 PMCID: PMC8661244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/18/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the effects of laparoscopic radical surgery on the treatment of colorectal cancer (CRC) and explore the correlations of vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1) with prognosis. METHODS The clinical data of 210 patients with CRC admitted to the Yantai Zhifu Hospital from February 2015 to February 2018 were analyzed retrospectively. Among them, 110 patients were treated with laparoscopic radical surgery and assigned to the observation group, and the rest 100 patients were treated with routine open surgery and included in the open group. The two groups were compared in terms of operation time (OT), intraoperative blood loss (IBL), postoperative exhaust time (PET), length of hospital stays (LOS) and incidence of complications. Patients were also followed up for 3 years to count their survival rates. Serum expression levels of VEGF and TGF-β1, detected by enzyme-linked immunosorbent assays (ELISAs), were compared before and after treatment, and their correlations with patients' clinicopathological data and prognosis were analyzed. RESULTS Compared with the open group, patients in the observation group had longer OT, but lower IBL, PET, LOS, and overall incidence of complications. In the observation group, VEGF and TGF-β1 expression after treatment was remarkably lower than that before treatment and that in the open group. A 3-year survival rate of 80.0% was observed in the observation group. Univariate analysis showed that serum VEGF and TGF-β1 expression levels were closely related to Dukes staging and lymph node metastasis (LNM) (P<0.05). The Log-Rank test showed that the survival rate of patients with high VEGF and TGF-β1 expression was remarkably lower than that of those with low expression (P<0.05). According to Cox model multivariate analysis, Dukes staging, LNM, surgical methods and high VEGF and TGF-β1 expression were all independent risk factors for the prognosis of CRC patients (P<0.05). CONCLUSION Laparoscopic radical surgery is effective and safe in treating CRC. VEGF and TGF-β1 are highly expressed in the serum of CRC patients, and are closely related to the tumor staging, LNM and prognosis of patients, which are of great significance for evaluating the condition and prognosis of CRC patients.
Collapse
Affiliation(s)
- Chuan-Peng Sun
- General Surgery, Yantai Zhifu HospitalYantai 264000, Shandong Province, China
| | - Yan Bai
- General Surgery, Tianjin Fifth Central HospitalTianjin 300450, China
| | - Jin-Qiang Jiang
- General Surgery One, Leling City People’s HospitalLeling 253600, Shandong Province, China
| | - Jian-Lin Wu
- Department of Gastrointestinal Surgery, Zibo Central HospitalZibo 255036, Shandong Province, China
| |
Collapse
|
13
|
Fernandes MT, Yassuda V, Bragança J, Link W, Ferreira BI, De Sousa-Coelho AL. Tribbles Gene Expression Profiles in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2021; 3:218-236. [DOI: https:/doi.org/10.3390/gidisord3040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
Collapse
Affiliation(s)
- Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Victor Yassuda
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisboa, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Bibiana I. Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Estudos e Desenvolvimento em Saúde (CES), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
14
|
Fernandes MT, Yassuda V, Bragança J, Link W, Ferreira BI, De Sousa-Coelho AL. Tribbles Gene Expression Profiles in Colorectal Cancer. GASTROINTESTINAL DISORDERS 2021; 3:218-236. [DOI: 10.3390/gidisord3040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
Collapse
Affiliation(s)
- Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Victor Yassuda
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisboa, Portugal
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Bibiana I. Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Escola Superior de Saúde (ESS), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- Centro de Estudos e Desenvolvimento em Saúde (CES), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|