1
|
Fernandes I, Macedo D, Gouveia E, Ferreira A, Lima J, Lopez D, Melo-Alvim C, Carvalho A, Tavares P, Rodrigues-Santos P, Cardoso P, Magalhães M, Vieira P, Brito J, Mendes C, Rodrigues J, Netto E, Oliveira V, Sousa C, Henriques Abreu M, Pina F, Vasques H. [Practical Guidance on the Detection of NTRK Fusions in Sarcomas: Current Status and Diagnostic Challenges]. ACTA MEDICA PORT 2025; 38:266-275. [PMID: 40185143 DOI: 10.20344/amp.21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/26/2024] [Indexed: 04/07/2025]
Abstract
Sarcomas are a rare and heterogeneous group of mesenchymal malignant tumors and account for approximately 1% of all adult cancers and around 20% of all pediatric solid tumors in Europe. Technology advances have enabled a more accurate and efficient characterization of the molecular mechanisms underlying the pathogenesis of sarcoma subtypes and revealed novel and unexpected therapeutic targets with prognostic/predictive biomarkers, namely the neurotrophic tyrosine receptor kinase (NTRK) gene fusion. The NTRK fusion assessment has recently become a standard part of management for patients with unresectable locally advanced or metastatic cancers and has been identified in various tumor types. In the more prevalent adult and pediatric sarcomas, NTRK fusions are present in 1% and 20%, respectively, and in more than 90% of very rare subsets of tumors. The inhibition of TRK activity with first-generation TRK inhibitors has been found to be effective and well tolerated in adult and pediatric patients, independently of the tumor type. Overall, the therapeutic benefit to those patients compensates for the difficulties of identifying NTRK gene fusions. However, the rarity and diagnostic complexity of NTRK gene fusions raise several questions and challenges for clinicians. To address these issues, an expert panel of medical and pediatric oncologists, radiologists, surgeons, orthopedists, and pathologists reviewed the recent literature and discussed the current status and challenges, proposing a diagnostic algorithm for identifying NTRK fusion sarcomas. The aim of this article is to review the updated information on this issue and to provide the experts' recommendations and practical guidance on the optimal management of patients with soft tissue sarcomas, infantile fibrosarcoma, gastrointestinal stromal tumors, and osteosarcoma.
Collapse
Affiliation(s)
- Isabel Fernandes
- EpiDoC Unit. Comprehensive Health Research Center (CHRC). NOVA Medical School. Universidade NOVA de Lisboa. Lisbon. Portugal
| | - Daniela Macedo
- Department of Medical Oncology. Hospital dos Lusíadas. Lisbon. Portugal
| | - Emanuel Gouveia
- Department of Medical Oncology. Instituto Português de Oncologia de Lisboa Francisco Gentil. Lisbon. Portugal
| | - Ana Ferreira
- Department of Medical Oncology. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| | - Jorge Lima
- Instituto de Patologia e Imunologia Molecular (IPATIMUP). Universidade do Porto. Porto. Portugal
| | - Dolores Lopez
- Department of Medical Oncology. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Cecília Melo-Alvim
- Department of Medical Oncology. Hospital de Santo António. Unidade Local de Saúde (ULS) de Santo António. Porto. Portugal
| | - Alice Carvalho
- Department of Pediatrics. Unidade Local de Saúde de Coimbra. Coimbra. Portugal
| | - Paulo Tavares
- Sarcoma and Bone tumors Unit. Unidade Local de Saúde de Coimbra. Coimbra. Portugal
| | - Paulo Rodrigues-Santos
- Immunology and oncology laboratory. Centro de Neurociências e Biologia Celular (CNC). Universidade de Coimbra. Coimbra. Portugal
| | - Pedro Cardoso
- Department of Orthopedics. Hospital Geral de Santo António. Unidade Local de Saúde Santo António. Porto. Portugal
| | - Manuel Magalhães
- Department of Medical Oncology. Hospital de Santo António. Unidade Local de Saúde Santo António. Porto. Portugal
| | - Paula Vieira
- Department of Medical Oncology. Hospital Dr. Nélio Mendonça. Serviço de Saúde da Região Autónoma da Madeira. Funchal. Portugal
| | - Joaquim Brito
- Department of Orthopedics. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Cristina Mendes
- Department of Pediatrics. Instituto Português de Oncologia de Lisboa Francisco Gentil. Lisbon. Portugal
| | - Joana Rodrigues
- Department of Medical Oncology. Unidade Local de Saúde de Coimbra. Coimbra. Portugal
| | - Eduardo Netto
- EpiDoC Unit. Comprehensive Health Research Center (CHRC). NOVA Medical School. Universidade NOVA de Lisboa. Lisbon. Portugal; Department of Radiotherapy. Instituto Português de Oncologia de Lisboa Francisco Gentil. Lisbon. Portugal
| | - Vânia Oliveira
- Department of Orthopedics. Hospital de Santo António. Unidade Local de Saúde Santo António. Porto. Portugal
| | - Catarina Sousa
- Department of Pediatrics. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| | - Miguel Henriques Abreu
- Department of Medical Oncology. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| | - Filomena Pina
- Department of Radiotherapy. Hospital de Santa Maria. Unidade Local de Saúde Santa Maria. Lisbon. Portugal
| | - Hugo Vasques
- Department of General Surgery. Instituto Português de Oncologia do Porto Francisco Gentil. Porto. Portugal
| |
Collapse
|
2
|
Zhang M, Yao X, Zhang N, Yu Y, Jia C, Guan X, Xu W, Ni X, Guo Y, He L. Development, optimization and application of a universal fluorescence multiplex PCR-based assay to detect BCOR genetic alterations in pediatric tumors. Diagn Pathol 2025; 20:11. [PMID: 39871307 PMCID: PMC11770904 DOI: 10.1186/s13000-025-01604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/14/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND A number of genetic aberrations are associated with the BCL6-correpresor gene (BCOR), including internal tandem duplications (ITDs) and gene fusions (BCOR::CCNB3 and BCOR::MAML3), as well as YWHAE::NUTM2, which are found in clear cell sarcoma of the kidney (CCSK), sarcoma with BCOR genetic alterations, primitive myxoid mesenchymal tumor of infancy, and high-grade neuroepithelial tumors in children. Detecting these gene aberrations is crucial for tumor diagnosis. ITDs can be identified by Sanger sequencing or agarose gel electrophoresis. However, gene fusions are usually detected through reverse transcription-polymerase chain reaction (RT-PCR) or fluorescence in situ hybridization. Methods that analyze these variants simultaneously in a sensitive and convenient manner are lacking in clinical practice. METHODS This study validated a Universal Fluorescence Multiplex PCR-based assay that assessed BCOR ITDs, BCOR::CCNB3, BCOR::MAML3 and YWHAE::NUTM2 fusions simultaneously. RESULTS The assay achieved a detection threshold of 10 copies for fusion genes and 0.32 ng genomic DNA for BCOR ITDs. The performance of this assay was also tested in a cohort of 43 pediatric tumors (17 undifferentiated small round cell sarcomas, and 26 tumors with a histological diagnosis of CCSK). In total, 20 BCOR ITDs, 4 BCOR::CCNB3 and one YWHAE::NUTM2 were detected. When compared with the final diagnosis, the assay achieved 93% sensitivity and 100% specificity. CONCLUSIONS Accordingly, this assay provided an effective and convenient method for detecting BCOR- and YWHAE-related abnormalities in tumors.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xingfeng Yao
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Nan Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chao Jia
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaoxing Guan
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenjian Xu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Big Data and Engineering Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Lejian He
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
3
|
Rottmann D, Abdulfatah E, Pantanowitz L. Molecular testing of soft tissue tumors. Diagn Cytopathol 2023; 51:12-25. [PMID: 35808975 PMCID: PMC10084007 DOI: 10.1002/dc.25013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND The diagnosis of soft tissue tumors is challenging, especially when the evaluable material procured is limited. As a result, diagnostic ancillary testing is frequently needed. Moreover, there is a trend in soft tissue pathology toward increasing use of molecular results for tumor classification and prognostication. Hence, diagnosing newer tumor entities such as CIC-rearranged sarcoma explicitly requires molecular testing. Molecular testing can be accomplished by in situ hybridization, polymerase chain reaction, as well as next generation sequencing, and more recently such testing can even be accomplished leveraging an immunohistochemical proxy. CONCLUSION This review evaluates the role of different molecular tests in characterizing soft tissue tumors belonging to various cytomorphologic categories that have been sampled by small biopsy and cytologic techniques.
Collapse
Affiliation(s)
- Douglas Rottmann
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Eman Abdulfatah
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Liron Pantanowitz
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|